APF matlab仿真建模要点

合集下载

MATLAB数学建模和仿真指南

MATLAB数学建模和仿真指南

MATLAB数学建模和仿真指南第一章:介绍MATLAB数学建模和仿真MATLAB(Matrix Laboratory),是一种强大的数学软件工具,它提供了丰富的数学建模和仿真功能。

在本章中,我们将介绍MATLAB数学建模和仿真的概念、优势以及应用领域。

第二章:MATLAB基础知识在使用MATLAB进行数学建模和仿真之前,有必要掌握一些MATLAB的基础知识。

本章将介绍MATLAB的界面、基本命令、变量定义和操作,以及数学函数的使用。

第三章:数学建模数学建模是将实际问题抽象为数学模型,并利用数学方法对问题进行分析、计算和预测的过程。

在本章中,我们将详细介绍MATLAB在数学建模中的应用,包括线性规划、非线性规划、差分方程、微分方程等方面的建模方法和求解技巧。

第四章:仿真技术仿真是通过构建虚拟模型来模拟实际系统的行为和性能的过程。

MATLAB提供了丰富的仿真工具和技术。

本章将介绍MATLAB仿真技术的基本原理和方法,包括系统仿真、离散事件仿真、连续仿真等,并通过实例演示如何使用MATLAB进行仿真分析。

第五章:数据可视化与分析数据可视化和分析是MATLAB的重要功能之一。

在本章中,我们将介绍MATLAB中的数据导入、清洗和处理技巧,以及各种数据可视化方法,如二维图像、三维图像、热力图、散点图等。

此外,还将介绍如何使用MATLAB进行统计分析和数据挖掘。

第六章:优化算法与求解器优化算法是MATLAB中的重要工具,可以用于求解各种最优化问题。

本章将介绍MATLAB中常用的优化算法和求解器,如线性规划、非线性规划、整数规划、遗传算法等,并提供相应的应用示例。

第七章:控制系统设计与仿真控制系统是实现对动态系统行为的控制和调节的关键。

在本章中,我们将介绍MATLAB在控制系统设计和仿真中的应用,包括传统控制方法、现代控制方法、PID控制器设计等,并演示如何通过MATLAB进行控制系统性能分析和仿真。

第八章:神经网络建模与仿真神经网络是一种模拟人脑神经元之间信息交流的模型,广泛应用于模式识别、数据挖掘、预测等领域。

Matlab仿真建模的基本原理与技术

Matlab仿真建模的基本原理与技术

Matlab仿真建模的基本原理与技术Matlab(Matrix Laboratory)是一种高级编程语言和环境,广泛应用于科学与工程领域。

它具备强大的数值计算和数据可视化功能,能够帮助工程师和科学家解决各种实际问题。

本文将探讨Matlab仿真建模的基本原理与技术。

一、Matlab的基本特点Matlab是一款强大的数学工具,具有以下特点:1. 矩阵运算能力:Matlab的核心功能是进行矩阵数学运算。

它提供了简洁而强大的语法,使得矩阵和向量的计算变得方便且高效。

2. 大量的内置函数:Matlab拥有丰富的内置函数库,包括数值计算、信号处理、图像处理、优化、统计等领域。

这些函数可以极大地简化复杂问题的求解过程。

3. 可视化功能:Matlab提供了丰富的数据可视化工具,能够直观地显示和分析数据。

用户可以通过绘制曲线、制作动画等方式,深入了解数据的规律。

4. 兼容性:Matlab是跨平台的,可以在多个操作系统上运行,如Windows、Linux和MacOS等。

这使得用户可以在不同的计算环境下无缝切换和共享代码。

5. 可扩展性:Matlab支持用户自定义函数和工具箱的开发。

这样,用户可以根据自己的需求进行定制和扩展,使Matlab更适应各种应用场景。

二、Matlab仿真建模的基本步骤Matlab中的仿真建模可以分为以下步骤:1. 确定仿真建模目标:首先,需要明确仿真的目标是什么,例如系统性能评估、控制策略设计等。

