习题四解答
现代机械制图习题集习题解答4

2-2 正投影的基本性质班级: 姓名: 学号: 11第2章 投影基础1. 根据给出的视图补画第三视图。
(4)(1)(2)(3)(5)2-6 直线的投影(续)班级: 姓名: 学号: 15第2章 投影基础7. 已知A、B、C在同一直线上,求点的投影。
OXab( )( )ddd'(4)c'aa'Xb'cXca( )d(5)a'OX b'bd'c'cacObbd( )8. 判断下列两直线的相对位置(平行、相交、交叉)(1)c'a'd'a'c'(2)b'b'd'OX( )bO(6)b'(d')dXa a'(c)c'( )acdbc'(d')a'O (3)b'交叉相交相交交叉交叉平行2-12 换面法班级: 姓名: 学号: 213. 求三角形ABC的实形。
1. 求点A的新投影。
第2章 投影基础O11H VX a'aX HV bab'(2)1HVV HX aa'(1)X V HXOa'1OOOc'c (1)XHV d'cdc'(2)HV aa'bb'OX O2. 求直线AB、CD的实长及AB与水平面的倾角和CD与正平面的倾角。
4. 求点K到三角形ABC的距离。
aa'Xcbkc'Ok'b'a 1'a 1a 1'b1'c1'。
流体力学习题解答4

习 题 四1. 油(μ=3⨯103-kg/m*s )和水(μ=1.14⨯103-kg/m*s )在管径d=100mm 的圆管中流动,如果压力降相同,流态都是层流,试求这两种流动中管轴线上的流速之比。
2. 动力粘度μ=0.072kg/m*s 的油在管径d=0.1m 的圆管中作层流运动,流量Q=3⨯103-m 3/s ,试计算管壁切应力τ0。
3. 水(运动粘度υ=106-m2/s )在直径d=200mm ,长l=20m 的圆管流动,流量Q=24⨯103-m 3/s ,如果管壁粗糙度∆=0.2mm ,求沿程水头损失。
4. 圆管直径d=80mm ,当流量很大时,测得沿程损失系数是一个常数,其值为λ=0.025,试计算管壁的粗糙度∆。
5. 一条管道,新使用时,相当粗糙度∆/d=104-,使用多年后,发现在水头损失相同的情况下,流量减少了35%,试估算此旧管的相对粗糙度。
6. 如图,串联管道由两段管组成,其长度和直径分别为l 1=500m ,d 1=300mm ,l 2=400m ,d 2=250mm ,壁面粗糙度都是∆=0.6mm ,水位H=10m ,如果沿程损失系数按阻力平方区计算,求流量Q 。
11题图7. 一段水管,长l=150m ,流量Q=0.12 m 3/s ,该管段内总的局部损失系数为ζ=5,沿程损失系数那λ=3.002.0d计算,如果要求水头损失h=3.96m ,求管径d 。
8. 为了测量截面突然扩大的局部损失系数ζ和管道沿程损失系数λ,在管道三个截面上装有测压管,其中测压管1在扩大前端,其余两个测压管等距离地安装在下游,已知三支测压管液面读数为h 1=156.5mm, h 2=163mm, h 3=113mm ,管径d=15mm ,D=20mm ,长度l=100mm ,测得流量Q=2.65⨯104-m 3/s ,求ζ和λ的值。
15题图9. 一条输油管道,直径d=250mm ,长l=6.5km ,壁面粗糙度∆=0.8mm ,流量Q=0.06 m 3/s ,油的运动粘度υ=2.4⨯106-m 2/s ,求沿程损失。
无机化学(周祖新)习题解答 第四章

无机化学(周祖新)习题解答第四章第四章酸碱平衡和溶解沉淀平衡习题解答(4)思考题1.强电解质的水溶液有强的导电性,但AgCl和BaSO4水溶液的导电性很弱,它们属于何种电解质?1.答:AgCl和BaSO4水溶液的导电性虽很弱,溶液中离子浓度很小,这是由于AgCl和BaSO4本身溶解度小,致使溶液中自由离子浓度小,导电性弱。
而AgCl和BaSO4(溶解部分)在溶液中还是全部解离的,所以是强电解质。
2.在氨水中加入下列物质时,NH3?H2O的解离度和溶液的pH将如何变化?⑴NH4Cl ⑵NaOH ⑶HAc ⑷加水稀释 2.NH3?H2ONH4++OH-⑴加入NH4Cl,氨水解离度下降,pH减小。
⑵加入NaOH,氨水解离度下降,pH增加。
⑶加入HAc,氨水解离度增加,pH减小。
⑷加水稀释,氨水解离度增加,pH减小。
3.下列说法是否正确?若有错误请纠正,并说明理由。
⑴酸或碱在水中的解离是一种较大的分子拆开而形成较小离子的过程,这是吸热反应。
温度升高将有利于电离。
⑵1×10-5 mol?L-1的盐酸溶液冲稀1000倍,溶液的pH值等于8.0。
