函数应用题-(2009-2018)高考数学分类汇编含解析

合集下载

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形、选择题B • 305)的图象向右平移10个单位长度,所得图象对应的函数3 5A 在区间[-,—]上单调递增4 4 3B 在区间[―,]上单调递减45 3C 在区间[予‘专]上单调递增3D 在区间[厅,2 ]上单调递减7.【2018浙江卷5]函数y= 2|x|sin2x 的图象可能是1.【2018全国二卷 6】在厶ABC 中,C cos— 2,BC 1,AC 5,则 AB52.【2018全国二卷 10]若 f(x) cosxsinx 在[a, a ]是减函数,贝U a 的最大值是3.【2018全国三卷 4] 若sin1 … 3,则cos24. 5. 0, C . 【2018全国三卷9] △ ABC 的内角 A, B, C 的对边分别为 2 2 2a ,b ,c ,若△ ABC 的面积为-— -,4【2018北京卷7]在平面直角坐标系中,记m 变化时,d 的最大值为d 为点P A. 1(COS 0 sin 0到直线x my 2 0的距离,当B. 2C. 3D.4C . . 296.【2018天津卷6]将函数y sin(2x1. 【2018全国一卷16】已知函数f x 2sinx sin2x ,则f x 的最小值是 _______________ .2.【2018 全国二卷 15】已知 sin a cos 3 1 , cos a sin 3 0,则 sin( a ® __________________ .3. 【2018全国三卷15】函数f x cos 3x n在0, n 的零点个数为6 ---------------------------------------------------4. 【2018北京卷11】设函数f (x ) =cos( x n ( 0),若f(x) f (n)对任意的实数x 都成立,则co的最小值为 _________ . 5.【2018江苏卷7】已知函数y sin(2x _______________________ )(--)的图象关于直线x -对称,则 的值是 ____________________ .2236. 【2018江苏卷13】在厶ABC 中,角A, B,C 所对的边分别为a,b,c , ABC 120 , ABC 的平分线 交AC 于点D ,且BD 1,则4a c 的最小值为 _________ .7. 【2018浙江卷13】在厶ABC 中,角A ,B ,C 所对的边分别为a ,b ,c •若a= 7,b=2, A=60°,贝U sin B= _________ , c= _________.、填空题B .三.解答题1. [2018 全国一卷17】在平面四边形ABCD 中,ADC 90°, A 45°, AB 2 , BD 5.12. 【2018 北京卷15】在厶ABC 中,a=7, b=8, cosB=—.(△)求/ A ;(△)求AC边上的高.3. 【2018天津卷15】在厶ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinAacos(B ). 6(I)求角B的大小;(II)设a=2, c=3,求b和sin(2A B)的值.4. 【2018江苏卷16】已知,为锐角‘tan 3 ,迹()舟.(1)求cos2的值;(2)求tan( )的值.5. 【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN (P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚U内的地块形状为△ CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和厶CDP的面积,并确定sin的取值范围;(2)若大棚I内种植甲种蔬菜,大棚U内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4 :3 .求当为何值时,能使甲、乙两种蔬菜的年总产值最大.6. 【2018浙江卷18】已知角a的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P345'(I)求sin (a + n 的值; (U)若角B满足sin (a+B=13,求cos B的值・7.【2018上海卷18】设常数a R,函数f(x) a sin 2x c 22cos x(1)若f(x)为偶函数,求a的值; (2) 若〔匸〕1,求方程f(x) 1 .2在区间[,的解.参考答案、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D、填空题 1. 3.3223. 34.235. 7.3 ;37三•解答题 1.解: (1)在厶ABD中,由正弦定理得一BLsin AABsin ADB由题设知,5sin 452 sinADB,所以sin ADB -5由题设知, ADB 90,所以cos ADB 1225 5(2)由题设及(1) 知, cos BDC sin ADB 辽在△ BCD 中,5 由余弦定理得2 2 2BC BD DC 2 BD DC cos BDC 25 8 25. 