这有助于确定仿真的范围和需要建立的模型。

2. 收集输入数据:仿真建模需要用到输入数据,在确定仿真目标后,需收集和准备相应的输入数据。

输入数据可以是实验数据、统计数据或者通过其他模型得到的数据。

3. 建立模型:根据仿真的目标,使用Matlab编写代码,建立合适的数学模型。

在建立模型过程中,可借助Matlab提供的内置函数和工具箱,以及自己编写的辅助函数。

4. 设定参数和初始条件:模型的运行需要设定相应的参数和初始条件。

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤

使用Matlab技术进行建模和仿真的步骤引言:Matlab是一种功能强大的数学计算软件,被广泛应用于各个领域的科学研究和工程技术中。

其中,建模和仿真是Matlab应用的重要方面,它可以帮助工程师和研究人员分析和预测各种系统的行为。

本文将介绍使用Matlab技术进行建模和仿真的步骤,包括建立模型、定义参数、进行仿真和分析结果等。

一、确定建模目标在开始建模之前,首先需要明确建模的目标和需求。

例如,我们可以通过建模来分析电路、机械系统或者物理过程等。

只有明确了建模目标,才能选择合适的建模方法和工具。

二、选择合适的建模方法建模方法可以根据系统的特点和需求进行选择。

常用的建模方法包括物理建模、统计建模、数据驱动建模等。

物理建模是基于系统的物理原理和方程进行建模,统计建模是通过统计分析来描述系统的行为,数据驱动建模则是利用已有的数据来建立模型。

根据不同的情况,选择合适的建模方法至关重要。

三、建立模型在Matlab中,建立模型可以使用Simulink或者编程的方式。

Simulink是一种基于图形化界面的建模工具,可以通过拖拽组件和连接线来搭建模型。

编程的方式则可以使用Matlab脚本语言来描述系统的数学模型。

根据系统的特点和个人的喜好,选择适合自己的建模方式。

四、定义参数和初始条件在建立模型之后,需要定义参数和初始条件。

参数是影响系统行为的变量,可以通过Matlab的变量赋值来定义。

初始条件是模型在仿真开始之前系统的状态,也需要进行设定。

对于一些复杂的系统,可能需要对模型进行调优和参数敏感性分析等,以获取更加准确的结果。

五、进行仿真在模型建立并定义好参数和初始条件之后,就可以进行仿真了。

仿真是通过运行模型,模拟系统在不同条件下的行为。

Matlab提供了强大的仿真功能,可以灵活地设置仿真时间步长和仿真条件,进行数据记录和后续分析。

六、分析结果仿真完成后,需要对仿真结果进行分析。

Matlab提供了各种分析工具和函数,可以方便地对仿真数据进行处理和可视化。

基于MATLAB的电力有源滤波器(APF)的仿真

基于MATLAB的电力有源滤波器(APF)的仿真
利 用它 用 户可 以很 方 便得 建 立模 型 并 进 行仿 真 分 析 。
本 文将 使用 S MUL N 来建 立并 联 型有 源 电力滤 波 I IK
器 的仿真模 型 , 然后 对仿真 结果进 行分 析 。
2 并 联型 电 力 有 源 滤 波 器 的基 本 原 理
图 1 并 联 型 电力 滤 波 器 系 统
变 流器 。
普 遍重视 。 电力 有源 滤 波器作 为动 态抑制 谐 波 , 偿无 补
功 功率 的 新型 电力 电子 设备 得 到迅 速 发 展 , 且开 始 并
应 用于 实践 。
有 源 电力 滤 波 器 的基 本 原 理是 : 过 检 测 补偿 对 通 象 的 电流 , 指 令 电流运 算 电路 得 出 补偿 电路计 算 得 经
1 引言
随着 电力 电子设 备 的大 量 应用 , 电磁 环 境 受 到严 重 污染 , 电网 的谐 波 问题 日益严重 , 使 已经受 到人 们的
量, 因此有 时也 称之 为谐 波和 无功 电流 检测 电路 。 补偿 电流 产生 电路 的作 用是根 据指 令 电流运 算 电流 的指令 信号 , 生实际 的补 偿 电流 。 电路 目前 均 采用 P 产 主 WM
p ro ma c n t i t a s l n a l . tv a sv i e ( F)i e n o sd r d a o e t le u p n e f r n e a d i s r n p a t b e Ac i e p s i e f t r AP l s b i g c n i e e s a p t n i q i me t a
Ab t a t Th r rn il f h h n tv a sv l ri ic se n n l zd, iha eb i n o s r c : ewo k p icpeo es u tAcieP s ieFi e sds u s d a d a ay e wh c r ul it t t d