⑶将氨水和NaOH溶液的浓度各稀释为原来1/2时,则两种溶液中OH-浓度均减小为原来的1/2。
⑷pH相同的HCl和HAc浓度也应相同。
⑸酸碱滴定中等当点即指示剂变色点。
⑹某离子被完全沉淀是指其在溶液中的浓度为0。
3.⑴错。
在解离即较大的分子拆开而形成较小离子的吸热反应的同时,较小离子与水分子的水合是是放热的,总反应的吸放热取决于两过程热效应的相对大小,有吸热也有放热,故温度升高不一定有利于解离。
⑵错。
在pH值远离7的时候,溶液每稀释10倍,pH近视增加一个单位,这是没有计算水解离出的H+,当pH接近7的时候,水解离出的H+就不能再忽略了,所以酸性溶液不管怎么稀释,只能越来越接近中性,不可能变为碱性。
⑶错。
NaOH溶液稀释为原来1/2时OH-浓度确实减小为原来的1/2;但氨水在稀释过程中,其解离平衡向右移动,会解离出更多的OH-,稀释一倍后,其OH-浓度大于原来的一半。
微机原理习题解答:4

微机原理习题解答:4习题四1.8086语言指令的寻址方式有哪几类?用哪一种寻址方式的指令执行速度最快?答:数据操作数的寻址方式有七种,分别为:立即寻址,寄存器寻址,直接寻址,寄存器间接寻址,寄存器相对基址变址和相对基址变址寻址。
其中寄存器寻址的指令执行速度最快。
2.若DS=6000H,SS=5000H,ES=4000H,SI=0100H,BX=0300H,BP=0400H,D=1200H,数据段中变量名NUM的偏移地址为0050H,试指出下列源操作数的寻址方式和物理地址是多少?(1)MOV AX,[64H]答:寻址方式为直接寻址;PA=60064H(2)MOV AX,NUM 答:寻址方式为直接寻址;PA=60005H (3)MOV AX,[SI]答:寻址方式为寄存器间接寻址;PA=60100H (4)MOV AX,[BX]答:寻址方式为寄存器间接寻址;PA=60300H (5)MOV AX,[BP]答:寻址方式为寄存器间接寻址;PA=50400H (6)MOV AL,[DI]答:寻址方式为寄存器间接寻址;PA=61200H (7)MOV AL,[BX+1110H]答:寻址方式为寄存器相对寻址;PA=61410H (8)MOV AX,NUM[BX]答:寻址方式为寄存器相对寻址;PA=60305H (9)MOV AX,[BX+SI]答:寻址方式为基址变址寻址;PA=60400H(10)MOV AX,NUM[BX][DI]答:寻址方式为相对基址变址寻址;PA=61505H3.设BX=637DH,SI=2A9BH,位移量为C237H,试确定由这些寄存器和下列寻址方式产生的有效地址。
(1)直接寻址答:有效地址为EA=C237H(2)用BX的寄存器间接寻址答:有效地址为EA=637DH(3)用BX的相对寄存器间接寻址答:有效地址为EA=125B4H (4)基址加变址寻址答:有效地址为EA=8E18H(5)相对基址变址寻址答:有效地址为EA=1504FH其中,(3)和(5)中产生进位,要把最高位1舍去。
线性代数习题四作业参考解答

习题四作业参考解答1.求下列齐次线性方程组的一个基础解系:(1) ⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x 解:系数矩阵104018102312451014438620000A ⎛⎫-⎛⎫ ⎪⎪ ⎪=--- ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭初等行变换(行最简形) 所以同解方程组为:1323443144x x x x x =-⎧⎪⎨=+⎪⎩,令341,0x x ==,带入同解方程组求出12x x 和,得一个解向量143410η-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭;再令340,1x x ==,带入同解方程组求出12x x 和,得一个解向量201401η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,故齐次线性方程组的基础解系为12,ηη。