所以BC 5.32.解:(1)在厶ABC 中,1 n _________________________________ 2—T cosB= —7 ,二 B €( — , n ,二 sinB= 1 cos B<3 7由正弦定理得—sin A bsin B8 -二=<3,二 sinA= £ . T B €( f ,sin A227•- A €( 0,亍),(n )在厶ABC 中,■/ sinC=sin (A+B ) =sinAcosB+sinBcosA=—3 21 (-)71 4.3_ 3.3 2714女口图所示,在△ ABC 中sinC=g ,二 h=BC sinC = 7 3 弓BC14••• AC 边上的高为子.3.解:在厶ABC 中,由正弦定理— sin A—,可得 bsinA asinB sin B又由 bsinA acos(B n ),6得 as in B acos(B n ),6即sinB cos(B ,可得tanB 3 .又因为 B (0 ,可得(n)解:在△ ABC 中,由余弦定理及a =2, c=3, B =^,有 b 2 a 2 c 2 2accosB 7,故 b= J7 .由 bsin A acos(B —), 6可得sin A因为 a<c , 故cosA因此 sin 2 A 2sin AcosA2,cos2 A 2cos A所以,si n(2A B)sin 2Acos Bcos2 A sinB ^^3 73 3 3 2144.解:(1)因为tan4, tan 3汇,所以sin4c o s cos因为sin 22cos1,所以 2cos25,因此,cos222cos7 25(2)因为,为锐角,所以(0, n .又因为cos()寻,所以sin()厂曲( )害,因此tan( ) 2.因为tan -,所以tan232ta n 242 , 1 tan 7因此,tan( ) tan[2 ( )];+;爲;:;(—5 2115•解:(1)连结PO并延长交MN于H,贝U PH丄MN , 所以OH=10.过O作OE丄BC于E,贝U OE// MN,所以/ COE书故OE=4Ocos0, EC=40sin B,则矩形ABCD 的面积为2X40cos((40sin 0 +10=800(4sin 0 cos 0 +cOs B △ CDP的面积为 1 x 2X 40co(40 - 40sin) 0=1600 (cos 0 - sin 0)cos 0过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .令/GOK=0,则sin0=4 2(0, n)・当濮[0, n)时,才能作出满足条件的矩形所以sin(的取值范围是[〔,1).4答:矩形ABCD的面积为800 (4sin 0 cos 0 +cQs平方米,△ CDP的面积为1600 (cos 0 - sin 0)cos0n 的取值范围是[1 , 1).4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0).则年总产值为4k X 800(4sin 0 cos 0 +cbs+Bk x 1600( cos 0 - sin 0 cos 0=8000k (sin 0 cos 0 +)s [ 0, n)2设 f ( 0) =sin 0 cos 0 +cos 0€ [ 0, n),2则f'( ) cos2sin2 sin (2sin2 sin 1) (2sin 1)(sin 1).令 f'( )=0,得 B =,6当9€( (0, n 时,f '( )>0,所以f (0)为增函数;6当0€(J ,匸)时,f '( )<0 ,所以f (0)为减函数,6 2因此,当0=时,f ((取到最大值.6答:当吧时,能使甲、乙两种蔬菜的年总产值最大•[来源:学§科§网],]时,即2x(U)由角的终边过点 P( 3,得cos35 55由 sin() —得 cos( )121313由( )得coscos()cossin( )s in,5616所以cos或cos6565 .解:(1) f(x ; )asin 2x2 cos 2 x 1 1 =asi n2x cos2x 1 ,6. ( I)由角的终边过点P(4)得 sin 5所以sin( 冗)sin -5f ( x) a sin(当f (x)为偶函数时:f (x)f( x),则 a a,解得a 0 o2(2) f ( ) a sin 2 cos —,424由题意f (一)a 13 1 ,4、.3sin 2x 2cos 2 xa .3 , f (x) 3sin2x cos2x1 2sin(2x6)1,令 f (x) 1血,则2sin 2x1151319解得:x ,2424,24或x248. 解: (1) f(x)asin 2x c 22cos x 1 1 = asin2x cos2x 1 , f( x) a sin( 2x)cos(2x)1asin2x cos2x 1当f(x)为偶函数时:f(x)f( x),则a a,解得a 0。

