2017-2018学年数学苏教版必修3教学案:第1部分 第3章 章末小结与测评 Word版含解析
2017-2018学年苏教版高中数学必修3全册学案

2017-2018学年苏教版高中数学必修三学案目录第一单元1.1算法的含义含答案第一单元1.2.1顺序结构含答案第一单元1.2.2选择结构含答案第一单元1.2.3循环结构含答案第一单元1.3.1赋值语句-1.3.2输入、输出语句含答案第一单元1.3.3条件语句含答案第一单元1.4算法案例含答案第一单元习题课含答案第一单元章末复习课含答案疑难规律方法:第一章算法初步含答案第二单元2.1.1简单随机抽样含答案第二单元2.1.2系统抽样含答案第二单元2.2.1频率分布表-2.2.2频率分布直方图与折线图(一)含答案第二单元2.2.2频率分布直方图与折线图(二)- 2.2.3茎叶图含答案第二单元2.3.1平均数及其估计含答案第二单元2.3.2方差与标准差含答案第二单元2.4线性回归方程含答案第二单元章末复习课含答案疑难规律方法:第二章统计含答案第三单元3.1.1随机现象-3.1.2随机事件的概率含答案第三单元3.2古典概型(一)含答案第三单元3.2古典概型(二)含答案第三单元3.3几何概型含答案第三单元3.4互斥事件含答案疑难规律方法:第三章概率含答案第一章算法初步1.1算法的含义学习目标 1.了解算法的特征;2.初步建立算法的概念;3.会用自然语言表述简单的算法.知识点一算法的概念思考1有一碗酱油,一碗醋和一个空碗.现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法.思考2某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步.第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.这是一个算法吗?梳理算法概念:知识点二算法的特征思考1设想一下电脑程序需要计算无限多步,会怎么样?梳理算法特征:有穷性、可行性、顺序性、不唯一性、普遍性.思考2求解某一个问题的算法是不是唯一的?思考3任何问题都可以设计算法解决吗?梳理算法的设计要求:(1)写出的算法,必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、通俗易懂.(3)要保证算法正确,且计算机能够执行.类型一算法的特征例1一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.反思与感悟算法的特点:(1)有穷性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.(2)确定性:算法的计算规则及相应的计算步骤必须是确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.跟踪训练1某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼、羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜.请设计安全过河的算法.类型二算法的阅读理解例2下面算法要解决的问题是______________________________________________.第一步输入三个数,并分别用a、b、c表示.第二步比较a与b的大小,如果a<b,则交换a与b的值.第三步比较a与c的大小,如果a<c,则交换a与c的值.第四步比较b与c的大小,如果b<c,则交换b与c的值.第五步输出a、b、c.反思与感悟一个算法的作用往往并不显然,这需要我们结合具体数值去执行一下才知道.跟踪训练2下面给出了一个问题的算法:第一步输入a.第二步若a≣4,则执行第三步,否则执行第四步.第三步输出2a-1.第四步输出a2-2a+3.这个算法解决的问题是____________________________________________________.类型三算法的步骤设计例3设计一个算法,判断7是否为质数.反思与感悟设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决此题的一般数学方法.(2)借助有关变量或参数对算法加以表述.(3)将解决问题的过程划分为若干步骤.(4)用简练的语言将这个步骤表示出来.跟踪训练3设计一个算法,判断35是否为质数.1.下列不是算法的是________.(填序号)①解方程2x-6=0的过程是移项和系数化为1;②从济南到温哥华要先乘火车到北京,再转乘飞机;③解方程2x2+x-1=0;④利用公式S=πr2计算半径为3的圆的面积.2.下列对算法的理解正确的是________.(填序号)①算法有一个共同特点就是对一类问题都有效(而不是个别问题);②算法要求是一步步执行,每一步都能得到唯一的结果;③算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法;④任何问题都可以用算法来解决.3.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步取A=89,B=96,C=99;第二步____________________;第三步____________________;第四步输出计算的结果.4.已知算法:第一步,输入n.第二步,判断n是不是2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.该算法的功能是____________________.1.算法的特点:有限性、确定性、逻辑性、不唯一性、普遍性.2.算法设计的要求:(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.答案精析问题导学知识点一思考1先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换.思考2是.梳理算术运算机械统一计算机程序知识点二思考1若有无限步,必将陷入死循环,解决不了问题.故算法必须在有限步内解决问题.思考2解决一个问题的算法可以有多个,只是有优劣之分,结构简单,步骤少,速度快的算法就是好算法.思考3不可以,只有能按照一定规则解决的、明确的、有限的操作步骤的问题才可以设计算法,其他的问题一般是不可以的.题型探究例1解第一步两个小孩同船过河去.第二步一个小孩划船回来.第三步一个大人划船过河去.第四步对岸的小孩划船回来.第五步两个小孩同船渡过河去.跟踪训练1解第一步人带羊过河.第二步人自己返回.第三步人带青菜过河.第四步人带羊返回.第五步人带狼过河.第六步人自己返回.第七步人带羊过河.例2输入三个数a,b,c,并按从大到小的顺序输出解析第一步是给a、b、c赋值.第二步运行后a>b.第三步运行后a>c.第四步运行后b>c,所以a>b>c.第五步运行后,显示a、b、c的值,且从大到小排列.跟踪训练2 求函数f (x )=⎩⎪⎨⎪⎧2x -1, x ≣4,x 2-2x +3, x <4当x =a 时的函数值f (a )例3 解 第一步 用2除7,得到余数1,所以2不能整除7. 