(2) 仿(1)(3) 0543254321=++++x x x x x .解:同解方程组为:123452345x x x x x =----,令23451,0,0,0x x x x ====,得解向量()12,1,0,0,0Tη=-, 令23450,1,0,0x x x x ====,得解向量()23,0,1,0,0T η=-, 令23450,0,1,0x x x x ====,得解向量()34,0,0,1,0T η=-, 令23450,0,0,1x x x x ====,得解向量()45,0,0,0,1T η=-, 所以,齐次线性方程组的基础解系为:1234,,,ηηηη 2.求下列非齐次线性方程组的一般解:(2)⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432321321321321x x x x x x x x x x x x解:增广矩阵231410211245011238213000041960000A -⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪= ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭初等行变换,()()24R A R A ==<,所以有无穷多组解。
习题4习题解答.docx

习题四解答4.1 设tz = (10,-8,6,-5)「,” = (2,2,0,-5),,求[3« -^,2«],||a||,||« -^||解答:[(z,a] = 102 +(-8)2 +62 +52 =225[a,)3]= 10 • 2 + (―8)-2 + 6-0 + (-5) • (-5) = 293a —” = (28,—26,18,—10)「,因此[3a — /3,2a] = 2[3a—”, a] = 2[28-10 + (-26) . (-8) + 18-6 +(-10)- (-5)] = 1292或者[3a — /32a] = 6[a, a]—2[”, a] = 6-225-2-29 = 1292M = j0,a]=喜= 15, |板『=/,切=33 因此||a —”『=0 —月& —切=00 + /,切一20,切=200 n ||a 一列=10扼4.2 设有三点A(—l,2,l),3(0,3,l),C(0,2,2),求ZBAC解答:A3 = (1,1,0),AC = (1,0,1),由向量夹角余弦公式知cos A =AB AC4.3设a,”的夹角是120°,模分别为12和6,求a,”的距离.解答:||«-=[a-/3,a-/3] = |述 +—2|a||”|cos9 = 252所以阪-”|| = 6j?4.4作为平面几何定理(平行四边形的对角线与边长的关系)的推广,证明|g|2+|H「=2(| 述+四)||or + 印=[a + /3,a + /3] = [a,a] + 2[a0 + [”,切证明:,|旧_”|「=[/-", a _"] = [a, a]-2[a,"] + [”,”] 所以诉 + "If + |a - ”『=2([«,«] + [”,”]) = 2(|述 +1”/).4.5设%=(1,2,—1产,%=(—1,3,顶,的 =(4,T,0)「,试用施密特正交化方法把这组向量正交规范化.解答:岗=% = (1,2,—1)「解答:因为角,代已经正交,所以只要让%,%正交,正交就可以了. 设a 3 = (xj,x 2,x 3)r ,由于[%,%] = O,]%,%] = 0,所以x, + x 2 + x 3 = 0<M — 2X 2 + 想=°显然,(1,0,-1)「是方程组的一个非零解,所以取«3 = (1,0,-l)r .注:由于只要求出一组数满足 叫+心+心-0就可以了,所以不必将这个齐次线性方程%] -2x, + %, = 0组的通解解出来,只要找到一组非零解即可•可以令x 2 = 0,于是就能得到一组解.4.7设A,3都是〃阶正交矩阵,证明AB 也是正交矩阵.证明:山条件知A TA = I,B TB = I,因此(AB)r (AB) = B T (A T A)B = B T B = I ,即 A3 是正交矩阵.4.8 设%= (5,3,1,1)',%=(—4,18,—2,4)',欲使向量/3 = a 2 + ka x 与向正交,求S 解答:/3 = a 2+ka { = (5k -4,3k + lS,k -2,k + 4)T ,山条件知[”,% ] = 0。
蔡延光《数据库原理与应用》课后习题四答案

习题四1.试述关系模型的三个组成部分。
2.试述关系数据语言的特点和分类。
3.定义并解释下列术语,说明它们之间的联系与区别。
1)主码、候选码、外码。
2)笛卡尔积、关系、元组、属性、域。
3)关系、关系模式、关系数据库。
4. 试述关系模型的完整性规则。
在参照完整性中,为什么外码属性的值也可以为空?什么情况下才可以为空?5. 试述等值连接与自然连接的区别和联系。
