数形结合

合集下载

数形结合

数形结合

数形结合不仅是一种数学思想,也是一种很好的教学方法。

著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。

数形结合就是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。

它既是一个重要的数学思想,又是一种常用的数学方法。

在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。

适时的渗透数形结合的思想,可达到事半功倍的效果。

一、渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念,运用图形,建立表象,理解本质在低年级教学中学生都是从直观、形象的图形开始入门学习数学。

一年级的小学生学习数学,是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。

数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。

而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。

这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出数,算理等等。

在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。

例如:如,教学“体积”概念。

教师可以借助形象物体设问,引导学生分析比较。

首先观察物体,初步感知。

让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察物体,让学生对物体的大小有个感性认识。

接着在一个盛有半杯水的玻璃杯里慢慢加入一块石头,学生可以观察到,随着石头的投入,杯中的水位不断上升。

问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。

小学奥数-数形结合

小学奥数-数形结合

专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。

我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。

由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性 【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? [略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数. 【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车? [略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出1.5小时后追上客车.【技巧贴士】 这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系. 【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米? [略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。

数形结合知识点

数形结合知识点

数形结合知识点数形结合是指数学中数与图形的结合,通过运用数学知识解决与图形和空间有关的问题。

在数形结合中,数与图形的关系相互补充,相互依存,共同呈现出独特的数学魅力。

一、数形结合的基本概念数形结合是数学中的一个重要概念,它主要包括以下几个方面的内容:1.几何图形与数量关系:通过几何图形可以了解到其中的数量关系,例如平行线的性质、多边形的各种角度关系等。

通过数学思维和分析方法可以研究这些数量关系,从而更好地理解和应用几何图形。

2.数学模型与几何形状相结合:数学模型是指利用数学方法来模拟和解决实际问题的过程。

而几何形状则是模型的基础,通过数学建模和分析,可以将问题转化为几何形状的关系,进而获得问题的解答。

3.平面几何与立体几何的结合:在数形结合中,平面几何和立体几何的知识相互交叉、相互渗透。

例如在计算一个立体图形的体积时,需要运用到平面几何中的面积计算公式,而在分析一个平面图形的特征时,也需要考虑到其所在平面的空间性质。

4.空间想象与数学推理的结合:数形结合还要求我们能够在思维中准确地理解和想象几何图形的形状、大小和位置。

在这个过程中,我们需要结合空间想象能力和数学推理能力来分析和解决问题。

二、数形结合的应用领域数形结合的知识点在数学学科的多个领域都有广泛的应用,下面以几个典型的应用领域来介绍:1.建筑设计与规划:建筑设计中需要考虑到空间形状、比例、尺寸等因素,这些都需要通过数形结合的方法进行分析和解决。