第二步 用3除7,得到余数1,所以3不能整除7. 第三步 用4除7,得到余数3,所以4不能整除7. 第四步 用5除7,得到余数2,所以5不能整除7. 第五步 用6除7,得到余数1,所以6不能整除7. 因此,7是质数.跟踪训练3 解 第一步 用2除35,得到余数1,所以2不能整除35. 第二步 用3除35,得到余数2,所以3不能整除35. 第三步 用4除35,得到余数3,所以4不能整除35. 第四步 用5除35,得到余数0,所以5能整除35. 因此,35不是质数. 当堂训练 1.③解析 ③不是算法,没有给出解这个方程的步骤. 2.①②③解析 由于算法要求必须在有限步骤内求解某类问题,所以并不是任何问题都可以用算法解决.例如求1+12+13+14+…+1n +…,故④不正确.3.计算x =A +B +C 计算y =x3解析 求三个数的平均数必须是先计算三个数的总和,再被3除. 4.判断所给的数是否为质数解析 因为2是质数,且大于2的任何数,只要它不能被2,3,…,n -1,整除,则n 一定为质数.故上述步骤是判断n 是否为质数的算法.1.2.1顺序结构学习目标 1.熟悉各种图框及流程线的功能和作用;2.能够读懂简单的流程图;3.能用流程图表示顺序结构的算法.知识点一流程图思考许多办事机构都有工作流程图,你觉得要向来办事的人员解释工作流程,是用自然语言好,还是用流程图好?梳理流程图的概念:(1)流程图是由一些________和__________组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的____________.(2)常见的图框、流程线及各自表示的功能知识点二顺序结构1.顺序结构的定义依次进行多个处理的结构称为______________.它是一种最简单、最基本的结构.2.结构形式类型一 把自然语言描述的算法翻译成流程图 例1 已知一个算法如下: S1 输入x . S2 y ←2x +3. S3 d ←x 2+y 2. S4 输出d .把上述算法用流程图表示.反思与感悟 画流程图的规则: (1)使用标准的图形符号.(2)流程图一般按从上到下,从左到右的方向画. (3)描述语言写在图框内,语言清楚、简练. 跟踪训练1 算法如下,画出流程图. S1 输入a ,b ,c 的值-1,-2,3. S2 max ←4ac -b 24a .S3 输出max.类型二 顺序结构例2 一个笼子里装有鸡和兔共m 只,且鸡和兔共n 只脚,设计一个计算鸡和兔各有多少只的算法,并画出流程图.反思与感悟 顺序结构的流程图的基本特征:(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.(2)各图框从上到下用流程线依次连接.(3)处理框按计算机执行顺序沿流程线依次排列.跟踪训练2已知一个三角形三条边的边长分别为a,b,c,利用海伦-秦九韶公式(令p=a+b+c2,则三角形的面积S=p(p-a)(p-b)(p-c),设计一个计算三角形面积的算法,并画出流程图.类型三读懂流程图例3一个算法如图,它的功能是什么?反思与感悟流程图本就是为直观清晰地表达算法而生,故只需弄清各种图框、流程线的功能,再依次执行一下程序,不难读懂该图所要表达的算法.跟踪训练3写出下列算法的功能:(1)图①中算法的功能是(a>0,b>0)__________________________________;(2)图②中算法的功能是________________.1.下面的流程图是顺序结构的是________.2.如图是一个算法的流程图,已知输入a1=3,输出的结果为7,则a2的值是________.3.已知一个算法:S1m←a.S2如果b<m,则m←b,输出m;否则执行S3.S3如果c<m,则m←c,输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是________.4.如图的流程图,其运行结果为________.1.在设计计算机程序时要画出程序运行的流程图,有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此流程图是我们设计程序的基本和开端.2.规范流程图的表示:(1)使用标准的图形符号;(2)流程图一般按从上到下、从左到右的方向画,流程线要规范;(3)除判断框外,其他图形符号只有一个进入点和一个退出点;(4)在图框内描述的语言要非常简练、清楚.答案精析问题导学 知识点一思考 使用流程图好.因为使用流程图表达更直观准确.梳理 (1)图框 流程线 先后次序 (2)表示算法的开始或结束 表示输入、输出操作 表示赋值或计算 判断框 知识点二 1.顺序结构 题型探究例1 解 流程图如图:跟踪训练1 解 流程图如图:例2 解 算法分析: 设鸡和兔各有x ,y 只,则有⎩⎪⎨⎪⎧x +y =m ,2x +4y =n ,解得x =4m -n 2.算法: S1 输入m ,n .S2 计算鸡的只数x ←4m -n2.S3 计算兔的只数y ←m -x . S4 输出x ,y . 流程图如图所示:跟踪训练2 解 算法步骤如下: S1 输入三角形三条边的边长a ,b ,c . S2 p ←a +b +c2.S3 S ←p (p -a )(p -b )(p -c ). S4 输出S . 流程图如图:例3 解 其功能是求点(x 0,y 0)到直线Ax +By +C =0的距离. 跟踪训练3 (1)求以a ,b 为直角边的直角三角形斜边c 的长 (2)求两个实数a ,b 的和 当堂训练 1.①解析 由于表示的是依次执行的几个步骤,故①为顺序结构. 2.11解析从流程图中可知b=a1+a2=14,因为a1=3,所以a2=11.3.2解析当a=3,b=6,c=2时,依据算法设计,本算法是求a、b、c三个数的最小值,故输出m的值为2.4.6解析从流程图中可知,先是m←1,然后p←3,接着把p+3的值6赋给m,所以输出的值为6.1.2.2选择结构学习目标 1.掌握选择结构的流程图的画法;2.能用选择结构流程图描述分类讨论问题的算法;3.进一步熟悉流程图的画法.知识点一选择结构思考我们经常需要处理分类讨论的问题,顺序结构能否完成这一任务?为什么?梳理(1)选择结构:在一个算法中,经常会遇到一些条件的判断,算法的流程根据________是否成立有不同的流向.像这种先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构.(2)选择结构的结构形式:当条件p成立(或称为“真”)时执行________,否则执行______.(3)在选择结构的一般形式中,A或B中有一个为空的选择结构,该结构是按照某个条件是否成立来决定某个语句是否执行,当条件不成立(或成立)时,什么也不做.如图.知识点二条件结构的嵌套思考三段及三段以上的分段函数的求值问题能否应用上述结构形式解决?梳理嵌套的选择结构:一个选择结构的执行过程中还包含一个或多个选择结构的即为嵌套的选择结构,此时各个条件的执行有选择顺序.具有执行时,先判断外层的条件,当满足或不满足外层条件时,再执行内层条件,内层条件与外层条件执行完后要汇于同一点.