2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)

2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)

2009年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)、选择题1 . (2009北京文、理)为了得到函数y的图像,只需把函数 10A .向左平移3个单位长度,再向上平移B .向右平移3个单位长度,再向上平移C .向左平移3个单位长度,再向下平移 1个单位长度D .向右平移3个单位长度,再向下平移 1个单位长度 1.【解析】本题主要考查函数图象的平移变换 .属于基础知识、基本运算的考查A y =lg x 3 1 =lg10 x 3 ,B . y =lg x 「3iT=lg10 x -3C .x +3 y -lg x 3 -1 一 lg 10D.x —3y =lg x -3 -1 =lg故应选C.12. (2009福建文)下列函数中,与函数 y有相同定义域的是J x1XA .f(x)=lnxB. f (x)C. f(x)=|x|D. f (x)二 ex112.解析 解析 由y可得定义域是x • 0. f (x) =ln x 的定义域x 0 ; f (x) 的定义域是xV x x丰0; f (x) =| x |的定义域是 x R ;f(x)=e x 定义域是R 。

故选A.3. (2009福建文)定义在R 上的偶函数f x 的部分图像如右图所示,则在-2,0上,下列函数中与f x 的单调性不同的是2A . y =x 1 B. y =| x | 12x 1,x — 0e x ,x _oC. y =3D . y x[x 3+1,x v 0[e ,xv03.解析解析根据偶函数在关于原点对称的区间上单调性相反, 故可知求在-2,0上单调递减,注意到要与f x 的单调性不同, 故所求的函数在 -2,0上应单调递增。

而函数 y =x 2,1在(-°°,1】上递减;函数y = x +1在(—°°,0】时单调递减;函数 y =递减,理由如下y'=3x 2>0(x<0),故函数单调递增,显然符合题意;而函数y =lg x 的图像上所有的点1个单位长度一1个单位长度 N+1,xA 0,有在―,0]上单调y'=-e"x<0(x<0),故其在(-°°,0]上单调递减,不符合题意,综上选C。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵

a21
a1a2 + 1 · · · a1an + 1

A
=

a2a1 + 1
a22
···
a2an + 1


,
···
··· ··· ···


ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.

