土的物理力学性质及其指标(精选)
土的三项基本物理指标

土的三项基本物理指标土是我们日常生活和工程建设中经常接触到的一种物质。
要了解土的性质,就需要关注一些重要的物理指标。
其中,土的三项基本物理指标分别是土的密度、土的含水率和土的孔隙比。
首先来说说土的密度。
土的密度简单来讲,就是单位体积土的质量。
它反映了土的密实程度。
密度越大,说明土颗粒之间排列得越紧密;密度越小,则土颗粒之间的空隙相对较大。
在实际工程中,土的密度对于计算地基承载力、判断填土的压实程度等都具有重要意义。
比如说,在修建道路时,如果填土的密度不够,就容易出现下沉、塌陷等问题。
土的密度又分为天然密度、干密度和饱和密度。
天然密度就是土在天然状态下单位体积的质量。
干密度则是把土中的水分全部去除后,单位体积土的质量。
饱和密度是指土在饱和状态下单位体积的质量。
测定土的密度,常用的方法有环刀法、灌砂法和灌水法等。
环刀法适用于细粒土,操作相对简单。
灌砂法和灌水法适用于测定粗粒土和巨粒土的密度。
接下来谈谈土的含水率。
土的含水率指的是土中水的质量与土粒质量之比,用百分数表示。
含水率的大小直接影响着土的物理力学性质。
比如,含水率高的土,其强度往往较低,压缩性较大。
在工程中,准确测定土的含水率对于判断土的状态(如坚硬、可塑、流塑等)以及计算土的干密度等都非常重要。
常见的测定土含水率的方法有烘干法、酒精燃烧法等。
烘干法是测定含水率的标准方法,但需要较长的时间。
酒精燃烧法速度较快,但精度相对较低,适用于现场快速测定。
最后说说土的孔隙比。
孔隙比是指土中孔隙体积与土粒体积之比。
它反映了土中孔隙的大小和数量。
孔隙比越大,说明土中的孔隙越多,土越疏松;孔隙比越小,土越密实。
孔隙比在评价土的压缩性和渗透性方面有着重要的作用。
压缩性高的土,孔隙比较大;渗透性好的土,孔隙比通常也相对较大。
要确定土的孔隙比,需要先测定土的密度、含水率等指标,然后通过计算得出。
总的来说,土的密度、含水率和孔隙比这三项基本物理指标,是我们认识和研究土的性质的重要依据。
土的物理性质指标

土的物理性质指标…10
饱和度
定义:土中水的体积与孔隙体积之比,用%表示。 物理意义:表示水在孔隙中充满的程度。
公式: Sr
Vw Vv
范围:0~1 工程应用:饱和度可以反映土的干湿程度,砂土根据饱和度Sr的指标 值分为稍湿、很湿与饱和三种湿度状态,其划分标准见下 表: 砂土湿度状态 饱和度Sr(%) 稍湿 Sr ≤50 很湿 50< Sr ≤80 饱和 Sr>80
◇e<0.6 低压缩性土 ◇e>1.0 高压缩性土
土的物理性质指标…9
孔隙率
定义:土中孔隙所占总体积之比,用百分数表示。 物理意义:表示土中孔隙大小的程度。
公式: n
Vv V
单位:% e gd n 1 换算公式: 1 e ds g w
范围:粘性土和粉土:(30~60);砂土: (25~45)。
土的物理性质指标…1
土的三相比例指标 是其物
理性质的反映,但与其力学性 质有内在联系,显然固相成分 的比例越高,其压缩性越小, 抗剪强度越大,承载力越高。 三相比例指标反映了土的 干燥与潮湿、疏松与紧密,是 评价土的工程性质的最基本的 物理性质指标,也是工程地质 勘察报告中不可缺少的基本内 容。 三相比例指标可分为两种 ,一种是试验指标(基本指标 );另一种是换算指标。
V V
单位:kN/m31 e
土的物理性质指标…8
土的孔隙比
定义:土中孔隙体积与土粒体积之比。 公式: e Vv
Vs
单位:无量纲 换算公式:e d s g w 1 (1 w)d s g w 1 gd g 范围:粘性土和粉土:(0.4~1.2);砂土: (0.3~0.9)。