类型一用流程图表示选择结构例1下面给出了一个问题的算法:S1 输入x .S2 若x >1,则y ←x 2+3,否则y ←2x -1. S3 输出y .试用流程图表示该算法.反思与感悟 凡是先根据条件作出判断然后再确定进行哪一个步骤的问题,需引入一个判断框应用选择结构.跟踪训练1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三条边边长的三角形是否存在,并画出这个算法的流程图.类型二 用选择结构流程图描述分类讨论问题的算法例2 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f =⎩⎪⎨⎪⎧0.53ω, ω≢50,50×0.53+(ω-50)×0.85, ω>50. 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试设计计算费用f 的算法并画出流程图.反思与感悟 在解决实际问题时,要善于识别需要选择结构的情境.跟踪训练2 设计算法判断一元二次方程ax 2+bx +c =0(a ≠0)是否有实数根,并画出相应的流程图.类型三 条件结构的嵌套例3 解关于x 的方程ax +b =0(a ≠0)的算法的流程图如何表示?反思与感悟 我们现在使用的选择结构只提供2个出口,故当要分三类以上讨论时,往往需要在选择结构中再嵌套一个选择结构.跟踪训练3 执行如图所示的流程图,若输入的x 的值为0,则输出的结果为________.1.下面三个问题中必须用选择结构才能实现的是______. ①已知梯形上、下底分别为a ,b ,高为h ,求梯形面积; ②求三个数a ,b ,c 中的最小数;③求函数f (x )=⎩⎪⎨⎪⎧x -1, x ≣0,x +2, x <0的函数值.2.选择结构不同于顺序结构的图形特征是__________.3.某算法的流程图如图所示,则输出量y 与输入量x 满足的关系式是____________.4.某次考试,为了统计成绩情况,设计了如图所示的流程图.当输入一个同学的成绩x =75时,输出结果为_______________________________________________________.1.选择结构的特点是:先判断后执行.2.在利用选择结构画流程图时要注意两点:一是需要判断条件是什么,二是条件判断后分别对应执行什么.3.设计流程图时,首先设计算法步骤,再转化为流程图,待熟练后可以省略算法步骤直接画出流程图.对于算法中分类讨论的步骤,通常设计成选择结构来解决.答案精析问题导学知识点一思考分类讨论是带有分支的逻辑结构,而顺序结构是一通到底的“直肠子”,所以不能表达分支结构,这就需要选择结构.梳理(1)条件(2)A B知识点二思考不能.题型探究例1解主体用顺序结构,其中根据条件x>1是否成立选择不同的流向用选择结构实现.跟踪训练1解算法步骤如下:S1输入3个正实数a,b,c.S2判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.流程图如图:例2解算法:S1 输入物品的重量ω.S2 如果ω≢50,那么f ←0.53ω,否则执行S3. S3 f ←50×0.53+(ω-50)×0.85. S4 输出托运费f . 流程图如图:跟踪训练2 解 算法步骤如下: S1 输入3个系数a ,b ,c . S2 计算Δ←b 2-4ac .S3 判断Δ≣0是否成立.若是,则输出“方程有实数根”;否则,输出“方程无实数根”.结束算法.相应的流程图如图:例3 解 先设计算法步骤: S1 输入实数a ,b .S2 判断a 是否为0,若是,执行S3,否则,x ←-ba,并输出x ,结束算法.S3 判断b 是否为0.若是,则输出“方程的解为任意实数”;否则,输出“方程无实数解”. 再用流程图表达上述算法如图:跟踪训练3 1解析 这是一个嵌套的选择结构,当输入x =0时,执行的是y ←1,即y =1.故输出的结果为1. 当堂训练 1.②③解析 在本题的三个问题求解中,只有①不需要分类讨论,故①不需用选择结构就能实现,②③必须用选择结构才能实现.2.判断框 3.y =⎩⎪⎨⎪⎧2x , x ≢1,x -2, x >14.及格解析 由于75<80,在流程图中的第一个判断框中,将按“N ”的指向进入第二个判断框,又因为75≣60,将按“Y ”的指向,所以输出的是“及格”.1.2.3 循环结构学习目标 1.掌握当型和直到型两种循环结构的流程图的画法;2.了解两种循环结构的区别,能进行两种循环结构流程图间的转化;3.能正确读流程图.知识点一 循环结构思考 用累加法计算1+2+3+…+100的值,其中有没有重复操作的步骤?梳理 循环结构的定义:在算法中,需要重复执行同一操作的结构称为循环结构. 知识点二 常见的两种循环结构类型一 如何实现和控制循环例1 设计一个计算1+2+…+100的值的算法,并画出流程图.反思与感悟 变量S 作为累加变量,来计算所求数据之和.当第一个数据送到变量i 中时,累加的动作为S=S+i,即把S的值与变量i的值相加,结果再送到累加变量S中,如此循环,则可实现数的累加求和.跟踪训练1设计一个计算1+3+5+…+(2n-1)(n∈N*)的值的算法,并画出流程图.类型二当型循环与直到型循环的转化例2例1中流程图用的是当型循环结构,如果用直到型循环结构表示,则流程图如何?反思与感悟当型循环是满足条件则循环,直到型循环是满足条件则终止循环,故两种结构相互转化时注意判断框中的条件变化.跟踪训练2试把跟踪训练1中的流程图改为直到型循环结构.类型三读图例3某班一共有40名学生,如图中s代表学生的数学成绩.若该班有5名90分以上的学生,20名80分以上的学生,则输出的m=________,n=________.反思与感悟读流程图的办法就是严格按图操作.有循环结构时不一定从头执行到尾,只要执行几圈找到规律,最后确认何时终止即可.跟踪训练3阅读如图所示的流程图,运行相应的程序,输出的值等于________.1.在循环结构中,每次执行循环体前对控制循环的条件进行判断,当条件满足时执行循环体,不满足则停止,这样的循环结构是________.2.执行如图所示的流程图,输出的S值为________.3.执行如图所示的流程图,输出的S值为________.来并输出,试画出该问题的流程图.1.当反复执行某一步骤或过程时,应用循环结构.当型循环是先判断条件,条件满足再执行循环体,不满足退出循环;直到型循环是先执行循环体,再判断条件,不满足条件时执行循环体,满足时退出循环.2.应用循环结构前:(1)确定循环变量和初始条件;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.答案精析问题导学知识点一思考用S表示每一步的计算结果,S加下一个数得到一个新的S,这个步骤被重复了100次.知识点二成立执行A仍成立题型探究例1解算法如下:S1令i←1,S←0.S2若i≢100成立,则执行S3;否则,输出S,结束算法.S3S←S+i.S4i←i+1,返回S2.流程图如图:跟踪训练1解算法如下:S1输入n的值.S2i←1,S←0.S3若i≢2n-1成立,则执行S4;否则,输出S,结束算法.S4S←S+i,i←i+2,返回S3.