MATLAB仿真与建模技术详解

MATLAB仿真与建模技术详解

MATLAB仿真与建模技术详解一、概述在现代科技的发展中,仿真与建模技术扮演着重要的角色。

MATLAB作为一种强大的科学计算软件,被广泛应用于各个领域的仿真与建模工作中。

本文将详细介绍MATLAB的仿真与建模技术,包括其概念、工作原理以及实际应用。

二、MATLAB仿真技术的概念1. 什么是仿真仿真是指利用计算机模拟现实世界的过程或系统,以便更好地理解、研究和预测其行为。

MATLAB仿真技术通过数学建模和计算分析,可以模拟各种现实情境,如物理系统、电路、信号处理等。

2. MATLAB仿真的优势MATLAB具有简单易学、丰富的工具箱、高效的数值计算和可视化能力等优势。

它提供了一种快速、准确、灵活的仿真环境,能够满足不同领域的仿真需求。

三、MATLAB仿真技术的工作原理1. 数学建模MATLAB仿真技术的第一步是进行数学建模,即将现实世界的问题转化为数学表达式。

在MATLAB中,可以利用符号计算工具箱进行数学公式的推导和符号计算,得到准确的数学模型。

2. 模型参数设置在进行仿真之前,需要设置模型的参数。

MATLAB提供了丰富的工具箱,如控制系统工具箱、信号处理工具箱等,可以方便地设置参数,并对其进行优化和调整。

3. 仿真运行设置好参数后,就可以进行仿真运行了。

MATLAB提供了强大的计算和数值分析功能,可以对模型进行求解、优化和优化。

仿真结果可以以图形、表格等形式展示,以帮助用户更好地理解系统的行为。

四、MATLAB建模技术的概念1. 什么是建模建模是指将现实世界的问题抽象成数学模型的过程。

MATLAB建模技术通过将问题的关键部分进行抽象和简化,构建数学模型,从而对问题进行分析和求解。

2. MATLAB建模的应用领域MATLAB建模技术广泛应用于各个领域,如控制系统、信号处理、电机设计等。

通过建模,可以把复杂的系统简化为数学模型,方便进行分析和优化。

五、MATLAB建模技术的实际应用1. 控制系统建模控制系统建模是MATLAB的常见应用之一。

MATLAB仿真与建模中常见问题与解决方法

MATLAB仿真与建模中常见问题与解决方法

MATLAB仿真与建模中常见问题与解决方法引言MATLAB作为一种功能强大的数学软件平台,被广泛应用于科学研究、工程设计等领域。

然而,在进行MATLAB仿真和建模过程中,常常会遇到一些问题和困惑。

本文将针对这些常见问题,提供一些解决方法和建议,帮助读者更好地应对挑战。

1. 数据处理问题在仿真和建模过程中,数据处理是一个常见的问题。

首先,当我们从实验中获得大量数据时,如何进行处理和分析就成为一个关键问题。

MATLAB提供了各种强大的数据处理函数,例如mean、std、histogram等,可以帮助我们对数据进行统计和可视化分析。

此外,MATLAB还提供了数据拟合函数和插值函数,可以对数据进行拟合和补全。

另一个常见的数据处理问题是数据噪声的处理。

在实际应用中,测量数据常常存在噪声,这会对仿真和建模结果产生影响。

为了解决这个问题,我们可以使用滤波器函数来降低噪声的影响。

MATLAB中常用的滤波器函数有移动平均滤波器和中值滤波器等。

2. 优化问题在一些实际应用中,我们需要对模型进行优化,以找到最优解。

MATLAB提供了一些优化算法和工具箱,可以帮助我们解决这个问题。

一种常见的优化算法是遗传算法,它模拟了自然界的进化过程,通过遗传操作来搜索最优解。

MATLAB中的Global Optimization Toolbox提供了遗传算法的实现。

此外,MATLAB还提供了其他优化算法,如线性规划、非线性规划和整数规划等。

通过选择合适的算法和设置适当的优化目标,我们可以得到满意的优化结果。

3. 建模问题在建模过程中,我们常常需要选择适当的模型和参数来描述系统。

这需要一定的经验和技巧。

MATLAB提供了一些建模工具和函数,可以帮助我们更好地处理这个问题。

首先,MATLAB中的Curve Fitting Toolbox提供了各种曲线拟合函数,如线性拟合、多项式拟合和非线性拟合等。

通过选择合适的模型和调整参数,我们可以将实验数据拟合成理想的曲线。

MATLAB中的动态系统建模与仿真技巧

MATLAB中的动态系统建模与仿真技巧

MATLAB中的动态系统建模与仿真技巧1.方程建模:在MATLAB中建模动态系统的第一步是根据系统的特性和动态方程来构建模型。

动态方程可以是微分方程、差分方程或状态空间方程。

MATLAB提供了许多函数和工具来帮助用户定义和求解方程。

例如,ode45函数可以用来求解常微分方程,可以通过定义动态方程和初始条件来调用该函数。

2.参数估计:在动态系统建模中,有时候我们需要估计一些未知参数的值。

MATLAB提供了多种参数估计的方法和工具。

例如,可以使用最小二乘法来拟合实验数据并估计出参数值。

MATLAB中的lsqcurvefit函数可以用来实现最小二乘曲线拟合,并估计出参数的最优值。

3.系统仿真:一旦我们有了动态系统的模型和参数值,就可以使用MATLAB进行仿真。

MATLAB提供了许多用于建立和仿真动态系统的函数和工具。

例如,simulink是MATLAB中用于建立和仿真动态系统的主要工具之一、通过拖放模块和连接线,可以建立具有各种输入、输出和参数的动态系统模型,并进行仿真和分析。

