2.2.2.整式的加减--去括号

合集下载

《整式的加减》去括号教案

《整式的加减》去括号教案

《整式的加减》去括号教案第一章:去括号的基本概念1.1 引入:引导学生回顾整式的加减运算,让学生理解括号在整式运算中的作用。

1.2 目标:使学生掌握去括号的基本概念,理解去括号的运算规则。

1.3 教学内容:1.3.1 去括号的定义:去掉整式中的括号,使整式简化。

1.3.2 去括号的运算规则:(1)去掉括号时,要注意括号前的符号,如果是正号,则直接去掉括号;如果是负号,则去掉括号并将括号内的每一项变号。

(2)如果括号前有系数,去掉括号后,系数要乘以括号内的每一项。

1.4 教学活动:1.4.1 教师通过示例,讲解去括号的基本概念和运算规则。

1.4.2 学生进行练习,巩固去括号的方法。

第二章:去括号的方法2.1 引入:让学生理解去括号的重要性,激发学生学习去括号方法的兴趣。

2.2 目标:使学生掌握去括号的方法,能够熟练地进行去括号操作。

2.3 教学内容:2.3.1 去括号的方法:(1)如果括号前是正号,直接去掉括号。

(2)如果括号前是负号,去掉括号并将括号内的每一项变号。

(3)如果括号前有系数,去掉括号后,系数要乘以括号内的每一项。

2.3.2 去括号时的注意事项:(1)去掉括号后,要保持整式的平衡,即等号两边的项数要相等。

(2)去掉括号后,要注意各项的符号和系数的变化。

2.4 教学活动:2.4.1 教师通过示例,讲解去括号的方法和注意事项。

2.4.2 学生进行练习,巩固去括号的方法。

第三章:去括号的练习3.1 引入:让学生通过练习,提高去括号的能力。

3.2 目标:使学生能够熟练地运用去括号的方法,解决实际问题。

3.3 教学内容:3.3.1 练习题:提供一些去括号的练习题,让学生独立完成。

3.3.2 练习题解答:教师讲解练习题的解答过程,分析学生容易出现的问题。

3.4 教学活动:3.4.1 学生独立完成练习题。

3.4.2 教师讲解练习题解答过程,分析学生容易出现的问题。

第四章:去括号在实际问题中的应用4.1 引入:让学生了解去括号在实际问题中的应用,提高学生的应用能力。

整式的加减——去括号法则

整式的加减——去括号法则

2.2 整式的加减__去括号法则教学目标:1.掌握去括号法则,并会利用去括号法则将整式化简.2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.培养学生主动探究、合作交流的意识,严谨治学的学习态度.重、难点与关键:1.重点:去括号法则,准确应用法则将整式化简.2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.3.关键:准确理解去括号法则.学情分析:去括号法则是学生在已经掌握了合并同类项的方法的基础之上的运算,学生对括号前面是“+”的形式比较好理解,对括号前面是“-”的形式在运用时比较容易出错,需要多加练习。

教学设计:一. 复习1.什么是同类项?2.合并同类项的方法。

设计意图:通过对问题的解答,起到巩固旧知识,引入新知识的目的。

二.导入新课1. 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?——今天我们就来研究这个问题。

现在我们来看本章引言中的问题(3)在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t 千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t-120(t-0.5)千米②2.上面的式子①、②都带有括号,它们应如何化简?利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60 ③-120(t-0.5)=-120t+60 ④3.教师提出问题:比较③、④两式,你能发现去括号时符号变化的规律吗?学生思考后,讨论交流回答。

2整式的加减-去括号 一等奖创新教学设计

2整式的加减-去括号 一等奖创新教学设计

2整式的加减-去括号一等奖创新教学设计《2.2整式的加减-去括号》教学设计一、教材地位及作用本节课选自新人教版数学七年级上册第二章第二节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,在学习了合并同类项之后的一个课题。