流程图如图:例2解流程图如图:跟踪训练2解流程图如图:例3515解析该流程图是用循环结构实现40个成绩的输入,每循环一次就输入一个成绩s,然后对s的值进行判断.如果s>90,则m的值增加1,如果80<s≢90,则n的值增加1,故m 是用来统计90分以上人数的,n是用来统计分数在区间(80,90]上的人数的.由已知得,m =5,n=20-5=15.跟踪训练3 4解析 当i =1时,a =2,S =2,i =1+1=2,由于2>11不成立,因此继续循环,当i =2时,a =2×22=8,S =10,i =3,由于10>11不成立,因此继续循环,当i =3时,a =3×23=24,S =34,i =4,此时,S =34>11,满足条件,跳出循环,最后输出i =4,故答案为4. 当堂训练 1.当型循环 2.1321解析 执行第一次循环后S =23,i =1;执行第二次循环后,S =1321,i =2≣2,退出循环体,输出S 的值为1321.3.8解析 执行第一次循环后S =1,k =1; 执行第二次循环后S =2,k =2; 执行第三次循环后S =8,k =3, 3<3不成立.即条件不成立,输出S , 即S =8.4.解 流程图如图所示:1.3.1赋值语句1.3.2输入、输出语句学习目标 1.了解学习程序语句的必要性和根本目的;2.理解输入语句、输出语句、赋值语句的格式和功能;3.能把本节涉及的算法流程图转化为相应的伪代码.知识点一伪代码思考现代算法很多都需要用计算机实现,你认为计算机与人能直接用自然语言交流吗?知识点二赋值语句思考计算机用变量来存取数据.怎样表示“把变量a,b中的数据相加存入c中”?梳理赋值语句:(1)格式:__________________.(2)功能:将表达式所代表的值赋给变量.一般先计算“←”右边______________,然后把这个值赋给“←”左边的________.知识点三输入语句思考一个计算圆的面积的程序,可以不需要使用者设计,但需要使用者输入什么信息?梳理输入语句:(1)格式:Read a,b.(2)功能:表示________的数据依次送给a,b.知识点四输出语句思考一个程序如果没有输出语句,影响程序运行吗?你知道运行结果吗?梳理输出语句:(1)格式:Print x.(2)功能:表示输出运算结果x.类型一赋值语句例1用伪代码写出交换两个变量A,B的值的算法.反思与感悟引入一个中间变量X,将A的值赋予X,又将B的值赋予A,再将X的值赋予B,从而达到交换A,B的值(比如交换装满水的两个水桶里的水需要再找一个空桶).跟踪训练1如果把例1中的伪代码改为则当输入A=1,B=2时,最后输出A,B为________.类型二输入、输出语句例2已知一匀速运动的物体的初速度、末速度和加速度分别为v1,v2,a,求物体运动的距离s,试编写求解这个问题的一个算法的流程图,并用伪代码表示这个算法.反思与感悟输入语句的作用是实现算法的输入信息功能.输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;输出语句的作用是实现算法的输出结果功能,输出语句可以输出常量、变量或表达式的值以及字符.跟踪训练2设计一个求任意三门功课成绩的平均数的算法流程图,并写出相应的伪代码.1.在Read语句中,如果同时输入多个变量,变量之间的分隔符是________.2.下列给出的赋值语句中正确的是________.①3←A;②m←-m;③B←A←2;④x+y←0.3.下列用伪代码描述的算法执行后的结果为________.4.已知一个正三棱柱的底面边长为2,高为3,用输入、输出语句和赋值语句表示计算这个正三棱柱的体积的算法.1.输入语句要求输入的值只能是具体的常数,不能是变量或表达式(输入语句无计算功能),若输入多个数,各数之间应用“,”隔开.2.输出语句可以输出常量、变量或表达式的值(输出语句有计算功能)或字符.3.赋值语句的作用是先算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.4.赋值号两边的内容不能对调,如a←b与b←a表示的意义完全不同.。
2017-2018学年苏教版高中数学必修3全册课导学案含答案

2017-2018学年数学苏教版必修3全册导学案目录1.1算法的含义导学案练习1.2.1顺序结构导学案练习1.2.2选择结构导学案练习1.2.3循环结构导学案练习1.3基本算法语句导学案练习1.4 算法案例(2)导学案练习1.4算法案例(1)导学案练习1.4算法案例(3)导学案练习2.1抽样方法(一)导学案练习2.1抽样方法(三)导学案练习2.1抽样方法(二)导学案练习2.2总体分布的估计(一)导学案练习2.2总体分布的估计(二)导学案练习2.3总体特征数的估计(一)导学案练习2.3总体特征数的估计(二)导学案练习2.4线性回归方程(一)导学案练习 2.4线性回归方程(二)导学案练习 3.1.1 随机现象导学案练习3.1.2 随机事件的概率导学案练习 3.2 古典概型(一)导学案练习 3.2 古典概型(二)导学案练习3.3 几何概型(一)导学案练习3.3 几何概型(二)导学案练习3.4 互斥事件及其发生的概率(一)导学案练习3.4 互斥事件及其发生的概率(二)导学案练习第一章算法初步1.1算法的含义【新知导读】1.什么是算法?试从日常生活中找3个例子,描述它们的算法.2.我们从小学到初中再到高中所学过的许多数学公式是算法吗?【范例点睛】例1.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤.从下列选项中选出较好的一种算法A.第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播.B.第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播.D.第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶.思路点拨:从四个答案所给出的步骤是否合理、最少需要花费多少时间入手,进行判断.易错辨析:选择A很大程度上是受人们的通常的习惯所影响,即起床后首先应该洗脸刷牙再做其他的事情.方法点评:作为完成过程的算法来说,要讲究一个优劣之分,也即完成这个过程用时最少的是一个好算法,所以.应选C.例2.一位商人有9枚银元,其中有1枚略轻的是假银元.你能用天平(不用砝码)将假银元找出来吗?思路点拨:最容易想到的解决这个问题的一种方法是:把9枚银元按顺序排成一列,先称前2枚,若不平衡,则可找出假银元;若平衡,则2枚银元是真的,再依次与剩下的银元比较,就能找出假银元.这种算法最少要称1次,最多要称7次,是不是还有更好的办法,使得称量次数少一些?我们可以采用下面的方法:1.把银元分成3组,每组3枚.2.先将两组分别放在天平的两边.如果天平不平衡,那么假银元就在轻的那一组;如果天平平衡,则假银元就在未称的第3组里.3.取出含假银元的那一组,从中任取两枚银元放在天平的两边,如果左右不平衡,则轻的那一边就是假银元;如果天平两边平衡,则未称的那一枚就是假银元.方法点评:经分析发现,这种算法只需称量2次,这种做法要明显好于前一种做法.