4.系统响应:在仿真过程中,我们可以通过改变输入信号来观察系统的响应。

MATLAB提供了许多绘图函数和工具,用于分析和可视化系统的响应。

例如,使用plot函数可以绘制系统的输入和输出信号,并进行比较和分析。

此外,MATLAB还提供了一些用于计算和分析系统步态响应、频率响应和稳态响应的函数。

5.控制系统设计:MATLAB还提供了许多用于控制系统设计的工具和函数。

例如,可以使用Control System Toolbox来分析和设计控制系统,并应用于仿真和实际应用。

MATLAB中的bode函数可以用来绘制系统的频率响应曲线,并进行控制系统设计和性能评估。

6.系统优化:在动态系统建模和仿真过程中,有时候我们需要选择最优的参数值或设计方案。

MATLAB提供了多种优化算法和工具,可以帮助我们找到最优解。

例如,使用fmincon函数可以进行约束最优化,通过定义目标函数和约束条件,可以找到系统的最优参数值。

使用Matlab进行复杂系统的建模与仿真技巧

使用Matlab进行复杂系统的建模与仿真技巧

使用Matlab进行复杂系统的建模与仿真技巧使用 Matlab 进行复杂系统的建模与仿真技巧概述:在当今科技高速发展的时代,越来越多的系统趋于复杂化。

因此,建立准确的模型以进行系统建模和仿真是至关重要的。

Matlab 是一款功能强大的科学计算软件,它提供了丰富的工具和函数以便于系统建模和仿真的研究。

本文将介绍使用Matlab 进行复杂系统建模和仿真的一些技巧和方法。

第一部分: 建立系统模型1.1 了解系统特性在开始建模之前,必须对所研究的系统有一个清晰的了解。

这包括系统的输入、输出、状态和参数等。

通过对系统特性的分析,可以帮助我们确定建立适合的模型类型和仿真方法。

1.2 选择合适的模型类型根据系统的特性,选择合适的模型类型是至关重要的。

在 Matlab 中,常用的模型类型包括线性模型、非线性模型、离散模型和连续模型等。

根据系统的特点选择适合的模型类型能够更好地反映系统的行为和响应。

1.3 系统建模方法系统建模是根据实际情况将系统抽象成一个数学模型的过程。

在 Matlab 中,可以使用不同的建模方法,如物理建模、数据建模和基于状态空间法的建模等。

根据系统的特征选择合适的建模方法能够提高模型的准确性和可靠性。

第二部分: 数学工具与仿真技巧2.1 使用符号计算工具Matlab 提供了符号计算工具箱,可以对数学表达式进行符号计算,如求解方程、导数和积分等。

使用符号计算工具能够简化复杂系统的数学推导和计算。

2.2 优化算法与工具在系统建模过程中,通常需要优化模型参数以使模型与实际系统更好地匹配。

Matlab 提供了各种优化算法和工具,如遗传算法、模拟退火算法和最小二乘法等,可以帮助我们自动化地调整参数并优化模型。

2.3 频域分析与控制设计频域分析是研究系统在不同频率下的响应特性的方法。