去括号是中学数学代数部分的一个基础知识点,是以后化简代数式、分解因式、配方法等知识点当中的重要环节。

另一方面,这节课所学与前面的知识有着千丝万缕的联系,去括号法则是建立在乘法分配律的基础之上,是有理数加减运算的延伸与拓广。

因此,本节课是承上启下的一节课。

二、学情分析七年级学生,理性思维的发展很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物感兴趣、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。

三、教学目标设计1、知识与技能能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

2、过程与方法经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

3、情感态度与价值观培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活。

四、教学重难点重点:去括号法则,准确应用法则将整式化简。

难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。

关键:准确理解去括号法则并会正确的去括号并化简整式。

五、教法与学法分析这节课学法设计理念是改变学生的学习方式,使学生在课堂中自主学习、合作探究,凸显主体地位。

我设计的主要方法是自主学习(包括课前预习、课堂中的独立思考问题等);小组合作探讨(包括小组交流议论、同桌交流议论);归纳总结、倾听老师讲解等具体的学习方法。

学法确定,教法必须与学法对应,配合学生自主学习,教法是教师学前进行点拨指导、学后进行重点强调;配合小组合作探讨,教法是老师在学生思考问题前明确要求,讨论中随机指导、启发,讨论后总结归纳、拓展提升;鉴于问题超出学生的知识基础、生活经验和已有学习方式与习惯,理解掌握有难度,我采用讲解法。

人教版七年级数学教案:2.2.2整数的加减:去括号、添括号

人教版七年级数学教案:2.2.2整数的加减:去括号、添括号
5.培养学生的团队协作能力:在小组讨论和交流中,鼓励学生共同探讨问题、分享经验,培养团队协作能力。
三、教学难点与重点
1.教学重点
-理解并掌握去括号法则:正号括号去掉后,括号内各项符号不变;负号括号去掉后,括号内各项符号改变。
-熟练运用添括号法则:在整式中添加括号,保持整式的值不变,注意添括号时符号的变化。
-难点二:在复杂整式中准确添加括号,特别是在多项式相减时添加括号。
-解释:在多项式相减时添加括号,需要将减号变为加号,并将括号内的每一项符号改变,如4x - 3y - 2z转化为4x + (-3y) + (-2z)。
-难点三:在实际问题中识别何时需要去括号或添括号,以及如何应用这些法则。
-解释:通过具体例题,如购物时计算总价,让学生理解在计算过程中,可能会遇到需要合并同类项的情况,此时就需要运用去括号或添括号法则。
其次,在实践活动环节,分组讨论和实验操作部分同学们表现得非常积极。他们能够将所学的去括号、添括号法则应用到实际问题中,这让我感到很欣慰。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们还没有完全消化吸收所学知识。在今后的教学中,我会更加关注这部分学生,鼓励他们多发言、多提问,提高课堂参与度。
2.培养学生的数学运算能力:让学生在实际操作中,熟练运用去括号和添括号法则,提高整式加减运算的速度和准确性。
3.培养学生的数学建模能力:通过解决实际生活中的问题,让学生学会将现实问题转化为数学模型,运用所学的去括号和添括号法则进行求解。
4.培养学生的直观想象能力:借助数轴等工具,帮助学生形象地理解去括号、添括号过程中整式值的变化,提高直观想象能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册

2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册

整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。

2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。

3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。

(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。

2.2整式的加减(第2课时)——去括号

2.2整式的加减(第2课时)——去括号

2.2 整式的加减第二课时(去括号)城南中学邱秋梅一、教学内容去括号规律及其应用(课本p65—p67)二、教学目标1、知识与技能:(1)能运用运算律探究去括号规律。

(2)会利用去括号规律进行整式化简。

2、过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号规律,培养学生观察、分析、归纳能力。

3、情感态度和价值观:(1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。

(2)培养学生主动探究、合作交流的意识和严谨治学的学习态度,锻炼学生的语言概括能力和表达能力。

三、教学重难点1、重点:去括号规律及其应用。

2、难点:括号外的因数是负数时符号的变化规律。

四、教法与学法1、教学方法:选用“情境—探索—发现—归纳”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,唤起学生的求知欲,激发学习兴趣,探究去括号规律。