V
单位:kN/m3 范围:13~18 换算公式:
土的经验参数(物理指标、压缩、变形模量、剪切强度)

⼟的经验参数(物理指标、压缩、变形模量、剪切强度)有关⼟的经验参数⼀、原状⼟物理性质指标变化范围原状⼟物理性质指标变化范围,见表3-3-28。
注:粘砂⼟3<I p≤7;砂粘⼟7<I p≤17⼆、⼟的平均物理、⼒学性质指标,见表3-3-29。
⼟的平均物理、⼒学性质指标,见表3-3-29。
注:①平均⽐重采取:砂——2.66;粘砂⼟——2.70;砂粘⼟——2.71;粘⼟——2.74;②粗砂和中砂的E 0值适⽤于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少。
C u 为中间值时E 0 值按内插法确定;③对于地基稳定计算,采⽤⼈摩擦⾓φ的计算值低于标准值2°。
1060d d 32三、⼟的压缩模量⼀般范围值⼟的压缩模量⼀般范围值,见表3-3-3-。
注:砂粘⼟7<I p≤7;粘⼟I p>17四、粘性⼟剪强度参考值粘性⼟抗剪强度参考值,见表3-3-31。
注:粘砂⼟3<I p≤7;砂粘⼟7<I p≤7;粘⼟I p>17五、⼟的侧压⼒系数(ξ)和泊松⽐(u)参考值注:粘⼟I p>17;粉质粘⼟10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指⼟体在⽆侧限条件下应⼒与应变之⽐,其中的应变包含弹性应变和塑性应变两部分。
因此,变形模量较弹性模量E⼩,通常在⼟与基础的共同作⽤分析中⽤变形模量E。
变形模量⼀般是通过现场载荷试验确定,⼀些地⽅通过静⼒触探、标贯试验与变形模量建⽴了经验公式。
压缩模量Es是在侧限条件下应⼒与应变的⽐值,是通过室内试验获取的参数。
两者的关系:对于软⼟E0近似等于Es;较硬⼟层,E0=βEs,β=2~8,⼟愈坚硬,倍数愈⼤。
土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化范围原状土物理性质指标变化范围,见表3-3-28。
注:粘砂土3<I p≤7;砂粘土7<I p≤17二、土的平均物理、力学性质指标,见表3-3-29。
土的平均物理、力学性质指标,见表3-3-29。
注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74;②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。
C u为中间值时E 0 值按内插法确定;③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。
1060d d 32三、土的压缩模量一般范围值土的压缩模量一般范围值,见表3-3-3-。
注:砂粘土7<I p≤7;粘土I p>17四、粘性土剪强度参考值粘性土抗剪强度参考值,见表3-3-31。
注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17五、土的侧压力系数(ξ)和泊松比(u)参考值注:粘土I p>17;粉质粘土10<I p≤17;I p≤10五、变形模量于压缩模量的关系变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。
因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。
变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。
压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。