【高考数学真题分类汇编】——导数及其应用

【高考数学真题分类汇编】——导数及其应用

专题三导数及其应用第七讲导数的几何意义、定积分与微积分基本定理2019年 1.(2019全国Ⅰ理)13曲线23()e xy x x =+在点 (0)0,处的切线方程为.____________ 2.(2019全国Ⅲ理6)已知曲线 e ln xy a x x =+在点 1e a (,)处的切线方程为y x =2+b ,则 A . e 1a b ==−, B .a=e , b =1 C .1e 1a b −==,D .1e a −= , 1b =−2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+−+,若()f x 为奇函数,则曲线 ()y f x =在点(0,0)处的切线方程为 A .2y x =−B .y x=−C .2y x =D .y x= 2(2016.年四川)设直线1l ,2l 分别是函数()f x = ln ,01, ln ,1,x x x x −<<⎧⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A (0,1)B (0,2)C (0,+.. .∞)D (1,+).∞3.(2016 年山东)若函数 ()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称 ()y f x = 具有性质.下列函数中具有性质的是T T A .sin y x =B .ln y x =C .xy e =D .3y x =4(2015 ).福建若定义在R 上的函数()f x 满足 () 01f =−,其导函数 ()f x '满足 () 1f x k '>> ,则下列结论中一定错误的是A .11()f kk<B .11()1f kk >−C .11()11f k k <−−D .1()11k f k k >−−52014 .( 新课标Ⅰ)设曲线ln(1)y ax x =−+在点(0,0)处的切线方程为2y x =,则a = A 0 B 1 C 2 D....3 62014 .( 山东)直线 x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C 2D 4..72013 .( 江西)若22221231111 ,,,xS x dx S dx S e dx x === ⎰⎰⎰则 123 ,,S S S 的大小关系为 A . 123 S S S << B .213 S S S <<C . 231 S S S << D . 321S S S << 82012 .(福建)如图所示,在边长为的正方形1 OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14B .15C .16D .1792011.( 新课标)由曲线y x =,直线2y x =−及y 轴所围成的图形的面积为A .103B 4C ..163D 6.10.( 2011 福建)1(2)x e x dx +⎰等于A 1B ..1e −C .eD .1e +11.(2010湖南)421dx x⎰等于A .2ln 2− B .2ln 2 C .ln 2− D .ln 212.( 2010新课标)曲线3y 21x x =−+在点(1,0)处的切线方程为 A .1y x =− B .1y x =−+ C .22y x =− D .22y x =−+ 13.(2010辽宁)已知点P在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A [0,.4π) B . [,)42ππC .3(,]24ππD .3[,)4ππ二、填空题14.(2018 全国卷Ⅱ)曲线2ln(1)=+y x 在点 (0,0)处的切线方程为__________ .15.(2018 全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2−,则a =____ .16.(2016 年全国Ⅱ)若直线 y kx b =+是曲线 ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则 b =.17.(2016 年全国Ⅲ) 已知()f x 为偶函数,当 0x <时, ()ln()3f x x x =−+,则曲线()y f x =,在点 (1,3)−处的切线方程是_________.18.( 2015湖南)2(1)x dx −⎰= .19.(2015陕西)设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.20.(2015福建)如图,点A 的坐标为 ()1,0,点C 的坐标为()2,4,函数 ()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.(第题)(第1517 题)21.( 2014广东)曲线25+=−x ey 在点)3,0(处的切线方程为.22.( 2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为.______23.(2014 江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2 (a ,b 为常数过点))5,2(−P , 且该曲线在点处的切线与直线P 0327=++y x 平行,则 b a +的值是. 24.( 2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00 ,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线 0:=y l 在点 ()0,0P 处“切过”曲线C :3y x =②直线 1:−=x l 在点 ()0,1−P 处“切过”曲线C :2 )1(+=x y ③直线 x y l =:在点 ()0,0P 处“切过”曲线C : xy sin =④直线 x y l =:在点()0,0P 处“切过”曲线C : x y tan =⑤直线 1:−=x y l 在点 ()0,1P 处“切过”曲线C : x y ln =. 25.(2013 江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= .26.(2013 湖南)若209,Tx dx T =⎰ 则常数的值为.27.( 2013福建)当 ,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=−两边同时积分得:111112222220000011.......1ndx xdx x dx x dx dx x+++++=− ⎰⎰⎰⎰⎰从而得到如下等式:2311111111 1()()...()...ln 2. 2223212n n + ⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:012231 1111111 ()()() 2223212n n n n n n C C C C n + ⨯+⨯+⨯+⋅⋅⋅+⨯+=.28.( 2012江西)计算定积分121(sin )x x dx −+=⎰___________.29.(2012 山东)设0>a ,若曲线 x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a. 30.( 2012新课标)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________ .31.( 2011 陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若 ((1))1f f =,则a =.32.(2010新课标)设 ()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y … ,由此得到N 个点 (,)(1,2,)i i x y i N =…,,再数出其中满足 ()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ⎰的近似值为.332010.(江苏)函数2y x =( 0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若1 16a =,则 135 a a a ++= .三、解答题34.( 2017北京)已知函数 ()cos x f x e x x =−. (Ⅰ)求曲线 ()y f x =在点 (0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间 [0,]2π上的最大值和最小值.35.(2016 )年北京设函数()a x f x xe bx −=+,曲线 ()y f x =在点 (2,(2))f 处的切线方程为 (1)4y e x =−+,()求I a ,b 的值;()求II ()f x 的单调区间.36.()设函数2015 重庆23 ()()e xx axf x a R +=∈.(Ⅰ)若()f x 在 0x =处取得极值,确定a 的值,并求此时曲线 ()y f x =在点 (1,(1))f 处的切线方程;(Ⅱ)若()f x 在 [3,)+∞上为减函数,求a 的取值范围.37.( 2015新课标Ⅰ)已知函数31()4f x x ax =++, ()lng x x =−. ()当Ⅰa 为何值时,x 轴为曲线 ()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{} ()min (),()h x f x g x = (0)x >,讨论()h x 零点的个数.38.(2014 新课标Ⅰ设函数)1()ln x xbe f x ae x x−=+,曲线 ()y f x =在点 (1,(1))f 处的切线为(1)2y e x =−+. ()Ⅰ求,a b ;(Ⅱ)证明:()1f x >. 39.( 2013新课标Ⅱ)已知函数 ()()ln x f x e x m =−+()Ι设 0x =是 ()f x 的极值点,求m ,并讨论 ()f x 的单调性;(Ⅱ)当 2m ≤时,证明 ()0f x >.40.(辽宁)设2012 ()()() =ln +1++1++,,,f x x x ax b a b R a b ∈为常数,曲线 ()=y f x 与直线3=2y x 在 ()0,0点相切.()求1,a b 的值;()证明:当2 0<<2x 时,()9<+6xf x x . 41.( 2010福建)()已知函数13 ()=f xx x −,其图象记为曲线C . ()求函数i ()f x 的单调区间;()证明:若对于任意非零实数ii 1x ,曲线与其在点C111 (,())P x f x 处的切线交于另一点 222 (,())P x f x ,曲线与其在点C 222 (,())P x f x 处的切线交于另一点333 (,())P x f x ,线段 1223 ,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值;()对于一般的三次函数232()g x ax bx cx d =+++ (0)a ≠ ,请给出类似于(1)(ii )的正确命题,并予以证明.。

