15-第15讲微分中值定理教学教案
微分中值定理与导数的应用教案

微分中值定理与导数的应用教案第一章:微分中值定理概述1.1 引言引入微分中值定理的概念和意义。
解释微分中值定理在数学分析和物理学中的应用。
1.2 罗尔定理介绍罗尔定理的定义和条件。
通过示例解释罗尔定理的应用。
1.3 拉格朗日中值定理阐述拉格朗日中值定理的表述和条件。
通过图形和示例解释拉格朗日中值定理的应用。
第二章:导数的应用2.1 函数的单调性引入函数的单调性的概念。
解释导数与函数单调性的关系。
通过示例说明如何利用导数判断函数的单调性。
2.2 函数的极值介绍极值的概念和分类。
解释导数与函数极值的关系。
通过示例说明如何利用导数找到函数的极值点。
2.3 函数的凹凸性引入函数凹凸性的概念。
解释导数与函数凹凸性的关系。
通过示例说明如何利用导数判断函数的凹凸性。
第三章:微分中值定理的应用3.1 洛必达法则介绍洛必达法则的定义和条件。
通过示例解释洛必达法则的应用。
3.2 泰勒公式阐述泰勒公式的定义和意义。
通过示例解释泰勒公式的应用。
3.3 微分中值定理在其他领域的应用举例说明微分中值定理在物理学、工程学等领域的应用。
第四章:导数在经济学的应用4.1 边际分析介绍边际分析的概念和意义。
解释如何利用导数进行边际分析。
通过示例说明导数在边际分析中的应用。
4.2 优化问题介绍优化问题的概念和分类。
解释如何利用导数解决优化问题。
通过示例说明导数在优化问题中的应用。
第五章:微分中值定理与导数的实际应用5.1 实际应用案例介绍介绍一个实际应用案例,如工程设计、经济决策等。
解释该案例中如何应用微分中值定理和导数。
5.2 学生实践项目分配一个实际应用项目给学生们。
指导学生如何利用微分中值定理和导数解决该项目。
5.3 项目成果展示与讨论让学生们展示他们的项目成果。
进行讨论和交流,分享各自的解题思路和经验。
第六章:导数与函数图像6.1 切线与导数解释导数在函数图像上的几何意义。
展示如何从函数的导数得到函数图像上的切线。
通过实例演示导数与切线的关系。
《微分中值定理》课件

积分中值定理的应用:求解 定积分、证明不等式等
积分中值定理:描述函数在 某区间上的平均值与该区间 内函数值的关系
傅里叶级数的应用:信号处 理、图像处理、数据分析等
06
微分中值定理的习题和 解析
基础题目解析
题目:求函数f(x)=x^2+2x+1在区间[0,1]上的最大值和最小值 解析:使用微分中值定理,找到函数f(x)在区间[0,1]上的最大值和最小值 题目:求函数f(x)=x^3-2x^2+3x+1在区间[0,1]上的最大值和最小值 解析:使用微分中值定理,找到函数f(x)在区间[0,1]上的最大值和最小值
解决实际问题:微分中值定理在物理、工程等领域的实际问题中有广泛应用。
优化算法:微分中值定理在优化算法中有重要应用,如梯度下降法、牛顿法等。
证明不等式:微分中值定理在证明不等式方面有广泛应用,如拉格朗日中值定理、柯西 中值定理等。
解决微分方程:微分中值定理在解决微分方程方面有重要应用,如欧拉-拉格朗日方程、 庞加莱方程等。
提高题目解析
分析题目:分析题目中的已 知条件和未知条件,找出题 目中的关键信息
理解题目:明确题目要求, 理解题目中的关键词和条件
解题步骤:列出解题步骤, 每一步都要有明确的依据和
理由
解题技巧:总结解题技巧, 如使用公式、定理、图形等
工具进行解题
综合题目解析
题目类型:微 分中值定理的
综合题目
题目来源:教 材、习题集、
03
微分中值定理的基本概 念和性质
导数的定义和性质
导数的定义:函数在某一点的切线 斜率
导数的计算方法:极限法、导数公 式、导数表
教案微分中值定理

微分中值定理教案章节一:引言与预备知识【教学目标】1. 理解微分中值定理的概念和意义。