6. 对于学生选课关系,其关系模式为:学生(学号,姓名,年龄,所在系);课程(课程名,课程号,先行课);选课(学号,课程号成绩)。
用关系代数完成如下查询。
1)求学过数据库课程的学生的姓名和学号。
2)求学过数据库和数据结构的学生姓名和学号。
3)求没学过数据库课程的学生学号。
4)求学过数据库的先行课的学生学号。
7. 设有一个SPJ数据库,包括S,P,J,SPJ四个关系模式:S(SNO,SNAME,STATUS,CITY);P(PNO,PNAME,COLOR,WEIGHT);J(JNO,JNANE,CITY);SPJ(SNO,PNO,JNO,QTY)。
其中:供应商表S由供应商代码(SNO)、供应商姓名(SNAME)、供应商状态(STATUS)、供应商所在城市(CITY)组成;零件表P由零件代码(PNO)、零件名(PNAME)、颜色(COLOR)、重量(WEIGHT)组成;工程项目表J 由工程项目代码(JNO)、工程项目名(JNAME)、工程项目所在城市(CITY)组成;供应情况表SPJ由供应商代码(SNO)、零件代码(PNO)、工程项目代码(JNO)、供应数量组成(QTY)组成,表示某供应商供应某种零件给某工程项目的数量为QTY。
试用关系代数完成如下查询:1)求供应工程J1 零件的供应商号码SNO。
2)求供应工程J1 零件P1的供应商号码SNO。
3)求供应工程J1 零件为红色的供应商号码SNO。
4)求没有使用天津供应商生产的红色零件的工程号。
5)求至少用了供应商S1所供应的全部零件的工程号。
第三版机械制造工艺学第四章习题解答

机械制造工艺学部分习题解答4第四章:机械加工精度及其控制(第3版P226-228)4-1车床床身导轨在垂直平面内及水平面内的直线度对车削圆轴类零件的加工误差有何影响?影响程度各有何不同?答:导轨在垂直平面内的直线度引起的加工误差发生在被加工表面的切线方向上,是非敏感误差方向,对零件的加工精度影响小;导轨在水平面内的直线度引起的加工误差发生在加工表面的法线上是误差敏感方向,对加工精度影响大。
4-2试分析滚动轴承的外环内滚道及内环外滚道的形状误差(如图4-87题4-2图)所引起的主轴回转轴线的运动误差,对被加工零件精度有什么影响?答:轴承内外圈滚道的圆度误差和波度对回转精度影响,对工件回转类机床,滚动轴承内圈滚道圆度对回转精度的影响较大,主轴每回转一周,径向圆跳动两次。
对刀具回转类机床,外圈滚道对主轴影响较大,主轴每回转一周,径向圆跳动一次。
4-3试分析在车床上加工时,产生下述误差的原因:1)在车床上镗孔,引起被加工孔圆度误差和圆柱度误差;2)在车床三爪自定心卡盘上镗孔,引起内孔与外圆同轴度误差;端面与外圆的垂直度误差。
答:1)在车床上镗孔,引起加工孔的圆度误差是主轴圆跳动、刀杆刚度不足,圆柱度误差是车床导轨在水平面和垂直面的直线度误差。
2)在车床三爪卡盘上镗孔,工件同轴度误差原因可能是工件装夹误差、主轴圆跳动;端面垂直度误差原因是主轴轴向圆跳动(轴向窜动)。
4-4在车床两顶尖装夹工件车削细长轴时,出现4-88a,b,c,所示误差原因是什么?可以用什么方法来减少或消除?答:a)是属于工件在切削力的做用下发生变形(工件刚度不足),可以通过改变刀具的角度来减少径向切削分力、或者加装中心架或者跟刀架来减少变形。
b)是机床受力变形所致(机床主轴和尾座的刚度不足),可以通过提高机床各部件的刚度来改变。
c)由刀具磨损引起,可以采用耐磨刀具来切削,或较少单次切削深度来提高刀具耐磨性。
4-5试分析在转塔车床上将车刀垂直安装加工外圆(图4-89)时,影响直径误差的因素中,导轨在垂直面内和水平面内的弯曲,哪个影响大?与卧式车床比较有什么不同?为什么?答:如图4-89所示转塔车床的刀具安装在垂直面内,由于垂直面为误差敏感方向,所以导轨垂直面内的弯曲对工件直径误差影响较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列数列 {α n } 是否收敛?如果收敛,求出它们的极限: 1) α n =
i⎞ 1 + ni i ⎛ n ;2) α n = ⎜ 1 + ⎟ ; 3) α n = (−1) + ; 4) α n = e − nπ i / 2 ;5) n +1 1 − ni ⎝ 2⎠
−n
α n = e− nπ i / 2 αn = 解 1)
sh z = z +
而收敛半径 R = +∞ ;
(5) ch z = 1 +
2
z2 z4 + +…,| z |< +∞, 2! 4!