2、学习方法:以“自主参与、勇于探索、合作交流”的探索式学法为主,从而达到提高学习能力的目的。

五、教学准备多媒体课件(用于展示问题,引导讨论,出示答案)。

六、教学过程 (一)复习回顾计算下列式子:(1)22386522+--++xy x xy x(二)创设问题情景(课本P53 本章引言中问题(3))青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,非冻土地段的行驶速度可以达到120千米/时。

请问:在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要u 小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米? 通过师生一起分析列出两个式子:100u+120(u-0.5) ① 100u-120(u-0.5) ② (三)探究新知100u+120(u-0.5)=100u+120u-60=220u-60 100u-120(u-0.5)=100u-120u+60=-20u+60让学生通过观察上面两个式子、类比数的运算、认真分析、归纳得出去括号时符号的变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

人教版七年级上册数学教案:2.2整式的加减-去括号

人教版七年级上册数学教案:2.2整式的加减-去括号
具体内容包括:
-去括号的基本原则:同号括号相乘得正,异号括号相乘得负。
-去括号的方法:将括号内的每一项分别乘以括号外的系数,并保留符号。
-去括号的应用:解决整式加减问题,简化计算过程。
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习去括号的方法,使学生能够理解和掌握整式加减的基本规则,提高他们在数学问题中的逻辑思维和推理能力。
三、教学难点与重点
1.教学重点
-重点一:去括号法则的理解与运用。使学生理解并掌握去括号的方法,包括同号括号相乘得正,异号括号相乘得负的规律,并能将其应用于整式的加减运算中。
举例:对于表达式3(x - 2y + z) - 2(x + y - z),学生需要能够去掉括号,得到3x - 6y + 3z - 2x - 2y + 2z。
-重点二:整式加减运算的顺序与法则。强调在进行整式加减时,先去括号,然后按照同类项合并的顺序进行运算。
举例:在解决2(x + 3) - 5 + x - (2x - 1)的问题时,学生应先去掉括号,再合并同类项,得到2x + 6 - 5 + x - 2x + 1。
2.教学难点
-难点一:符号的运用。学生在去括号时,容易在正负符号上出错,特别是在多层括号或括号前有负号的情况下。
举例:对于表达式-2(-3x + 4y - z),学生可能会错误地去掉括号后变为-6x + 8y - 2z,而正确的应该是6x - 8y + 2z。
-难点二:括号内项的分配律应用。学生需要理解并正确应用分配律,将括号外的数与括号内的每一项相乘。
举例:在处理5(2x - 3) + 4(3x + 1)的去括号过程中,学生应正确地将5乘以2x和-3,将4乘以3x和1,得到10x - 15 + 12x + 4。