例如,设计师在确定建筑物的尺寸和布局时,常常需要运用到数学几何的知识。

2.工程测量与绘图:在进行工程测量与绘图时,需要准确地测量和绘制各种几何形状,例如房屋平面图、道路工程图等。

在这个过程中,运用到的就是数形结合的方法。

3.地理与地貌研究:地理和地貌研究中需要考虑到地球表面的形状、地貌特征等因素,而这些都可以通过数学几何的知识进行研究和分析。

4.数据可视化与分析:在进行数据可视化与分析时,常常需要利用图表来呈现数据的分布和关系。

数学中的数形结合

数学中的数形结合

数学中的数形结合数形结合是数学中的一个重要概念,它指的是数学与几何之间的联系。

数学是一门抽象的学科,而几何则是一门具有可视化特征的学科。

将数学和几何结合起来,不仅可以更加深入地理解数学知识,也可以更加直观地观察几何形状和变换。

本文将从数形结合的概念、历史背景、现实应用以及教学方法四个方面进行浅谈。

一、数形结合的概念数形结合,顾名思义,指的是数学与几何之间的联系。

具体来说,就是将数学中的概念和方法运用到几何学中来,探究几何形状与数学方法之间的内在联系。

在数形结合中,数学主要运用代数和解析几何的方法,而几何主要运用几何变换和几何图形的构造等方法。

这种结合可以帮助我们更全面、深入地理解数学和几何的本质,从而更好地应用它们来解决现实问题。

二、数形结合的历史背景数形结合的历史可以追溯到古希腊时期。

古希腊著名数学家毕达哥拉斯就被誉为“数学之父”,他提出了著名的“毕达哥拉斯定理”,即勾股定理。

勾股定理是数形结合的典型例子,将几何图形的勾股三角形与代数里的平方和相联系,奠定了代数与几何之间的基础关系。

此后,一系列数学家如欧几里得、阿基米德、阿波罗尼乌斯、帕斯卡等,都在数学和几何领域做出了重要的贡献,并不断将数学和几何结合起来,探究数学和几何之间的奥妙。

三、数形结合的现实应用数形结合不仅在理论研究上有重要作用,在现实应用中也有广泛的应用。

数形结合被广泛运用于自然科学、工程技术、金融经济等领域。

例如,在自然科学中,物理学家会运用数学方法来模拟具体的实验,从而推导出更深刻的物理规律。

在工程技术领域,数形结合可以帮助人们更好地利用研究数据,设计出更加准确、高效的工程模型。

在金融经济领域,数形结合可以使用代数和几何建立金融模型,预测市场趋势,分析投资风险等等。

因此,数形结合在现实生活中起到了重要的作用。

四、数形结合的教学方法数形结合作为一个重要的数学概念,也应该在数学的教学中得到重视。

在教学中,应该尽量使用具体的实例,结合图形、图像来讲解数学的概念,以增加学生对数学知识的理解和记忆。

数形结合十大经典题型

数形结合十大经典题型

数形结合十大经典题型
数形结合是一种常见的解题方法,特别适用于一些几何问题。

以下是十大经典的数形结合题型:
1. 长方形面积问题:已知长方形的周长或宽度,求最大面积。

2. 圆的问题:已知圆的周长或半径,求其面积或直面积。

3. 直角三角形问题:已知直角三角形的两条边,求第三条边的长度。

4. 正方形问题:已知正方形的对角线长度,求其边长。

5. 圆环问题:已知两个同心圆的半径,求其面积差。

6. 多边形问题:已知多边形的边长和内角个数,求其周长或面积。

7. 体积问题:已知几何体的表面积和一个尺寸,求其体积。

8. 圆柱问题:已知圆柱的底面半径或高度,求其体积或表面积。

9. 三角形面积问题:已知三角形的底边和高,求其面积。

10. 平行四边形问题:已知平行四边形的两个邻边和夹角,求其面积。

(完整版)小学奥数数形结合

(完整版)小学奥数数形结合

r b e i n g a r e g o o d f o r s o 专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。

我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。

由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票?[略解]解:设小巧有张邮票,那么小胖有3张邮票.x x ,,.2083=+x x 2084=x 52=x 答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数.【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车?[略解]e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o df o r s o解:设轿车开出小时后追上客车.x ,,x x 108903.090=+⨯x 1827=5.1=x 答:轿车开出1.5小时后追上客车.【技巧贴士】这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系.【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米?[略解]解:设分钟后两人还相距324米.x ,150********=++x x 8=x 答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为.32415007572-=+x x【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?l l t h i n g s i n t h e i r b e i n g a r e g o o d f o r s o 【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

数形结合思想

数形结合思想

数形结合思想1. 数形结合思想的概念。

数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。

数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。

这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。

在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。

数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。

2. 数形结合思想的重要意义。

数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。

“数形结合”一词正式出现在华罗庚先生于1964年1月撰写的《谈谈与蜂房结构有关数学问题》的科普小册子中,书中有一首小词:“数与形,本是相倚依,焉能分作两边飞。

数无形时少直觉,形少数时难入微。

数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫分离!”“数无形时少直觉,形少数时难入微。

”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。

众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂学习都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的学习方法和解决方案。

如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省徐闻县梅溪中学2013届中考数学第二轮复习专题数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

解:⑴:参加调查的人数为5000人;说明:只要符合题意,均得满分.⑵如图3-3-5所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.说明:第二版、第三版所对应的两个扇形中非公共边不在一条直线上的得0分.⑶如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.说明:只要意义说到、表达基本正确即可得满分.点拨。

统计分布图在中考中出现的越来越多,而统计图又分为:条形。

扇形、折线,从统计图中获得的信息是我们必须掌握的.Ⅲ、同步跟踪配套试题:(60分 45分钟)一、选择题(每题3分,共18分)1.实数a 、b 上在数轴上对应位置如图3-3-6所示,则||a b - )A .aB .a -2bC .-aD .b -a 2.不等式组114x x ->⎧⎨≤⎩的解集在数轴上,图3-3-7所示)表示应是( )3.如图3-3-8所示,阴影部分是一个正方形,则此正方形的面积为( ) A .8 B .64 C .16 D .324.某村办工厂今年前5个月生产某种产品的总量 c(件)关于时间t (月)的图象如图3-3-9所示,则该厂对这种产品来说( ) A .1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少; B .1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平; C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产; D 、1月至 3月每月生产总量不变,4、5两月均停止生产。