2009年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)

2009年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)

x 22009年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)、选择题:1. (2009安徽文、理)设a v b,函数y = (x -a)2(x -b)的图像可能是/ /2a +b1.[解析]:y = (x -a)(3x -2a -b),由 y = 0得x=a,x ,•••当 x = a 时,y 取极大值0,3当x = ------ 时y 取极小值且极小值为负。

故选C 。

3或当x ::: b 时y ::: 0,当x b 时,y . 0选C2. (2009安徽理)已知函数f(x)在R 上满足f (x) =2f (2-x)-x 2 • 8x -8,则曲线y=f(x)在点(1,f(1))处的切线方程是- (A ) y=2x-1( B ) y=x (C ) y=3x-2 ( D ) y - -2x 3 高…2.[解析]:由 f(x) =2f(2_x) _x 2 8x_8得 f(2_x) =2f(x)_(2_x)2 8(2_x)_8 , 即 2 f (x) - f (2-x) = x 2 4x-4 ,• f(x)=x 2 •f /(x)=2x ,•切线方程为y -1 =2(x -1),即 2x -y -1 =0 选 A3.(2009安徽文)设函数 f(xH Si ^x^3CO^x 2 tan :,其中[0,—],则导数「(1)的3 2 12取值范围是A. [-2,2]B.卜、2,、、3]C.[ .、. 3,2]D. [、、2,2]3.【解析】f"(1) = sin 日 x 2+75cos 日 x 乂二=sin 日+ 75cos^=2sin (日+三)3V 日乏」0,空兀I sin (日+上)壬|返,1 I f "(1)乏I V2, 2 I ,选D 。

1 12」3 2 - -兀4. (2009 福建理).^ (1 cosx)dx 等于2x 2D. ■: +2JI JI n n=(— sin—) -[ sin( )] - 二2.故选D2 2 2 2C. - -2 X[解析]■/原式=x +sin x 25. (2009广东文)函数f (x) =(x -3)e x的单调递增区间是A. -::,2B. (0, 3)C. (1,4) D. 2,::5.解:f (x) =e x (x -3)e x二(x -2)e x,令f (x) . 0 ,解得x>2,故答D。