Matlab 提供了丰富的频域分析工具,如傅里叶变换、频谱分析和波特图等,可以帮助我们更好地理解系统的频率响应,并设计相应的控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子系统建模与仿真学院:电气工程学院年级:2012级学号:12031236姓名:周琪俊指导老师:舒泽亮二极管钳位多电平APF电压平衡SPWM仿真报告1 有源电力滤波器的发展及现状有源电力滤波器的发展最早可以追溯到20 世纪60 年代末,1969 年B.M.Bird 和J.F.Marsh发表的论文中,描述了通过向电网注入三次谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法,这种方法是APF 基本思想的萌芽。

1971年日本的H.Sasaki 和T.Machida 首先提出APF 的原始模型。

1976 年美国西屋电气公司的L.Gyugyi 等提出了用PWM 变流器构成的APF 并确立了APF 的概念。

这些以PWM 变流器构成的APF 已成为当今APF 的基本结构。

但在70 年代由于缺少大功率的快速器件,因此对APF 的研究几乎没有超出实验室的范围。

80 年代以来,随着新型电力半导体器件的出现,脉宽调制的发展,以及H.Akagi 的基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,APF有了迅速发展。

现在日本、美国、德国等工业发达国家APF已得到了高度重视和日益广泛的应用。

由于理论研究起步较早,目前国外有源电力滤波器的研究已步入工业化应用阶段。

随着容量的逐步提高,其应用范围也从补偿用户自身的谐波向改善整个电网供电质量的方向发展。

有源电力滤波器的工业化应用对理论研究起了非常大的推动作用,新的理论研究成果不断出现。

1976 年美国西屋公司的L.Gyugyi 率先研制出800kV A的有源电力滤波器。

在此以后的几十年里,有源电力滤波器的实践应用得到快速发展。

在一些国家,已经投入工业应用的有源电力滤波器容量已增加到50MV A。

目前大部分国际知名的电气公司如西屋电气、三菱电机、西门子和梅兰日兰等都有相关的部门都已有相关的产品。

我国在有源电力滤波器的研究方面起步较晚,直到20 世纪80 年代末才有论文发表。

90 年代以来一些高等院校和科研机构开始进行有源电力滤波器的研究。

1991 年12 月由华北电科院、北京供电局和冶金部自动化研究所研制的国内第一台400V/50kV A 的有源电力滤波器在北京某中心变电站投运,2001 年华北电科院又将有源电力滤波器的容量提高到了10kV/480kV A。

由中南大学和湖南大学研制的容量为500kV A 并联混合型有源电力滤波器已在湖南娄底早元220kV 变电站挂网运行。

在近几年国内的有源电力滤波器产品已有很多应用,本文研制的两种APF都已应用于工业现场。

2 二极管箝位式多电平逆变器自从日本学者南波江章于1980 年提出三电平中性点箝位逆变器以来,多电平逆变器的拓扑结构就受到人们的普遍关注,很多学者相继提出了一些实际应用性强的多电平电路结构,主要有箝位式、级联式、层叠式等多电平逆变器,其中箝位式又包含二极管箝位式、飞跨电容箝位式和混合箝位式等结构,本文研究的对象为二极管箝位式多电平逆变器。