z4 z6 z 6 z10 + + …, | z |< +∞, sin z 2 = z 2 − + + …, | z |< +∞, 2! 3! 3! 5!
(6)因 e z = 1 + z 2 +
∞
∞
3
证明
由级数
∑c
n=0
∞
∞
n
收敛, 知幂级数
∞
∑c z
n=0 n n n
∞
n
在 z = 1 处收敛, 由 Abel 定理知
∞
∑c z
n=0 n
∞
n
的收敛半径 R ≥ 1 ;而
∞
∑c
n=0
n
发散知
∑| c z
n=0
| 在 | z |= 1 处发散,故 ∑ cn z n 的收敛半径
n=0
R ≤ 1 。所以 ∑ cn z n 的收敛半径为 1。
i⎞ ⎟ 2⎠
−n
⎛ 2 − iθ ⎞ ⎛ 2 − iθ ⎞ e ⎟ ,又 lim ⎜ e ⎟ = 0 ,故 α n 收敛, lim α n = 0 =⎜ →∞ n n →∞ ⎝ 5 ⎠ ⎝ 5 ⎠
n
n
3)由于 α n 的实部 ( −1) 4)由于 α n = e 5) α n =
− nπ i / 2
1
2)与 1)采用同样的方法,并利用
n
1 1 ≥ (n ≥ 2) ; ln n n
n
∞ ⎛ ∞ (6+5i) n ⎛ 61 ⎞ 61 ⎞ (6+5i) n 3)因 = ,而 收敛,故 绝对收敛; ⎜ ⎟ ⎜ ⎟ ∑ ∑ ⎜ ⎟ ⎜ 8 ⎟ 8n 8n n =1 n =1 ⎝ 8 ⎠ ⎝ ⎠
4)因 cos in = chn ,而 lim
+" = 1− z −
z2 z3 − + " ,| z |< 1 , 2! 3!
而收敛半径 R=1。 (8)因 sin
1 z ⎞ z z ⎛ = sin ⎜1 + , + cos 1sin ⎟ = sin 1 cos − − 1 z 1− z 1− z ⎝ 1 z⎠
z = z + z2 + z3 + … = 1− z
(6) R = 1/ lim n an = lim | ln in |= ∞ ;
n →∞ n →∞
7.如果
∑ cn z n 的收敛半径为 R,证明级数 ∑ ( Re cn ) z n 的收敛半径 ≥ R 。
n=0 n=0
∞
∞
证明
对于圆 | z |< R 内的任意一点 z,由已知
n n
∑ cn z n 绝对收敛即 ∑ cn z 收敛,又
lim α n = −1
n →∞
1 n
1 + ni 1 − n 2 2n 1 − n2 2n = + , 又 = −1, lim = 0, 故 α n 收敛, i lim 2 2 2 n →∞ 1 + n n →∞ 1 + n 2 1 − ni 1 + n 1 + n
2) α n = ⎜ 1 +
⎛ ⎝
∑ c ( z − 2)
n=0 n
在 z = 0 收 敛 , 则 由 Abel 定 理 其 收 敛 半 径
∞ n
R ≥ 0 − 2 = 2 ,而 3 − 2 = 1 < 2 即 z = 3 在其收敛圆 | z − 2 |< 2 内,故级数 ∑ cn ( z − 2 ) 在
n=0
z = 3 收敛,矛盾。
n n=0 n=0
∞
∞
因 Re cn ≤ cn ,从而 Re cn z ≤| cn || z | ,故由正项级数的比较判别法 收敛即
∑ Re c
n =0
∞
n
z 也
n
∑ ( Re c ) z
n =0 n
∞
n
在 | z |< R 内绝对收敛,于是其收敛半径 ≥ R 。
8.证明:如果 lim
n →∞
cn +1 存在( ≠ ∞ ) ,下列三个幂级数有相同的收敛半径 cn
∞ chn cos in 0 ≠ ,故 发散。 ∑ n n →∞ 2 2n n=2