两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。
4.3 土的物理力学性质及其指标

E0 = βEs
其中
β=1-12-μμ2
土的泊松比, 一般0~0.5之 间
四、土的力学性质
2. 土的抗剪强度
⑴ 土的强度破坏类型
基础
滑动面
滑动面
挡 土 墙
滑动面
四、土的力学性质
2. 土的抗剪强度 ⑵ 直接剪切试验
试验仪器:直剪仪(应力控制式,应变控制式)
四、土的力学性质
2. 土的抗剪强度 ⑶ 粘性土、无粘性土的抗剪强度
修正后
密实度
松散
稍密
中密
密实
按N评定砂石密实度 N≤10 10<N≤15 15<N≤30 N>30
按N63.5评定碎石土密实度 N63.5≤5 5<N63.5≤10 10<N63.5≤20 N63.5>20
三、粘性土的物理特征
1. 粘性土的稠度状态
土的软硬程度或土受外力作用所引起变形或破坏的抵抗能力,是粘性土 最主要的物理状态特征
0 缩限ωs
塑限ωP
液限ωL
ω
固态
半固态
可塑状态
流动状态
粘性土由某一种状态过渡到另一状态的界限含水量称为土的稠度界限
液、塑限的测定 测定液限的方法:锥式液限仪、碟式液限仪和液塑限联合测定仪。 测定塑限的方法:搓条法和液塑限联合测定仪。 测定缩限的方法:碟式仪法和液、塑限联合测定法。
三、粘性土的物理特征
= ms Vs ρω
=
ρs ρω
土粒相对密度变化范围不大:细 粒土(粘性土)一般2.70~2.75; 砂土一般为2.65左右。土中有机 质含量增加,土粒相对密度减小
一、土的三相及三相比例指标
2. 直接指标
质量m 气 水
Vw Va
体积V
实验一土的物理性质指标实验

实验一土的物理性质指标实验一、密度实验:土的密度是指土的单位体积质量。
(一)实验目的测定土的密度,以了解土的疏密和干湿状态,供换算土的其他物理性质指标和工程设计和操纵施工质量之用。
(二)实验方式经常使用的测试方式有环刀法、蜡封法、灌砂法等。
环刀法操作简便而准确,在室内和野外普遍应用。
对易碎裂或含有粗颗粒、难以切削的土样可用蜡封法——取一块试样称其质量后浸入融化的石蜡中,使试样表面包上一层蜡膜,别离称蜡加土在空气中及水中的质量,已知蜡的比重,通过计算即可求得土的密度。
对难取原状试样的砂土、砂砾土和砾质土在现场可用灌砂法或灌水法求土的密度。
(三)仪器及工具1.环刀:内径6.18厘米,高2厘米,体积为60立方厘米。
2.天平:感量0.1克。
3.其它工具:钢丝锯、刮土刀、玻璃片、凡士林油等。
(四)实验步骤(环刀法)1.将环刀内壁涂一薄层凡士林油,并将其刃口向下放在土样上;2.切土时用钢丝锯(硬土用刮土刀),沿环刀外壁将土样削成略大于环刀外径的土柱,然后将环刀垂直下压,边压边削,直至试样凸出环刀为止;3.用钢丝锯将环刀两头余土削去,再用刮土刀刮平两头,将试样两头余土留作含水率实验用;4.擦净环刀外壁,称环刀和试样合质量,准确至0.1克;5.按下式计算土的湿度和干密度:(五)操作注意事项用环刀切取试样,应尽可能避免扰动,为幸免环刀下压时挤压周围土样,要边压边削,直至土样伸出环刀,然后用刮土刀一次校平,严禁用刮土刀在土面上来回抹平,如遇石子等其它杂物空洞要尽可能躲开,如无法躲开视情形酌情补土。
二、含水率实验土的含水率是指土在温度100~105摄氏度下烘至恒重时失去水分的质量与达到恒重后干土质量的比值,以百分数表示。
(一)实验目的测定土的含水率,以了解土的含水情形并提供计算土的干密度、土的孔隙比、饱和度及土的其它物理力学指标的大体参数。
(二)实验方式室内实验的标准方式为烘干法。