二极管箝位式多电平逆变器的显著特点是采用二极管对相应的开关管进行箝位,利用不同的开关状态组合得到不同的输出电压电平数。

假定输出电压的电平数为m,相位数为n,则直流支撑电容的个数为m-1,开关管个数为 2 n (m-1),箝位二极管的个数为 2 n (m-2)。

以三相五电平为例,直流分压电容的个数为4,开关管的个数为24,箝位二极管的个数为18 个。

三相二极管箝位式五电平逆变器的主电路如图1-1 所示。

图1-1 三相二极管箝位式五电平逆变器主电路对于多电平变换器来说,若其电平数为M,则它的直流侧需要(M-1)个分压电容,输出相电压的电平数为M,输出的线电压电平数为(2M-1)。

二极管箝位位式三相五电平逆变器结构如图1-1所示。

图1-1中E为直流侧电源,C1,C2,C3,C4为个直流侧箝位电容,把直流侧电压分为五个部分。

图中S41、S42…S47、S48共8个IGBT串联组成一个桥臂,S51、S52…S57、S58这8个IGBT组成一个桥臂,S61、S62…S67、S68组成一个桥臂,这三个桥臂的中点引出变换器交流侧的三相电压。

从图中可以看出三相五电平变换器电路的每一个桥臂有8个IGBT组成,这8个IGBT又可以分为4对对管,例如第一个桥臂中S41和S45,S42和S46,S43和S47,S44和S48。

每一个对管中的两个IGBT不能同时导通,否则会造成短路,正常工作时对管的开关状态互补。

下面以第一个桥臂为例研究变换器多电平输出时各个开关的状态。

以表1-1为例,每一个桥臂输出分为V0,V1,V2,V3,V4时,对应的8个IGBT开关状态。

表中“1”表示导通状态,“0”表示关断状态。

表1-1 输出电平电压和开关管的状态开关状SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8 态V0 0 0 0 0 1 1 1 1 V1 0 0 0 1 1 1 1 0 V2 0 0 1 1 1 1 0 0 V3 0 1 1 1 1 0 0 0 V4 1 1 1 1 0 0 0 03 多电平变换器的PWM控制方法多电平变换器脉宽控制技术(Pulse width Modulation,PWM)是用一种以正弦波参考波作为调制波,以N倍于调制波频率的三角波为载波,由于三角波的上下限是线性变化的,所以通过调制波与载波进行比较,调制波大于载波的部分可以得到一组幅值相等,宽度正比于调制波的矩形序列脉冲,用开关量取代模拟量,通过开关管的通断,把直流电能变换成交流电能。

我们通常把这种控制技术称为PWM控制技术。

多电平变换器的PWM控制方法主要分为三个大类:载波调制PWM控制法,空间电压相量调制(SVPWM),消除特定谐波PWM控制法。

载波调制法又分为载波移相、开关频率优化、阶梯波EPWM、载波层叠法和分段载波层叠法等五种。

不同的电路结构和要求,就需要不同的PWM控制法。

空间相量控制法不适合于五电平以上的多电平逆变器,以为此时电路会非常复杂。

二极管箝位式电路多采用载波层叠法和开关频率优化法,下面我们以载波层叠法来完成二极管箝位式的PWM控制。

对M电平变换器来说,利用(M-1)个频率相同,幅值相等的三角波与一个正弦波进行比较,(M-1)个三角波对称分布在参考量的正负两侧根据正弦调制波与各个三角波的比较结果输出不同的电平,并决定相应的开关管的开关状态。

以五电平为例,就需要4个频率、幅值相同的三角载波和一个正弦波进行比较,4个三角波的总幅值要大于等于正弦波的幅值,否则载波层叠PWM法就没有意义。

下图3-1所示,以五电平为例,正弦波与各个三角波进行比较时,当正弦波的幅值大于某个三角波的幅值时,就令相应的IGBT管导通,否则关断。

V0,V1,V3,V4为4个频率,幅值完全相同的三角载波,电压依次升高,但中间不间断,V2为正弦调制波。

图3-1 五电平层叠PWM对IGBT编号为1和5的开关管进行PWM控制,三角波V4与调制正弦波相比较,当正弦波电压高于三角波时,PWM1输出高电平,IGBT管S41导通,相应的S41的对管S45截止。