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【命题规律】1. 根据待定系数法、几何公式、解三角形确定函数解析式2. 利用导数、基本不等式或解三角形求最值或范围.【真题展示】1【2009江苏,19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a+;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h.现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙(1)求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙;(2)设35A Bm m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由.【答案】(1)详见解析;(2) 20,12BA m m ==时,甲乙两人同时取到最大的综合满意度为5(3) 不能故当1120B m =即20,12B A m m ==时,(3)由(2)知:0h由05h h ≥=甲得:12552A B A B m m m m ++⋅≤,所以不能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立. 2【2015江苏高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.【答案】(1)1000,0;a b ==(2)①()f t =定义域为[5,20],②min ()t f t ==千米 【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2ay x b =+,得4025 2.5400ab a b⎧=⎪⎪+⎨⎪=⎪+⎩,解得10000a b =⎧⎨=⎩.答:当t =l的长度最短,最短长度为 【考点定位】利用导数求函数最值,导数几何意义3【2011江苏,17】请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒. E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值. 【答案】(1) 15 ,(2) x =20时,包装盒的高与底面边长的比值为12.4【2016江苏,17】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的4倍. (1)若16m,2m,AB PO ==则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?(第17题)【答案】(1)312(2)1PO = 【解析】因为在Rt △11PO B 中,2221111O B PO PB +=,所以22362h +=),即()22236.a h =- 于是仓库的容积()()22231132643606333V V V a h a h a h h h h =+=⋅+⋅==-<<柱锥, 从而()()2226'36326123V h h =-=-.令'0V =,得h =或h =-(舍).当0h <<0V'> ,V 是单调增函数;当6h <<时,0V'<,V 是单调减函数.故h =V 取得极大值,也是最大值.因此,当1PO =时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5【2013江苏,18】如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min ,在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 【答案】(1) 1 040 m ,(2) 3537t =,(3) 1250625,4314⎡⎤⎢⎥⎣⎦.(3)由正弦定理sin sin BC AC A B=,得BC =12605sin 63sin 1365AC A B ⨯=⨯=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C.设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤,所以为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内. 6【2017江苏,18】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC 的长为容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16(2)20记AM 与水面的焦点为1P ,过1P 作P 1Q 1⊥AC , Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12, 从而AP 1=1116sin P MACQ ∠.答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)EP 2=2220sin P NEGQ ∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 【考点】正余弦定理【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.7【2018江苏,理17】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sinθ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.【对症下药】1根据待定系数法、几何公式、解三角形确定函数解析式2利用导数、基本不等式或解三角形求最值或范围.【考题预测】1.【江苏省苏州市2018届高三调研测试(三)数学试题】某“”型水渠南北向宽为,东西向宽为,其俯视图如图所示.假设水渠内的水面始终保持水平位置.