2. 掌握基本函数的求导法则。
【教学内容】1. 介绍微分中值定理的背景和应用。
2. 复习基本函数的求导法则,包括幂函数、指数函数、对数函数和三角函数的求导。
【教学活动】1. 教师讲解微分中值定理的概念和意义,引导学生理解其重要性。
2. 学生自主学习基本函数的求导法则,并进行练习。
教案章节二:罗尔定理【教学目标】1. 理解罗尔定理的表述和证明。
2. 掌握罗尔定理在实际问题中的应用。
【教学内容】1. 介绍罗尔定理的表述和证明方法。
2. 通过例题讲解罗尔定理在实际问题中的应用。
【教学活动】1. 教师讲解罗尔定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习罗尔定理的应用,并进行练习。
教案章节三:拉格朗日中值定理【教学目标】1. 理解拉格朗日中值定理的表述和证明。
2. 掌握拉格朗日中值定理在实际问题中的应用。
【教学内容】1. 介绍拉格朗日中值定理的表述和证明方法。
2. 通过例题讲解拉格朗日中值定理在实际问题中的应用。
【教学活动】1. 教师讲解拉格朗日中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习拉格朗日中值定理的应用,并进行练习。
教案章节四:柯西中值定理【教学目标】1. 理解柯西中值定理的表述和证明。
2. 掌握柯西中值定理在实际问题中的应用。
【教学内容】1. 介绍柯西中值定理的表述和证明方法。
2. 通过例题讲解柯西中值定理在实际问题中的应用。
【教学活动】1. 教师讲解柯西中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习柯西中值定理的应用,并进行练习。
教案章节五:微分中值定理的应用【教学目标】1. 理解微分中值定理在实际问题中的应用。
2. 掌握利用微分中值定理解决实际问题的方法。
【教学内容】1. 介绍微分中值定理在实际问题中的应用,如求函数的单调区间、极值和最值等。
2. 通过例题讲解如何利用微分中值定理解决实际问题。
教案微分中值定理

微分中值定理教案章节一:预备知识1.1 函数的极限教学目标:理解函数极限的概念,掌握极限的计算方法。
教学内容:引入函数极限的概念,探讨极限的性质和计算方法,如夹逼定理、单调有界定理等。
教学方法:通过具体例子和问题引导学生理解极限的概念,利用图形和数学分析软件演示极限过程,让学生体会极限的意义。
1.2 连续函数教学目标:理解连续函数的概念,掌握连续函数的性质和判断方法。
教学内容:介绍连续函数的定义,探讨连续函数的性质,如保号性、保界性等,学习连续函数的判断方法。
教学方法:通过具体例子和问题引导学生理解连续函数的概念,利用图形和数学分析软件演示连续函数的性质,让学生掌握判断连续函数的方法。
教案章节二:微分中值定理2.1 罗尔定理教学目标:理解罗尔定理的内容和意义,学会运用罗尔定理解决问题。
教学内容:介绍罗尔定理的定义,探讨罗尔定理的条件和结论,学习如何应用罗尔定理解决问题。
教学方法:通过具体例子和问题引导学生理解罗尔定理的内容,利用图形和数学分析软件演示罗尔定理的应用,让学生学会运用罗尔定理解决问题。
2.2 拉格朗日中值定理教学目标:理解拉格朗日中值定理的内容和意义,学会运用拉格朗日中值定理解决问题。
教学内容:介绍拉格朗日中值定理的定义,探讨拉格朗日中值定理的条件和结论,学习如何应用拉格朗日中值定理解决问题。
教学方法:通过具体例子和问题引导学生理解拉格朗日中值定理的内容,利用图形和数学分析软件演示拉格朗日中值定理的应用,让学生学会运用拉格朗日中值定理解决问题。
教案章节三:微分中值定理的应用3.1 导数的应用教学目标:理解导数的概念,掌握导数的计算方法。
教学内容:引入导数的概念,探讨导数的性质和计算方法,如求导法则、高阶导数等。