在野外如无烘箱设备或要求快速测定含水量时,能够依据土的性质和工程情形别离采纳以下方式:1.酒精燃烧法:取3~5克试样,用无水酒精浸湿燃烧至恒重,求其含水量。
土的三项基本物理性质指标
土的三项基本物理性质指标土的物理力学基本指标知识点主要分为:质量密度;孔隙比;孔隙率;含水量;饱和度;界限含水量;液限;塑限;塑性指数;液性指数;渗透系数;内摩擦角与黏(内)聚力等。
土的物理力学基本指标土的三相(固体颗粒、水和气)组成特性,构成了其许多物理力学特性。
相同成分和结构的土中,土的三相之间具备相同的比例。
土的三相共同组成的重量和体积之间的比例关系相同,则土的重量性质(重、轻情况)、不含水性(含水程度)和孔隙性(规整程度)等基本物理性质各不相同,并随着各种条件的变化而发生改变。
比如对同一成分和结构的土,地下水位的增高或减少,都将发生改变土中水的含量;经过压实,其孔隙体积将增大。
这些情况都可以通过适当指标的具体内容数字充分反映出。
土的物理力学基本指标主要有: ①质量密度;②孔隙比;③孔隙率;④含水量;⑤饱和度;⑥界限含水量:黏性土由一种物理状态向另一种物理状态转变的界限状态所对应的含水量;⑦液限:土由流动状态转入可塑状态的界限含水量,是土的塑性上限,称为液性界限,简称液限;⑧塑限:土由可塑状态转为半固体状态时的界限含水量为塑性下限,称为塑性界限,简称塑限;⑨塑性指数:土的液限与塑限之差值;⑩液性指数:土的天然含水量与塑限差值与塑性指数之比值;⑾渗透系数:土被水透过称为土的渗透性,水在土孔隙中流动则为渗流。
在一定水力梯度下,渗流速度反映土的渗透性强弱,渗透系数是渗流速度与水力梯度成正比的比例系数;⑿内摩擦角与黏(内)聚力:土的抗剪强度由滑动面上土的黏聚力(阻挡剪切)和土的内摩阻力两部分组成,摩阻力又与法向应力成正比,其中内摩擦角反映了土的摩阻性质。
因而内摩擦角与黏聚力是土抗剪强度的两个力学指标。
土的物理力学性质及其指标
土的物理力学性质及其指标1. 体积重是指土壤单位体积的质量,通常用单位是千克/立方米(kg/m^3)或兆帕(MPa)表示。
体积重是土壤力学性质的重要参数,它直接影响土体的承载能力和稳定性。
体积重的大小与土壤颗粒密度、含水量和孔隙度有关。
2.孔隙比是指土壤中孔隙体积与总体积的比值,即孔隙度。
孔隙比能够反映土壤孔隙结构和孔隙连通性,对土壤的透水性、保水性和通气性等性质有重要影响。
孔隙比的大小与土壤颗粒颗粒的形态、大小和堆积密度等因素有关。
3.毛细吸力是指土壤孔隙中水分上升或下降所受到的作用力。
毛细吸力与土壤含水量、孔隙度、土壤颗粒大小和水表面张力等因素有关。
毛细吸力对土壤水分运移和供水能力有着重要影响,也是评价土壤保水能力和透水性的重要指标。
4.剪切强度是指土壤在剪切应力作用下的抗剪能力。
剪切强度是土体抗剪破坏的重要参数,直接影响土壤的稳定性和承载力。
土壤的剪切强度与土壤颗粒间的内聚力、黏聚力和有效应力等有关。
此外,还有一些与土壤物理力学性质相关的指标,如孔隙水压力、压缩系数、孔隙率等。
5.孔隙水压力是指土壤孔隙中水分所受到的压力。
它与土壤含水量、孔隙度和毛细吸力等因素有关。
孔隙水压力对土壤水分状态和土壤力学性质具有重要影响。
6.压缩系数是指土壤在外力作用下体积变化与应力之间的关系。
压缩系数反映土壤的压缩性质,与土壤的固结和液化等问题密切相关。
7.孔隙率是指土壤孔隙体积与总体积的比值,即孔隙系数。
孔隙率能够反映土壤孔隙结构和蓄水性能,也是评价土壤质地和透水性的一项重要指标。
这些物理力学性质和指标是描述土体力学性质和水分运移特性的重要参数,对土壤科学研究、土壤工程设计和农田管理等具有重要的理论和实际意义。
土力学土的物理性质指标
• 土颗粒比重:
指土体在105º-110ºC的温度下烘至恒量时的重量或
质量与土颗粒同体积的4ºC时蒸馏水的重量或质量之比。
Gs
Ws
Vs
Gs
ms
Vs
水的容重=9.81KN/m3,水的密度=1g/cm3
土颗粒的比重与土体中的水和气体无关
土颗粒比重一般介于2.65-2.75之间
• 测定方法:
比重瓶法、浮称法、虹吸筒法
1) 土颗粒体积
8) 浮密度
2) 孔隙体积
9) 湿密度
3) 土颗粒质量
10) 干密度
4) 水的质量
11) 孔隙率
5) 水的体积
12) 饱和度
6) 气体体积
13) 土颗粒的容重
7) 饱和密度
14) 土体的容重
• 已知,
求解-1
• 1)由
可得,
则土颗粒体积为:
• 2)孔隙体积为:
• 3)由
可得,土颗粒质量为:
Ws Vs (KN / m3 )
V
• 浮密度:指土体淹没在水下面的有效密度,这时土颗粒 受到水的浮力作用,其有效质量减小。
ms Vs (g / cm3 )
V • 浮容重与浮密度的关系:
9.81
间接测定指标-5
• 干容重:指干土的容重,这时土体的孔隙中没有水。
d
Ws V
(KN
s 9.81s
直接测定指标-3
• 土体的容重:指单位体积土体的重量。 也称湿容重、
天然容重。 W (KN / m3 )
V • 土体的密度:指单位体积土体的质量。也称湿密度、
天然密度。 m (g / cm3 )
V
• 土体的容重一般介于16.0-19.0KN/m3,
岩土物理力学性质指标
1、塑性指数 plasticity index塑性指数是液限和塑限之差称为塑性指数,用不带百分号的小数表示,符号为IP。
概述塑性是表征细粒土物理性能一个重要特征,一般用塑性指数来表示;液限与塑限的差值称为塑性指数IP,即IP=WL-WP。
过去的研究表明,细粒土的许多力学特性和变形参数均与塑性指数有密切的关系。
特征塑性指数可塑性是粘性土区别于砂土的重要特征。
可塑性的大小用土处在塑性状态的含水量变化范围来衡量,粘性土由一种状态过渡到另一种状态的分界含水量叫作界限含水量,也称为阿太堡界限,有缩限含水量、塑限含水量、液(流)限含水量、粘限含水量、浮限含水量五种,在建筑工程中常用前三种含水量。
固态与半固态间的界限含水量称为缩限含水量,简称缩限,用ω表示。
半固态与可塑状态间的含水量称为塑限含水量,简称塑限,用ωp表示。
可塑状态与流动状态间的含水量称为液(流)限含水量,简称液限,用ωl表示。
含水量用百分数表示。
天然含水量大于液限时土体处于流动状态;天然含水量小于缩限时,土体处于固态;天然含水量大于缩限小于塑限时,土体处于半固态;天然含水量大于塑限小于液限时,土体处于可塑状态。
塑性指数习惯上用不带%的数值表示。
塑性指数是粘土的最基本、最重要的物理指标之一,它综合地反映了粘土的物质组成,广泛应用于土的分类和评价。
因素由于塑性指数在一定程度上综合反映了影响粘性土特征的各种重要因素。
塑性指数愈大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物(如蒙脱石)含量愈高,土处在可塑状态的含水量变化范围就愈大。
也就是说塑性指数能综合地反映土的矿物成分和颗粒大小的影响。
因此,在工程上常按塑性指数对黏性土进行分类。
粉土为塑性指数小于等于10且粒径大于0.075的颗粒含量不超过总质量50%的土;黏性土为塑性指数大于10且粒径大于0.075的颗粒含量不超过总质量50%的土,其中:Ip>17 黏土Ip>10 粉质黏土Ip<10或Ip=10 粉土2、液性指数liquid index对黏性土来说,有一个指标叫液性指数,是判断土的软硬状态,表示天然含水率与界限含水率相对关系的指标。