(1)过点的一条直线与水渠的内壁交于两点,且与水渠的一边的夹角为(为锐角),将线段的长度表示为的函数;(2)若从南面漂来一根长度为的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?试说明理由.【答案】(1)(2)能点睛:(1)函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.(2)要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.(3)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.2.【江苏省海门中学2018届高三5月考试(最后一卷)数学试题】将一个半径为3dm,圆心角为的扇形铁皮焊接成一个容积为V(dm3)的圆锥形无盖容器(忽略损耗).(1)求V关于的函数关系式(2)当为何值时,V取得最大值(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5dm的球?请说明理由.【答案】(1)(2)(3) 能完全盖住桌面上一个半径为0.5dm的球.理由见解析.【解析】分析:(1)由题意结合几何关系可得体积表达式为(2) 令换元之后利用导函数研究函数的性质可得时,(3)由题意可得圆锥轴截面三角形内切圆半径,则能完全盖住桌面上一个半径为0.5dm的球. 详解:(1),所以能完全盖住桌面上一个半径为0.5dm 的球.点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.3.【江苏省南京师范大学附属中学、天一、海门、淮阴四校2018届高三联考数学调研测试试题】如图,某大型水上乐园内有一块矩形场地,120ABCD AB =米, 80AD =米,以,AD BC 为直径的半圆1O 和半圆2O (半圆在矩形ABCD 内部)为两个半圆形水上主题乐园, ,,BC CD DA 都建有围墙,游客只能从线段AB 处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着AE FB 、修建不锈钢护栏,沿着线段EF 修建该主题乐园大门并设置检票口,其中,E F 分别为,AD BC 上的动点, //EF AB ,且线段EF 与线段AB 在圆心1O 和2O 连线的同侧.已知弧线部分的修建费用为200元/米,直线部门的平均修建费用为400元/米.(1)若80EF =米,则检票等候区域(其中阴影部分)面积为多少平方米? (2)试确定点E 的位置,使得修建费用最低.【答案】(1)80048003π-;(2)当1AO E ∠为3π时,修建费用最低. 【解析】试题分析:(1)如图,设直线EF 与矩形ABCD 交于,M N 两点,连12,O E O F ,则20ME =米, 1O M =梯形12O O FE 的面积为()1120802⨯+⨯= 矩形12AO O B 的面积为120404800⨯=平方米, 由16AO E π∠=,得扇形1O AE 和扇形2O FB 的面积均为14001600263ππ⨯⨯=平方米,故阴影部分面积为80048003π-平方米.由上表可得当3θ=时,即13AO E ∠=, ()fθ有极小值,也为最小值.故当1AO E ∠为3π时,修建费用最低. 4.【江苏省南通市2018届高三上学期第一次调研测试数学试题】如图,某小区中央广场由两部分组成,一部分是边长为80cm 的正方形ABCD ,另一部分是以AD 为直径的半圆,其圆心为O .规划修建的3条直道AD , PB , PC 将广场分割为6个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点P 在半圆弧上, AD 分别与PB , PC 相交于点E , F .(道路宽度忽略不计)(1)若PB 经过圆心,求点P 到AD 的距离; (2)设POD θ∠=, 0,2πθ⎛⎫∈ ⎪⎝⎭. ①试用θ表示EF 的长度;②当sin θ为何值时,绿化区域面积之和最大.【答案】(1)(2)①最小值为)264001m ②当sin 2θ=-时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大(2)①由题意,得()40cos ,40sin P θθ. 直线PB 的方程为()sin 28040cos 1y x θθ++=++,令0y =,得设sin 2t θ+=,则23t <<,()212160026400t S S t-++=.816004t t ⎛⎫=+- ⎪⎝⎭()16004≥ )64001=.当且仅当t =,即sin 2θ=时“=”成立.所以,休闲区域Ⅱ、Ⅳ、Ⅵ的面积12S S +的最小值为)264001m .答:当sin 2θ=时,绿化区域Ⅰ、Ⅲ、Ⅴ的面积之和最大.5.【河南省中原名校(即豫南九校)2017-2018学年高一上学期第二次联考数学试题】如图,在半径为20cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中,A B 在直径上,点,C D 在圆周上.(1)设AD x =,将矩形ABCD 的面积y 表示成x 的函数,并写出其定义域; (2)怎样截取,才能使矩形材料ABCD 的面积最大?并求出最大面积.【答案】(1)x ∈(0,20).(2)截取时,才能使矩形材料ABCD 的面积最大,最大面积为2400cm .6.【江苏省兴化市楚水实验学校、黄桥中学、口岸中学三校2018届高三12月联考数学试题】如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C D G H 、、、在圆周上,E F 、在边CD 上,且3BOG π∠=,设BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?