从以上两个问题中可以看出,同一个问题可能存在着多种算法,其中一些可能要比另一些好.在实际问题和算法理论中,找出好的算法是一项重要的工作. 【课外链接】1.设计一个算法,求840与1764的最大公因数.思路点拨:该算法是在对自然数进行素因数分解的基础上设计的.解答这个问题需要按以下思路进行.首先,对两个数分别进行素因数分解:75328403⨯⨯⨯=, 2227321764⨯⨯=.其次,确定两数的公共素因数:7,3,2.接着,确定公共素因数的指数:对于公共素因数22,2是1764的因数,32是840的因数,因此22是这两个数的公因数,这样就确定了公共素因数2的指数为2.同样,可以确定出公因数3和7的指数均为1.这样,就确定了840与1764的最大公因数为847322=⨯⨯【随堂演练】1.算法是指 ( ) A .为解决问题而编写的计算机程序 B.为解决问题而采取的方法和步骤 C .为解决问题而需要采用的计算机程序 C.为解决问题而采用的计算方法 2.看下面的四段话,其中不是解决问题的算法的是( ) (A )从济南到北京旅游,先坐火车,再坐飞机抵达(B )解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1 (C )方程x 2-1=0有两个实根(D )求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为153.方程⎩⎨⎧=+=+1043732y x y x 的解集是_______________4.买一个茶杯1.5元,现要写出计算买n 个茶杯所需要的钱数的一个算法,则这个算法中必须要用到的一个表达式为_______________ 5.设计算法,判断97是否为素数.6.设计算法,求1356和2400的最小公倍数.7.有两个瓶子A 和B ,分别盛放醋和酱油,要求将它们互换(即A 瓶原来盛醋,现改盛酱油;B 瓶则相反)8.设计算法,将三个数按从大到小的顺序排列.9.有13个球看上去一模一样,但其中一个质量不同(它比其他12个略重),现在有一个天平(没有砝码),要求给出一种操作方法,把这个球找出来.参考答案 1.1算法的含义【新知导读】1.对一类问题的机械的、统一的求解方法称为算法 2.是 【随堂演练】1.B 2.C 3.⎩⎨⎧==12y x 4.1.5n5.S1 对两个数分别进行素因数分解:1356=22×3×113 2400=25×3×52S2 确定两数的所有素因数:2,3,5,113S3 确定素因数的指数:2的指数为5,3的指数为1,5的指数为2, 113的指数为1 S4 输出结果[1356,2400]=25×3×52×113. 6. S1 引入第三个空瓶即C 瓶; S2 将A 瓶中的醋装入C 瓶中; S3 将B 瓶中的酱油装入A 瓶中; S4 将C 瓶中的醋装入B 瓶中; S5 交换结束。
苏教版2018-2019学年高中数学必修三教学案:第1章 章末小结与测评 Word版含答案

一、算法的设计1.算法设计它与一般意义上的解决问题不同,它是对一类问题的一般解法的抽象与概括,它往往是把问题的解法划分为若干个可执行的步骤,有时是重复多次,但最终都必须在有限个步骤之内完成.2.设计算法时的注意事项(1)与解决该问题的一般方法相联系,从中提炼与概括算法步骤.(2)将解决的问题过程划分为若干步骤.(3)引入有关的参数或变量对算法步骤加以表达.(4)用简炼的语言将各步骤表达出来.二、流程图1.流程图的定义用规定的图框和流程线来准确、直观、形象地表示算法的图形.2.算法的三种基本逻辑结构(1)顺序结构:(2)选择结构:(3)循环结构:3.画流程图的规则(1)使用标准的图框符号.(2)一般按从上到下、从左到右的方向画.(3)除判断框外,其他图框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号.(4)一种判断框分为“是”与“不是”两个分支,而且有且仅有两个结果;另一种是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.三、基本算法语句(1)赋值语句的一般格式:变量←表达式(2)输入语句要求输入的值只能是具体的常数,不能是表达式、变量或函数;输出语句可以输出常量、变量或表达式的值甚至也可以输出字符.(3)条件语句的一般形式:If A ThenBElseCEnd If(4)条件语句的嵌套的一般形式:其相应的流程图如下图所示.(5)循环语句①当型语句:While P循环体End While②直到型语句:Do循环体Until PEnd Do③当循环的次数已经确定,可用“For”语句表示.“For”语句的一般形式为:For I From“初值”To“终值”Step“步长”循环体End For(6)使用算法语句时应注意的几个问题:①一个输入语句可以对多个变量赋值,中间用“,”隔开,输出语句也类似.②赋值号左边只能是变量,而不能是表达式.两边不能对换,若对换,需引入第三个变量.③条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两数大小等.④当型循环是当条件满足时执行循环体.而直到型循环是当条件不满足时执行循环体.⑤在解决一些需要反复执行的任务时,如累加求和、累乘求积通常都用循环语句来实现,要注意循环变量的控制条件.⑥在循环语句中嵌套条件语句时,要注意书写格式.四、算法案例(求最大公约数)1.更相减损术更相减损术(也叫等值算法)是我国古代数学家在求两个正整数最大公约数时的一个算法,其操作过程是:对于给定的两个正整数,用较大的数减去较小的数,接着把得到的差与较小的数比较,用这两个数中较大的数减去较小的数,继续上述操作(大数减去小数),直到产生一对相等的数为止,那么这个数(等数)即是所求的最大公约数.2.辗转相除法辗转相除法(即欧几里得算法)就是给定两个正整数,用较大的数除以较小的数,若余数不为零,则将较小的数和余数继续上面的除法,直到余数为零,此时的除数就是所求的最大公约数.3.二者的区别与联系辗转相除法进行的是除法运算,即辗转相除,而更相减损术进行的是减法运算,即辗转相减,但实质都是一个递归过程.(时间90分钟,满分120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.如图表示的算法结构是________结构.解析:由流程图知为顺序结构. 答案:顺序2.语句A ←5,B ←6,A ←B +A ,逐一执行后,A 、B 的值分别为________. 解析:∵A =5,B =6, ∴A =6+5=11,B =6. 答案:11、63.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则lg1 000⊗(12)-2=________.解析:令a =lg1 000=3,b =(12)-2=4,∴a <b , 故输出b -1a =4-13=1. 答案:14.如图是一个算法的流程图,最后输出的W =________.解析:第一次循环后知S =1. 第二次循环后知T =3,S =9-1=8. 第三次循环后知T =5,S =25-8=17. 所以输出W =17+5=22. 答案:225.