教学方法:通过具体例子和问题引导学生理解导数的概念,利用图形和数学分析软件演示导数过程,让学生体会导数的意义。
3.2 函数的单调性教学目标:理解函数单调性的概念,掌握函数单调性的判断方法。
《微分学中值定理》课件

结论:柯西定理是微分学中值定理的一个重要结果,对于理解微 分学的基本概念和定理具有重要意义。
单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。 Nhomakorabea04
微分学中值定理的推论
推论一:若函数在某区间内可导,则函数在该区间内单调
推论二:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的定义:函数在某点处的导数为0,且该点两侧的导数符号相 反
极值点的存在性:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的唯一性:若函数在某区间内可导,且该区间内只有一个极 值点,则该极值点为函数的最大值或最小值
极值点的应用:在微分学中,极值点是研究函数性质的重要工具, 可以用于求解函数的最大值和最小值,以及判断函数的单调性等。
推论三:若函数在某区间内可导,则函数在该区间内取得 极值的必要条件
必要条件:函数在某区间内可导
极值:函数在某点处的值大于或小于其附近点的值
证明:通过微分学中值定理的推论,可以证明函数在某区间内取得极值的必要条件
利用微分学中值定理解决实际问题
实例1:求解函数在某点处的导 数
实例2:求解函数在某区间上的 最大值和最小值
实例3:求解函数在某点处的斜 率
实例4:求解函数在某点处的切 线方程
06
微分学中值定理的扩展
泰勒定理与微分学中值定理的关系
泰勒定理是微分 学中值定理的推 广和延伸
泰勒定理将微分 学中值定理中的 函数值扩展到函 数值和导数值
应用:在解决实际问题时,可以利用这个推论来判断函数是否取得极值,从而找到最优解
关于微分中值定理的教学设计

图 2 拉 格 朗 日 中 值 定 理
图 3 柯 西 定 理
进而 由 图 1 说 明 罗 尔 中 值 定 理 的 三 个 条 件 缺 一 不 可,ξ 的值有可能不唯一,点ξ 就是函数的 驻 点 (或 临 界 点). 由 图 2说明拉格朗日中值 定 理 满 足 前 两 个 条 件,ξ 的 值 有 可 能 不 唯一.罗尔中值定理与拉格朗日中值 定 理 相 比 较,条 件 中 去 掉了f(a)=f(b),因此 拉 格 朗 日 中 值 定 理 是 罗 尔 中 值 定 理 的推广;而 罗 尔 中 值 定 理 是 拉 格 朗 日 中 值 定 理 当 f(a)= f(b)时的特例.由图3 说 明 柯 西 中 值 定 理 中 将 函 数 曲 线 变 为参数曲线,因 此 柯 西 中 值 定 理 是 拉 格 朗 日 中 值 定 理 的 推 广;而拉格朗日中值定理 是 柯 西 中 值 定 理 当 g(x)=x 时 的 特例.同时通过图1、图2、图3说明 三 个 中 值 定 理 的 几 何 意 义.经过这样设计教 学 过 程 可 以 非 常 直 观 形 象 的 显 示 这 三 个定理,在课堂教学中,这点是非常重 要 的;应 用 函 数 图 形 进 行说明能使学生更直观理解定理的几何背景.并且图形化 的这种直接表示能启发和引导学生从观察几何图形开始加 深对微分中值定理的认识,增加学生对这 三 个 定 理 的 学 习 兴 趣,使学生直观理解 三 个 定 理 的 相 同 点 和 不 同 点,通 过 对 比 讲授使学生更容易 记 忆 和 理 解,采 用 这 种 教 学 设 计,学 生 容 易接受,变抽象为形象,达到较好的教 学 效 果,为 后 续 微 分 中 值定理的应用打下坚实的基础.