4.下列说法是否正确?为什么? (1)每一个幂级数在它的收敛圆周上处处收敛; (2)每一个幂级数的和函数在收敛圆内可能有奇点; (3)每一个在 z0 连续的函数一定可以在 z0 的邻域内展开成 Taylor 级数。 解(1)不对。如 ∑ z n 在收敛圆 z < 1 内收敛,但在收敛圆周 z = 1 上并不收敛;
n
∑c z
n
;
∑ n +1 z
cn
n +1
;
∑ nc z
n
n −1
。
证明
设 lim
cn +1 = ρ ,则幂级数 ∑ cn z n 的收敛半径为 1/ | ρ | ; n →∞ c n
n +1
幂级数
∑ n +1 z
∑ nc z
n
cn
的收敛半径为 R = 1/ lim
n →∞
an +1 c /(n + 1) = lim n = 1/ | ρ | ; n →∞ an cn +1 /(n + 2)
6.求下列幂级数的收敛半径: (1)
zn ( p为正整数) ; ∑ p n =1 n
∞
∞
(2)
2 (n !) zn ; ∑ n n =1 n
∞
1+i ) z ; (3) (
n=0
∑
∞
∞
n
n
(4)
∑e
n =1
i
π
n
z ;
n
⎛i⎞ n (5) ∑ ch ⎜ ⎟( z − 1) ; n ⎝ ⎠ n =1
n p n →∞
4
cos z 2 = 1 −
z 4 z 8 z12 + − +" 2! 4! 6!
| z |< +∞ 而其收敛半径 R = +∞ ;
(4)因 sh z = 故
Hale Waihona Puke e z − e− z z z2 z3 z2 z3 ,e = 1+ z + + + …, | z |< +∞, e − z = 1 − z + − + …, | z |< +∞, 2 2! 3! 2! 3! z3 z3 + + … , | z |< +∞, 3! 5!
(3) R = 1/ lim n an = lim1/ |1 + i | = 1/ 2 ;
n →∞ n →∞
(4) R = 1/ lim n an = 1 ;
n →∞
(5) R = 1/ lim n an = 1/ lim n ch ⎜
n →∞ n →∞
1 ⎛i⎞ n cos =1; ⎟ = 1/ lim →∞ n n ⎝n⎠
(
)
(
)
故
sin
5 1 ⎛ 1 ⎞ ⎛ ⎞ = sin 1⎜1 − z 2 − z 3 + …⎟ + cos 1⎜ z + z 2 + z 3 + …⎟ 6 1− z ⎝ 2 ⎠ ⎝ ⎠
1 ⎛5 ⎞ ⎛ ⎞ = sin 1 + (cos 1)z + ⎜ cos 1 − sin 1⎟ z 2 + ⎜ cos 1 − sin 1⎟ z 3 + " , | z |< 1 , 2 ⎝6 ⎠ ⎝ ⎠
⎞ ⎞ ⎛ 2 z 6 z10 ⎛ 2 z6 z4 z6 2 2 4 ⎟ ⎜ ⎟ 故 e z sin z 2 = ⎜ = z + z + + … , | z |< +∞, z z 1 . − + + … + + + + … ⎟ ⎟⎜ ⎜ 2! 3! 3! 5! 3 ⎠ ⎠⎝ ⎝
而收敛半径 R = +∞; (7)因 e = 1 + z +
∑z
n =0
∞
n +1
, | z |< 1,
故 sin
cos
3 5 1 z = z + z 2 + z 3 + … − z + z 2 + z 3 + … + … = z + z 2 + z 3 + … , | z |< 1 , 1− z 3! 6
(
)
(
)
2 4 z 1 1 1 = 1 − z + z 2 + z 3 + … − z + z 2 + z 3 + … + … = 1 − z 2 − z 3 + … , | z |< 1 , 1− z 2 4! 2