下面的伪代码运行后的输出结果是________.a ←1b ←2c ←3a ←b b ←c c ←aPrint a ,b ,c解析: 第4行开始交换,a =2,b =3,c 为赋值后的a , ∴c =2. 答案: 2,3,26.一个伪代码如图所示,输出的结果是________.S ←1For I From 1 to 10 S ←S +3×I End For Print S解析:由伪代码可知S=1+3×1+3×2+…+3×10=1+3×(1+2+…+10)=166.答案:1667.下面的伪代码输出的结果是________.i←1s←1While i≤4s←s×ii←i+1End WhilePrint s解析:由算法语句知s=1×1×2×3×4=24.答案:248.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数是51.答案:519.下列算法,当输入数值26时,输出结果是________.Read xIf 9<x<100 Thena←x\10b←Mod(x,10)x←10b+aPrint xEnd If解析:这是一个由条件语句为主体的一个算法,注意算法语言的识别与理解.此算法的目的是交换十位、个位数字得到一个新的二位数.(x\10是取x除以10的商的整数部分).答案: 6210.(广东高考)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.解析:本题第1次循环:s=1+(1-1)=1,i=1+1=2;第2次循环:s=1+(2-1)=2,i=2+1=3;第3次循环:s=2+(3-1)=4,i=3+1=4;第4次循环:s=4+(4-1)=7,i =4+1=5.循环终止,输出s的值为7.答案: 711.如图所示的流程图输出的结果为________.解析:由题意知,输出的b为24=16.答案:1612.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是________.解析:依据循环结构运算并结合输出结果确定条件.k=2,s=1,s=1×log23=log23,k=3,s=log23·log34=log24,k=4,s=log24·log45=log25,k=5,s=log25·log56=log26,k=6,s=log26·log67=log27,k=7,s=log27·log78=log28=3.停止,说明判断框内应填k≤7或k<8.答案:k≤7(或k<8)13.下列伪代码运行后输出的结果为________.j ←1While j ≤5 a a +j , j ←j +1End While Print a解析: 第一步:a =mod(1,5)=1,j =2;第二步:a =mod(1+2,5)=3,j =3;第三步:a =mod(3+3,5)=1,j =4;第四步:a =mod(1+4,5)=0,j =5;a =mod(0+5,5)=0,j =6,此时输出,∴a =0.答案:014.执行如图所示的流程图,若输出的结果是8,则判断框内m 的取值范围是________.解析:由题知,k =1,S =0,第一次循环,S =2,k =2;第二次循环,S =2+2×2=6,k =3;……;第六次循环,S =30+2×6=42,k =6+1=7;第七次循环,S =42+2×7=56,k =7+1=8,此时应输出k 的值,从而易知m 的取值范围是(42,56].答案:(42,56]二、解答题(本大题共4小题,共50分)15.(本小题满分12分)写出求最小的奇数I ,使1×3×5×7×…×I >2 012的伪代码. 解:t ←1I ←1While t ≤2 012 t ←t ×I I ←I +2End While Print I -216.(本小题满分12分)高中毕业会考等级规定:成绩在85~100为“A”,70~84为“B”,60~69为“C”,60分以下为“D”.试编制伪代码算法,输入50名学生的考试成绩(百分制,且均为整数),输出其相应的等级.解析: 伪代码如图:While I≤50Read a I学生成绩If a I<60 ThenPrint “D”Else If a I<70 ThenPrint “C”Else If a I<85 ThenPrint “B”ElsePrint “A”End IfI←I+1End While17.(本小题满分12分)下面是计算应纳个人所得税的算法过程,其算法如下:S1 输入工资x(x≤8 000);S2 如果x≤3 500,那么y=0;如果3 500<x≤5 000,那么y=0.03(x-3 500);否则y=45+0.1(x-5 000) S3 输出税款y,结束.请写出该算法的伪代码及流程图.解:伪代码.Read x(x≤8 000)If x≤3 500 Theny←0ElseIf x≤5 000 Theny←0.03(x-3 500)Elsey←45+0.1(x-5 000)End IfEnd IfPrint y流程图18.(本小题满分14分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y (万人)与年份x (年)的函数关系式; (2)用伪代码表示计算10年以后该城市人口总数的算法;(3)用流程图表示计算大约多少年以后该城市人口将达到120万人的算法. 解:(1)y =100×1.012x(2)伪代码如下:S ←100I ←1.012For x From 1 To 10S ←S ×IEnd For Print S(3)即求满足100×1.012x≥120的最小正整数x ,其算法流程图如图.。
2017-2018学年高中数学苏教版3教学案:第3章3.3几何概型含解析

错误!预习课本P106~109,思考并完成以下问题1.什么是几何概型?几何概型有何特征?2.几何概型的计算公式是什么?错误!1.几何概型的定义对于一个随机试验,将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的特征(1)在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无穷多个.(2)在随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.[点睛](1)判断一个随机试验是否为几何概型时,两个条件“无限性"与“等可能性”的验证缺一不可.(2)注意几何概型与古典概型的区别,前者基本事件有无限个,而后者只有有限个.(3)在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.3.几何概型的计算公式在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=错误!。
这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度"分别是长度、面积和体积等.1.下列概率模型:①从1~10中任意取一个整数,求取到5的概率;②从区间[1,10]内任意取一个数,求取到5的概率;③一枚硬币连掷三次,求出现一次正面朝上的概率;④一个十字路口的交通信号灯中,红灯、黄灯、绿灯亮的时间分别为30秒、50秒、60秒,求某辆车到达路口遇见绿灯的概率.其中是几何概型的是________(填序号).答案:②④2.在区间[1,3]上任取一数,则这个数大于1。