关于微分中值定理的教学设计
微分中值定理说课

《微分中值定理》一、教材分析我说课的内容是中国经济出版社《数学分析》教材中第四章第一节《微分中值定理》.《数学分析》课程是师范专科院校小学教育专业的必修课程.中值定理是微分学的基本定理,是一系列中值定理的总称,是应用导数研究函数在区间上整体性态的有力工具.本节课是在已经学习了导数运算的基础上,通过微分中值定理建立函数与其导数之间的联系,使学生对微分学有初步的理论认识,并为今后应用导数把握函数特征打下基础.二、教学目标本着师范专业对《数学分析》课程”必须够用”的原则,根据培养师范生“数学应用能力”的教学要求,我制定了本节课的教学目标如下:1.知识目标:理解和记忆罗尔定理、拉格朗日中值定理和柯西中值定理的条件和结论,并深刻理解三个定理之间的异同及其几何意义2.能力目标:会应用三个定理进行简单的不等式、等式证明和方程根存在的证明3.德育目标:通过定理的几何意义体会”形象思维”在数学分析学习中的应用,通过三个定理的联系体会数学中”将一般化为特殊,将复杂问题化为简单问题”的论证思想.三、教学重点、难点我所教授的学生是师范专业科学双语二年级的学生,由于学生的数学基础比较薄弱,对于数学分析中理论性的内容,本着”领会实质,掌握应用“的原则,我将本节课的教学重难点制定如下:1.教学重点:理解和记忆罗尔定理、拉格朗日定理和柯西定理的条件和结论;会应用三个定理进行简单的不等式、等式证明和方程根存在的证明2.教学难点:深刻理解三个定理之间的异同及其几何意义四、教学方法由于数学分析课程自身的特点,本节课我采用以教师讲授为主,学生探究练习为辅的综合讲授法.并在教学中贯穿对学生形象思维能力的培养与训练,激发学生的学习兴趣与潜能,以到达较好的教学效果.五、说教学过程遵循着“复习旧知---讲授新知---总结归纳”的原则,本节课的教学内容由以下四部分组成:对于教学过程我将分别从整体和细节两个角度进行说明.(一) 整体把握由于数学分析课程中的理论内容抽象难懂,为了更好的激发学生的学习兴趣,提高学生的理解能力,因此我采用形象思维的方法进行教学,即通过直观信息总结抽象的结论,通过函数图像的变化总结定理之间条件与结论的变化,进一步得到每一个定理的应用方式。
微积分学 P.P.t 标准课件15-第15讲导数概念

(2) 求函数由 x0 到 x0+ x 的平均变化率:
y f ( x0 x) f ( x0 ) ; x x
(3) 求 x 0 的极限:
y f ( x0 x) f ( x0 ) lim lim . x 0 x x 0 x
二.导数的概念
1. 导数的定义
e – x,
x>0
由可导性:
f (0 x) f (0) e x 1 x lim 1 lim lim x 0 x 0 x 0 x x x
f (0 x) f (0) (1 bx) 1 lim lim b x x x 0 x 0
称之为 f (x) 在 (a, b) 内的导函数. 通常我们仍称之
为 f (x) 在 (a, b) 内的导数:
y f ( x x) f ( x) f ( x) lim lim x x 0 x x 0
定义
若 f (x) 在 (a, b) 内可导, 且 f (a) , f (b) 存在,
f ( x0 ) a, y'| x x0 a,
dy d f ( x0 ) a, dx dx
x x0
a.
如果函数 f (x) 在点 x0 处可导, 则
f ( x) f ( x 0 ) f ' ( x0 ) lim ; x x0 x x0
f ( x0 x) f ( x0 ) f ( x0 ) lim x 0 x
高等院校非数学类本科数学课程
大 学 数 学(一)
—— 一元微积分学
第十五讲 导数的概念
脚本编写、教案制作:刘楚中 彭亚新 邓爱珍 刘开宇 孟益民
第四章 一元函数的导数与微分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则f称 (x0)为 f(x)的极,大 x0为值 函数的极大.点
f(x ) f(x 0 ) x U ˆ(x 0 ),
则f称 (x0)为 f(x)的极,小 x0为函 值 数的极小.点
一. 费马定理
定理 设 f(x )在I区 内间 有 ,且 I定 内 在 义 某
例2 设 f(x )C (a ,[b ],) 在 (a ,b )内,证 可明 导 2 x ( f( b ) f( a ) ) ( b 2 a 2 ) f( x )
在(a, b)内至少有.一根
分析 2 x ( f( b ) f( a ) ( ) b 2 a 2 ) f ( x ) 0
( x 2 ( f ( b ) f ( a ) ( ) b 2 a 2 ) f ( x ) ) 0 a 2 (f( b ) f( a ) ) ( b 2 a 2 )f( a )
这些中值定理的创建要归功于费马、 拉格朗日、柯西等数学家.
首先, 从直观上来看看 “函数的差商与函数的导数间的基本关系式” 是怎么一回事.
导数与差商
y yf(x)可微 点P 处切线的斜率:
k f (x0)
PB
相等!
割线 AB 的斜率:
A
k f (x2 ) f (x1) x2 x1
O x1
高等院校非数学类本科数学课程
高等 数 学(上)
—— 一元微积分学
第十五讲 微分中值定理
作业
• 习题3-1(教材125页) • 1;2;3; 4; 5; 6 ;
第三章 微分中值定理与导数的应用
第一节 微分中值定理
一. 费马定理 二. 罗尔中值定理 三. 拉格朗日中值定理 四. 柯西中值定理
导数与差商
f (1 ) f (2 ) f (3 ) 0 .