【答案】(1)()22sin cos sin ,0,23f R πθθθθθ⎛⎫⎛⎫=-+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2) cos θ=【解析】试题分析:(1)由已知分别用θ表示两个矩形的长和宽, ,sin 2HG R EH R R θ==-可得f (θ)ABCD EFGH S S =+的表达式;(2)要符合园林局的要求,只要f (θ)最小,求导()()224cos cos 2f R θθθ=--',利用导数法分析当()00,θθ∈时, ()0f θ'<, ()f θ是单调减函数,当0,3πθθ⎛⎫∈ ⎪⎝⎭时, ()0f θ'>, ()f θ是单调增函数,所以当0θθ=时, ()fθ取得最小值即可得答案.由(1知, ()()()222222cos 2sin cos 4cos cos 2f R R θθθθθθ=--=--'令()0f θ'=,即24cos cos 2=0θθ--,解得1cos 8θ+=或1cos 8θ-=(舍去),令001cos 0,83πθθ⎛⎫=∈ ⎪⎝⎭当()00,θθ∈时, ()0f θ'<, ()f θ是单调减函数,当0,3πθθ⎛⎫∈ ⎪⎝⎭时,()0f θ'>, ()f θ是单调增函数,所以当0θθ=时, ()fθ取得最小值.答:当θ满足cosθ=.7.【江苏省无锡市2018届高三第一学期期末检测数学试卷】如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线,其中为上异于的一点,与平行,设.(1)证明:观光专线的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路的单位成本的2倍.当取何值时,观光专线的修建总成本最低?请说明理由.【答案】(1)见解析;(2).又,所以观光专线的总长度,,因为当时,,答:当时,观光专线的修建总成本最低.【点睛】在一定条件下“成本最低”、“用料最省”、“面积最大”、“效率最高“等问题,在生产、生活中经常遇到,在数学上这类问题往往归结为求函数的最值问题.除了常见的求最值的方法外,还可用求导法求函数的最值,但无论采取何种方法都必须在函数的定义域内进行.8.【江苏省镇江市2018届高三上学期期末统考数学试题】如图,准备在墙上钉一个支架,支架由两直杆AC 与BD 焊接而成,焊接点D 把杆AC 分成,AD CD 两段,其中两固定点,A B 间距离为1米, AB 与杆AC 的夹角为60︒,杆AC 长为1米,若制作AD 段的成本为/a 元米,制作CD 段的成本是2/a 元米,制作杆BD 成本是4/a 元米.设ADB α∠=,则制作整个支架的总成本记为S 元.(1)求S 关于α的函数表达式,并求出α的取值范围; (2)问AD 段多长时, S 最小?【答案】(1)3S 2a ⎫=⎪⎪⎝⎭, 2,33ππα⎛⎫∈ ⎪⎝⎭(2)当AD =时S 最小∴当1cos 4α=时, S 最小,此时sin 4α=, 152sin 210AD αα+=+=.答:(1)S 关于α的函数表达式为32sin 2S a αα⎛⎫=+⎪⎪⎝⎭,且2,33ππα⎛⎫∈ ⎪⎝⎭;(2)当510AD =时S 最小. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.9.【江苏省启东中学2018届高三上学期第二次月考数学试题】园林管理处拟在公园某区域规划建设一半径为r 米,圆心角为θ(弧度)的扇形观景水池,其中()0,2θπ∈, O 为扇形AOB 的圆心,同时紧贴水池周边(即: OA OB 、和θ所对的圆弧)建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.(1)若总费用恰好为24万元,则当r 和θ分别为多少时,可使得水池面积最大,并求出最大面积; (2)若要求步道长为105米,则可设计出的水池最大面积是多少?【答案】(1)20r =,2θ=,面积最大值为400平方米.(2)水池的最大面积为337.5平方米.【解析】试题分析:(1)先根据总费用确定r 和θ关系,再根据扇形面积公式得关于r 函数,利用导数或基本不等式求最值(2)先根据步道长确定r 和θ关系,再根据扇形面积公式得关于r 二次函数 ,根据对称轴与定义区间位置关系求最值试题解析:解(1)法1:弧长AB 为r θ,扇形AOB 面积为212S r θ=, 则()2140010002240000.2r r r θθ⨯++=即()2521200.r r r θθ++=所以2120010.5rr r θ-=+ 22211120010225r S r r r r θ-==⨯⨯+()()625650556505400.5r r ⎡⎤=-++≤-⨯=⎢⎥+⎢⎥⎣⎦当且仅当6255,205r r r +==+即时取等号,此时()20,2θπ=∈ 答: 20r =,2θ=,面积最大值为400平方米.法2:利用基本不等式.()222525r r r r r θθθθ++≥+⨯=+所以45r =, 13θ=时,水池的最大面积为337.5平方米. 答: r 的取值范围为105452r ≤<,且当45r =, 13θ=,水池的最大面积为337.5平方米.10.【江苏省邗江中学2017-2018学年高二下学期期中考试数学(文)试题】日前,扬州下达了2018年城市建设和环境提升重点工程项目计划,其中将对一块以O 为圆心,R (R 为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD 区域用于儿童乐园出租,弓形BCD 区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元. (1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD 的面积S 弓=f (θ);(2)如果市规划局邀请你规划这块土地,如何设计∠BOD 的大小才能使总利润最大?并求出该最大值.【答案】(1)见解析;(2)当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50π).【解析】分析:根据弓形的面积等于扇形的面积减去三角形的面积,即可求解弓形的面积;(2)由题意列出函数的关系式,利用导数判断函数的单调性,即可求解最大值.点睛:本题考查了导数在实际问题中的应用,解答中涉及到利用导数研究函数的单调性、利用导数研究函数的最值等问题,试题属于中档试题,其中正确读懂题意,列出函数关系式是解答的关键,着重考查了分析问题和解答问题的的能力.。

相关文档
最新文档