5的概率为________.答案:0。
753.在边长为4的正方形中有一个半径为1的圆,向这个正方形中随机投一点M,则点M落在圆内的概率为________.答案:错误!一维几何概型[典例] (1)在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.(2)某汽车站每隔15 min有一辆汽车到达,乘客到达车站的时刻是任意的,则一位乘客到达车站后等车时间超过10 min的概率为__________.[解析] (1)∵区间[-1,2]的长度为3,由|x|≤1,得x∈[-1,1],而区间[-1,1]的长度为2,x取每个值为随机的,∴在[-1,2]上取一个数x,|x|≤1的概率P=错误!。
2017-2018学年高中数学苏教版选修2-3教学案:第1章章末小结知识整合与阶段检测缺答案

[对应学生用书P24]一、两个计数原理的应用1.分类计数原理首先要根据问题的特点确定一个合适的分类标准,然后在这个标准下分类;其次,完成这件事的任何一种方法必须属于某一类.分别属于不同类的两种方法是不同的方法.2.分步计数原理首先根据问题的特点确定一个分步的标准.其次分步时要注意,完成一件事必须并且只有连续完成这n个步骤后,这件事才算完成.二、排列与组合概念及公式1.定义从n个不同元素中取出m(m≤n)个元素,若按照一定的顺序排成一列,则叫做从n个不同元素中取出m个元素的一个排列;若合成一组,则叫做从n个不同元素中取出m个元素的一个组合.即排列和顺序有关,组合与顺序无关.2.排列数公式(1)A错误!=n(n-1)(n-2)…(n-m+1),规定A错误!=1。
当m=n时,A错误!=n(n-1)(n-2)·…·3·2·1。
(2)A错误!=错误!,其中A错误!=n!,0!=1.三、排列与组合的应用1.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算并作答.2.处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列.按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列组合问题的基本方法和原理,通过解题训练注意积累分类和分步的基本技能.3.解排列组合应用题时,常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类和准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.四、二项式定理及二项式系数的性质1.二项式定理公式(a+b)n=C错误!a n+C错误!a n-1b+…+C错误!a n-r b r+…+C错误!b n,其中各项的系数C错误!(r=0,1,2,…,n)称为二项式系数,第r+1项C r,n a n-r b r称为通项.[说明](1)二项式系数与项的系数是不同的概念,前者只与项数有关,而后者还与a,b的取值有关.(2)运用通项求展开式的特定值(或特定项的系数),通常先由题意列方程求出r,再求所需的项(或项的系数).2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,体现了组合数性质C错误!=C错误!.(2)增减性与最大值:当r<错误!时,二项式系数C错误!逐渐增大;当r>错误!时,二项式系数C错误!逐渐减小.当n是偶数时,展开式中间一项T错误!+1的二项式系数C错误!n 最大;当n是奇数时,展开式中间两项T错误!与T错误!+1的二项式系数C错误!n,C错误!n相等且最大.(3)各项的二项式系数之和等于2n,即C0n+C错误!+C错误!+…+C n,n=2n;奇数项的二项式系数的和等于偶数项的二项式系数的和,即C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+….[说明] 与二项展开式各项系数的和或差有关的问题,一般采用赋值法求解.错误!(时间120分钟,满分160分)一、填空题(本大题共14个小题,每小题5分,共70分,把正确答案填在题中横线上)1.从4名女同学和3名男同学中选1人主持本班的某次班会,则不同的选法种数为________.解析:由题意可得不同的选法为C17=7种.答案:72.(湖南高考改编)错误!5的展开式中x2y3的系数是________.解析:由二项展开式的通项可得,第四项T4=C错误!错误!2(-2y)3=-20x2y3,故x2y3的系数为-20.答案:-203.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是________.解析:设男学生有x人,则女学生有(8-x)人,则C错误!C错误!A错误!=90,即x(x-1)(8-x)=30=2×3×5,所以x=3,8-x=5。
苏教版高中数学必修三教案

苏教版高中数学必修三教案课时:第一课时教学目标:1. 掌握数列的概念及常见类型。
2. 能够实际应用数列解决问题。
3. 培养学生的逻辑思维和数学分析能力。
教学重点:1. 掌握数列的定义和常见类型。
2. 初步掌握数列的求和方法。
教学难点:1. 理解数列的性质和规律。
2. 能够熟练运用数列的求和方法。
教学准备:1. 教材:《高中数学必修三》2. 教具:黑板、彩色粉笔、教学课件、学生练习册3. 学生学习资料:笔记本、铅笔、尺子教学过程:一、导入(5分钟)教师简要介绍数列的概念,并展示一些实际生活中的数列例子,引起学生对数列的兴趣。
二、讲解(15分钟)1. 数列的定义和性质:教师讲解数列的定义,序号、通项公式等概念,并引导学生理解数列的性质。
2. 常见数列类型:介绍等差数列、等比数列等常见数列类型,并讲解其特点和求和方法。
三、练习(20分钟)1. 学生跟随教师做一些简单的数列练习,巩固对数列的基本概念和性质的理解。
2. 学生独立解决一些实际问题,运用数列解决实际生活中的问题。
四、总结(5分钟)教师总结本节课的重点内容,强调数列的重要性和应用价值,鼓励学生继续学习深入数列的知识。
五、作业布置(5分钟)布置一些相关的作业,要求学生按时完成,并提醒学生复习今天所学的知识点。
六、课外拓展(自由活动)鼓励学生利用课外时间进行更多的数列练习和拓展,加深对数列知识的理解和应用。
教学反思:通过本节课的教学,学生对数列的基本概念和常见类型有了初步的了解,能够初步掌握数列的求和方法。
但也发现部分学生对数列的应用还存在一定困难,需要在后续的教学中加强练习和巩固,提高学生的数学分析能力。
2017-2018学年高中数学苏教版必修三教学案:第3章 3.2 古典概型