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

想一想
根据分配律,你能为下面的式子去括号吗? 根据分配律,你能为下面的式子去括号吗? ①+(- a+c) ( ) = 1x(-a+c) ( ) = 1x(-a)+1xc ( ) = -a+c ③ +(a-b+c) ( ) = 1x(a-b+c) ( ) = a-b+c ② - (- a+c) ) =(-1)x(-a+c) ( ) ( ) =(-1)x(-a)+(-1)x c ( ) ( ) ( ) = a-c ④ -(a-b+c) ( ) = (-1)x(a-b+c) ) ( ) = -a+b-c
复习旧知
1. 化简
-(+5)= - 5 ) -(-7)= +7 )
2. 去括号 ① -(3- 7) ( )
+3 与-7 的和
+(+5)= +5 ( ) +(-7)= -7 ( ) ② +(3- 7) ( ) =(+1) x(3-7) ( ) ( ) = 1 x 3+1 x (-7) ) =3-7
=(-1)x(3-7) ( ) ( ) =(-1) x 3+(-1) x(-7) ( ) ( ) ( ) =-3+7
观察这两组算式,看看去括号前后, 观察这两组算式,看看去括号前后,括号里各项的 符号有什么变化? 符号有什么变化?
括号前是“ 号的 把括号和它前面的“ 号去掉 号的, 号去掉, 括号前是“+”号的,把括号和它前面的“+”号去掉, 括号里各项都不改变符号; 括号里各项都不改变符号; 括号前是“ 号的 把括号和它前面的“ 号去掉 号的, 号去掉, 括号前是“ - ”号的,把括号和它前面的“ - ”号去掉, 括号里各项都改变符号。 括号里各项都改变符号。
例:为下面的式子去括号 ③ +3(a - b+c) ( ) = +[3(a-b+c)] ( ) = +(3a-3b+3c) ( ) = 3a-3b+3c ④ - 3(a - b+c) ( ) = -[3(a-b+c)] ( ) = -(3a-3b+3c) ( ) = -3a+3b-3c
练习1: 练习 :去括3;b) ( ) =2 ×3a+2b =6a+2b ②-7(-a+3b-2c) ( ) ③ -3(-2a+3b) ( ) =-[3 ×(-2a)+3×3b] =-(-6a+9b) =6a-9b
= - [ 7(-a)+7 ×3b+7 ×(-2c)] ( ) ) = - (-7a+21b-14) = 7a-21b+14c ④ 4(2x-3y+3c) ( ) =4 ×2x+4×(-3y)+4×3c × × =8x-12y+12c
下课了!
作业: 作业: 1. 课本68页 课本68页 2. 课本71页 课本 页 练习 习题2.2 习题 1题 第1题 第2题 题
)、去括号时应先判断括号前面是 号还是“ (1)、去括号时应先判断括号前面是“+”号还是“-”号 )、去括号时应先判断括号前面是“ 号还是 )、去括号后 (2)、去括号后,括号内各项符号要么全变号, )、去括号后,括号内各项符号要么全变号, 要么全不变。 要么全不变。 )、括号前面是 号时,去掉括号后, (3)、括号前面是“-”号时,去掉括号后,括号内 )、括号前面是“ 的各项符号都要变成相反, 的各项符号都要变成相反,不能只改变第一 项或前几项的符号。 项或前几项的符号。 )、括号内原有几项 (4)、括号内原有几项,去掉括号后仍有几项, )、括号内原有几项,去掉括号后仍有几项, 不能丢项。 不能丢项。 )、去括号法则的根据是利用分配律 (5)、去括号法则的根据是利用分配律,计算时 )、去括号法则的根据是利用分配律, 不能出现有些项漏乘的情况。 不能出现有些项漏乘的情况。

9(x-z) ( )
②-3(-b+c) ( )
= 9x+9×(-z) × ) = 9x- 9z
③4(-a+b-c)
=-[3×(-b)+3c] × ) =-(-3b+3c) =3b-3c
= 4×(-a)+4b+4×(-c) × ) × ) = - 4a+4b- 4c
④-7(-x-y+z) ( )
= - [7(-x)+7(-y)+7z] ( ) ( ) = - (-7x-7y+7z) = 7x+7y-7z
顺口溜: 顺口溜: 去括号,看符号; 去括号,看符号; 是“+”号,不变号; 号 不变号; 是“-”号,全变号。 号 全变号。
练习: 练习: (1)去括号: )去括号: a+(b-c)= ———— a+b-c a-b+c a+(- b+c)= ———— (2)判断正误 ) a-(b+c)=a-b+c a-(b-c)=a-b-c 2b+(-3a+1)=2b-3a-1 3a-(3b-c)=3a-3b+c a-b+c a- (b-c)= ———— a+b-c a- (- b+c)= ———— ( ×) (×) (× ) (√ ) a-b-c a-b+c 2b-3a+1
相关文档
最新文档