5.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图 3-3-10所示,正确的是( )6、如图3-3-11所示,在Rt△ABC中,∠C=90○,AB=13,BC=5,则以AC为直径的半圆的面积为()A.6π B.12π C.36π D.18π二、填空题(每题3分,共12分)7.a,b,c是三角形的三条边,则关于x的一次函数222=+-++--的图象不经过第_______限.()2y a b c x a b c ab8.若一次函数(2)=-+的图象经过第一、二、四象限时,m的取值范围是_______.y m x m9.若点P(1,a)和Q(-1,,b)都在抛物线21=-+上,则线段PQ的长是_______。

y x10 已知抛物线2=++经过A(-1,0),B (3,0), C(2,6)三点,与y轴的交y ax bx c点为D,则△ABD的面积为________.三、解答题(每题10分,共30分)11 甲、乙、丙三人共解出100道数学题.每人都解出了其中的60道题,将其中只有1人解出的题叫难题,三人都解出的题叫容易题.试问:难题多还是容易题多?(多的比少的)多几道?12 如图3-3-12所示,ΔAOB为正三角形,点A、B的坐标分别为(2,),(,0)A aB b,求a,b的值及△AOB的面积.13 在直径为AB的半圆内,画出一块三角形区域,使三角形的一边为AB,顶点C在半圆周上,其他两边分别为6和8.现要建造一个内接于△ABC的矩形水池 DEFN,其中,DE在AB上,如图3-3-13所示的设计方案是使AC=8,BC=6.⑴求△ABC中AB边上的高h;⑵设DN=x,当x取何值时,水池DEFN的面积最大?⑶实际施工时,发现在AB上距B点l.85处有一棵大树.问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.Ⅳ、同步跟踪巩固试题(80分 70分钟)一、选择题(每题4分,共36分)1.实数a、b、c在数轴上的位置如图3-3-14 所示,化简||||++-的结果是()a b c bA.a+c B.-a-2b+cC .a+2b -cD .-a -c2.若直线y=mx+4,x=l ,x=4和x 轴围成的直角梯形的面积是7,则m 的值是( ) A .-12 B .- 23 C .-32D .-23.如图3-3-15中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为52的是( )4.如图3-3-16所示,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 坐标为(-2,0),点B 在x 轴上方,设A B=a ,那么点B 的横坐标为( ) A .2-a 2 B .2+a 2 C .-2-a 2 D .-2+ a25.实数a 、b 、c 在数轴上对应点位置如图3-3-17所示,下式中正确的是( ) A .b+c >0 B .a+b <a +c C .ac >bc D .ab >ac6.在边长为a 。

的正方形中,挖掉一个边长为b 的小正方形(a >b)(如图3-3-18(l )),把余下的部分剪拼成一个矩形(如图3-3-18⑵),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .22()()a b a b a b -=+-;B .222()2a b a ab b +=++;C .222()2a b a ab b -=-+;D .22(2)()a b a b a ab b +-=+-7.已知关于x 的不等式2x -a >-3的解集如图3-3-19所示,则a 的值等于( )A .0B .1C .-1D .28.如图3-3-20所示,在反比例函数y= kx (k >0)的图象上有三点A 、B 、C ,过这三点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴,y 轴围成的面积分别为S 1,S 2,S 3,则( ) A .S 1>S 2>S 3 B .S 1<S 2 <S 3 C .S 1<S 3<S 2 D .S 1=S 2 =S 39.如图3-3-21(1)所示,在大房间一面墙壁上,边长为15 cm的正六边形A 如图3-3-21(2)所示)横排20片和以其一部分所形成的梯形B ,三角形C 、D 上,菱形F 等六种瓷砖毫无空隙地排列在一起.已知墙壁高3.3m ,请你仔细观察各层瓷砖的排列特点,计算其中菱形F 瓷砖需使用( ) A .220片 B .200片 C .180片 D .190片二、填空题(每题4分,共16分)10 如图3-3-22所示,在平面直角坐标系中,∠AOB =150○,OA =OB=2,则点A 、B 的坐标分别是______________和_________.11实数p 在数轴上的位置如图3-3-23_______。

12已知直线y 1=2x -1和y 2=-x -1的图象如图3-3-24所示,根据图象填空.⑴当x______时,y1>y2;当x______时,y1=y2;当x______时,y1<y2.⑵方程组211y xy x=-⎧⎨=--⎩的解是_____________。

13 已知二次函数21(0)y ax bx c a=++≠与一次函数 y2=kx+ m(k≠0)的图象相交于点 A (-2,4),B(8,2)(如图 3-3-25所示),则能使y1>y2成立的x的取值范围是________.三、解答题(28分)14 (8分)如图3-3-26,以直角三角形的两直角边为边长所作的正方形A、B的面积分别为9,16,求以斜边为边长的正方形DEFG的面积.15 (8分)如图3-3-27所示,有两个同心转盘,现随意转动两转盘,求两转盘静止后恰为如图情形(即大转盘与小转盘的标号相对应)的概率________.16 (10分)如图3-3-28所示,在梯形 ABCD中,BC∥AD,∠A= 90°,AB=2,BC=3,AD=4,E为AD的中点,F为CD的中点,P为BC上的动点(不与 B、C重合〕设 BP=x,四边形PEFC的面积为y,求y关于x的函数关系式,并写出x的取值范围.- 11 -。

相关文档
最新文档