其中, 1 ( a ,b ) ,2 ( b ,c ) ,3 ( c ,d ) .
即f(x)0至少有三.个实根
f(x)是四次, 多项式 f(x)是三次多 , 项式
f(x)0至多有三个. 实根
综上所述, f(x)0仅有三个, 实根 分 ( a ,别 b )( b ,,c )在 ( c ,,d ) 中 .
处取极.大 若 f( ()存 小 ,在 则 )必 值有
f()0.
可微函数在区间内部取极值的必要条件是 函数在该点的导数值为零.
费马定理的几何解释
y
如
P
何 证
yf(x)
明
?
aO
bx
证 设 f(x)在区 I内 间有,定 且义 x在 处
取极大f(值 ), 则有 f(x)C是特殊情况
f(x )f() x U ˆ() 如何保证函
x [ a ,b ]
x [ a ,b ]
(1)若 Mm
m f ( x ) M x [ a , b ]
f(x ) mx [ a ,b ]
故 ( a ,b ) ,均 f () 有 0 .
( 2 )若 m M ( 即 M m ) f( x ) C ( a ,[ b ])
y
但是…… yf(x)
Oa
bx
f(x ) C (a [ ,b ]) f(x)在 (a,b)存在
可保证在内部一点取到极值
y
yf(x)
f(a)f(b)
P
f()0
水平的
aO
bx
二. 罗尔中值定理
定理 设 ( 1 )f(x ) C (a ,[b ];) (2) f(x)在 (a,b)内可 ; 导 (3 )f(a ) f(b ),
若 f()存,则 在
数在区间内 部取极值?
f () lx i 0 fm ( x x ) f() 0 ,
f () lx i0 fm ( x x ) f() 0 ,
于是
f()0. (极小值类似可证)
f(x ) C (a [ ,b ])可保 f(x ) 证 在[a, b]内取到它的最大最 . 小值
b 2 (f( b ) f( a ) ) ( b 2 a 2 )f( b ) a2f(b)b2f(a)
例2 设 f(x )C (a ,[b ],) 在 (a ,b )内,证 可明 导 2 x ( f( b ) f( a ) ) ( b 2 a 2 ) f( x )
则至少存在一点 ( a ,b ),使 f() 得 0 .
y yf(x)
A
B
O a
bx
实际上, 切线与弦线 AB 平行.
证 f( x ) C ( a ,[ b ])
f(x)必在 [a, b]上取到它的最大
最小值至少各一次.
令 M m f( x a ),x m m f( x i )n
函数导数的定义为
f(x)lim f(xx)f(x)
x 0
x
即函数在点 x 处的导数等于 x 0时, 函数
在点 x 处的差商 f(xx)f(x) 的极的局部的或“小范围”性质, 推出其整体的 或“大范围”性质. 为此, 我们需要建立函 数的差商与函数的导数间的基本关系式, 这些关系式称为“微分学中值定理”.
证明 f(x 方 )0仅 程有三 ,并个 指实 出根 .根
证 f ( x ) C ( [ a ,b ] [ b ,, c ] [ c ,, d ] ) ,
又 f ( a ) f ( b ) f ( c ) f ( d ) 0 ,
f(x)是四次 ,在 (多 , ) 内 项可 ,式微 在[a, b],[b, c],[c, d]上运用罗尔 ,得 中值
x0 x2 x
将割线作平行移动, 那么它至少有一次会 达到这样的位置:
在曲线上与割线距离最远的那一点P 处成 为切线, 即在点P 处与曲线的切线重合.
也就是说, 至少存在一点 (x1,x2),使得
f()f(x2)f(x1)
x2x1 该命题就是微分中值定理.
极值的定义
设 f(x)在 U (x0)内有 ,若 定义
f(x)必在 [a, b]上取到它的最大
最小值至少各一次. 又 f(a ) f(b ),
故 f(x )不能 x a 和 同 x b 处 时分 在 M 和 m .别
即至少存 (在 a, b)一 , 使点 得
f() M 或 f() m . 由费马定理可知: f() 0 ( a ,b ).
例1 设 a ,b ,c ,d 皆为 ,a b c 实 d , 数 f ( x ) ( x a ) x b ( ) x ( c ) x ( d ) ,