反之,当三角波高于正弦波时,PWM1输出低电平,开关管S41截止,对管S45导通。

从而完成PWM控制。

下图3-2即为开关管S41和S45的PWM控制。

图3-2 正弦波与三角波进行比较对IGBT编号为2的开关管进行PWM控制,三角波V3与正弦波进行比较,当正弦波电压高于三角波时,PWM2输出高电平,IGBT管S42导通,相应的S42的对管啥S46截止。

反之,当三角波高于正弦波时,PWM2输出低电平,管S42截止,对管S46导通。

对IGBT编号为3和4的开关管进行PWM控制,三角波V1和V0分别与正弦波进行比较,当正弦波电压高于三角波时,输出高电平,IGBT 管导通,相应它们的对管截止。

反之,当三角波高于正弦波时,输出低电平。

通过上述过程,从而完成一个桥臂的PWM 控制,图3-3为PWM 控制状态和对应的输出波形图。

图3-3 一个周期的开关状态及输出的电压波形下图3-4为STATCOM 仿真时的A 相层叠PWM 法控制波形图。

0.1450.150.1550.160.1650.17-1-0.8-0.6-0.4-0.200.20.40.60.81Time(s)层叠P W M 调制(V )图3-4 五电平STA TCOM 仿真单相层叠PWM 调制波形在层叠PWM 控制法中,三角波的频率与幅值通常是固定的,正弦波的幅值与三角波信号的幅值之比称为幅值调制比,用M 表示,通称为调制度。

M 的值在0-1之间时,逆变器输出电压的基波分量与M 成线性关系,当M 大于1时,脉冲宽度就不会按照正弦规律进行变化,这种情况称为过调制。

4 直流侧电容电压不平衡的原因及危害二极管箝位式STATCOM 的主要组成部分为三相多电平变换器,变换器的交流侧通过连接电抗器或者变压器与电网相连,直流侧根据电平数M 的数值,连接M-1个电容,它们起到承载逆变器输入的纹波电流,支撑直流侧电压的作用,多电平的输出就是通过连通不同的电容,达到输出的电压不同。

直流侧电容的另一个作用是为电压型变换器提供一个稳定的直流电压源,为系统提供稳定的直流电压和少量的有功功率,以补偿系统的有功损耗。

4.1 直流侧电容电压不平衡的原因当二极管箝位式多电平变换器在传递有功功率时,每个直流侧电容充放电的时间会有所差异,这就造成它们之间的电压不平衡,从而导致输出的电压产生畸变,甚至得不到期望的输出电平数。

所以,怎么解决直流侧电容电压不平衡问题,是多电平STATCOM 的广大研究者必须面对的。

下图2-12即为二极管箝位式五电平交直交电路,a u 、b u 、c u 为三相交流电源, C1,C2,C3,C4为直流侧电容,其左侧为整流电路的三个桥臂,电容的右侧为逆变电路,电流in i 和out i 为流进流出电容的电流,通过这几个电流的流向讨论直流侧电容的电压值。

S41S42S43S44S45S46S47S48D41D42D43D45D44D46S51S52S53S54S55S56S57S58D51D52D53D55D54D56S61S62S63S64S65S66S67S68D61D62D63D65D64D66L1整流电路C1C2C3C4S11S12S13S14S15S16S17S18D11D12D13D15D14D16S21S22S23S24S25S26S27S18D11D22D13D25D24D26S31S32S33S34S35S36S37S38D31D32D33D35D34D36L2L3直流侧电容M Load i in5i in4 i in3 i in2 i in1 i out5 i out4 i out3 i out2i out1 逆变电路u a u bu c u aV5V4V3V2V1图4.1 二极管箝位式五电平交直交电路有功情况下电压和电流同相位,电流5in i 工作时图4-2,电压和电流都为正,电压V5升高,无功时电流和电压相差90度,在输出电压为V5的时间内,前半部份电流为正,后半部分电压为负,相互抵消,所以V5的值不变。

相关文档
最新文档