甲、乙两人玩掷骰子游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是5,那么甲获胜,如果朝上的两个数的和是7,那么乙获胜.问题1:若甲获胜,那么两颗骰子出现的点数有几种?提示:会出现(1,4),(4,1)(2,3),(3,2)四种可能.问题2:若乙获胜,两颗骰子出现的点数又如何?提示:会出现(1,6),(6,1),(2,5,),(5,2),(3,4),(4,3)六种可能.问题3:这样的游戏公平吗?提示:由问题1、2知甲获胜的机会比乙获胜的机会少,不公平.问题4:能否求出甲、乙两人获胜的概率?提示:可以.1.基本事件与等可能事件(1)基本事件:在一次试验中可能出现的每一个基本结果.(2)等可能事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.2.古典概型(1)古典概型的特点:①有限性:所有的基本事件只有有限个;②等可能性:每个基本事件的发生都是等可能的.(2)古典概型的定义:将满足上述条件的随机试验的概率模型称为古典概型.(3)古典概型概率的计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是;1n如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=.mn 即P (A )=.事件A 包含的基本事件数试验的基本事件总数1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可能性,并不是所有的试验都是古典概型,例如在适宜的条件下“种下一粒种子观察它是否发芽”,这个试验的基本事件有两个:“发芽”、“不发芽”,而“发芽”与“不发芽”这两种结果出现的机会一般是不均等的,故此试验不符合古典概型的等可能性.2.古典概型的概率公式P (A )=与事件A 发生的频率有本质的区别,其中P (A )=是一个m n m n mn 定值,且对同一试验的同一事件m 、n 均为定值,而频率中的m 、n 均随试验次数的变化而变化,但随着试验次数的增加频率总接近于P (A ). [例1] 将一颗骰子先后抛掷两次,求:(1)一共有几个基本事件?(2)“出现点数之和大于8”包含几个基本事件?[思路点拨] 求基本事件的个数可用列举法、列表法、树形图法.[精解详析] 法一:(列举法):(1)用(x ,y )表示结果,其中x 表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,则试验的所有结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36个基本事件.(2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).法二:(列表法):如图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应.(1)由图知,基本事件总数为36.(2)总数之和大于8包含10个基本事件(已用虚线圈出).法三:(树形图法):一颗骰子先后抛掷两次的所有可能结果用树形图直接表示.如图所示:(1)由图知,共36个基本事件.(2)点数之和大于8包含10个基本事件(已用对勾标出).[一点通] 基本事件个数的计算方法有:(1)列举法:列举法也称枚举法.对于一些情境比较简单,基本事件个数不是很多的概率问题,计算时只需一一列举,即可得出随机事件所含的基本事件.注意列举时必须按一定顺序,做到不重不漏.(2)列表法:对于试验结果不是太多的情况,可以采用列表法.通常把对问题的思考分析归结为“有序实数对”,以便更直接地找出基本事件个数.列表法的优点是准确、全面、不易遗漏,其中最常用的方法是坐标系法.(3)树形图法:树形图法是进行列举的一种常用方法,适合较复杂问题中基本事件数的求解.1.本例中条件变为“一枚硬币连续掷三次”,会有多少种不同结果?解:画树形图共8种.2.一个口袋内装有大小相等的1个白球和已编有号码的3个黑球,从中摸出2个球.(1)共有多少种不同的结果(基本事件)?(2)摸出2个黑球有多少种不同结果?解:(1)共有6种不同结果,分别为{黑1,黑2},{黑1,黑3},{黑2,黑3},{白,黑1},{白,黑2},{白,黑3}.(2)从上面所有结果中可看出摸出2个黑球的结果有3种. [例2] (12分)同时投掷两个骰子,计算下列事件的概率:(1)事件A :两个骰子点数相同;(2)事件B :两个骰子点数之和为8;(3)事件C :两个骰子点数之和为奇数.[思路点拨] 先判断这个试验是否为古典概型,然后用列举法求出所有基本事件总数及所求事件包含的基本事件的个数,最后用公式P (A )=求结果.mn [精解详析] (1)将两个骰子标上记号A ,B ,将A ,B 骰子的点数记为(x ,y ),则共有36种等可能的结果.如下(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).⇨(3分)出现点数相同的结果有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)共6种.∴P (A )==.⇨(6分)63616(2)出现点数之和为8的结果有(2,6)(3,5)(4,4)(5,3)(6,2)共5种,∴P (B )=.⇨(9分)536(3)出现点数之和为奇数包括“x 是奇数、y 是偶数”和“x 是偶数、y 是奇数”,共有18种,∴P (C )==.⇨(12分)183612[一点通] 求古典概型概率的步骤:(1)用列举法求出基本事件总个数n .(2)用列举法求出事件A 包含的基本事件的个数m .(3)利用公式P (A )==求出事件A 的概率.事件A 包含的基本事件数试验的基本事件总数mn3.先后从分别标有数字1,2,3,4的4个大小、形状完全相同的球中,有放回地随机抽取2个球,则抽到的2个球的标号之和不大于5的概率为________.解析:基本事件共有4×4=16(个),其中抽到的2个球的标号之和不大于5的情况有:(1,1)、(1,2)、(1,3)、(1,4)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(4,1),共10种,所以所求概率为=.101658答案:584.将一颗骰子先后抛掷2次,观察向上的点数,问:(1)两数之积是奇数的概率是多少?(2)两数之积是3的倍数的概率是多少?解:每次抛出的点数都可能有1,2,3,4,5,6这6种结果,两次点数之积的不同结果如下表所示共有36种.1234561123456224681012336912151844812162024551015202530661218243036(1)设事件A 表示“两数之积是奇数”,则事件A 包含的不同结果的个数为9,所以P (A )==.93614(2)设事件B 表示“两数之积是3的倍数”,则事件B 包含的不同结果的个数为20,所以P (B )==.2036591.解决古典概型问题的关键是:分清基本事件总数n 与事件A 所包含基本事件的个数m ,注意问题:(1)试验基本结果是否有等可能性.(2)本试验的基本事件有多少个.(3)事件A 包含哪些基本事件.只有弄清这三个方面的问题解题才不致于出错.2.求基本事件的个数有列举法、列表法和树形图法,一是注意按一定顺序,防止重复和遗漏;二是可先数一部分,找出规律,推测全部.课下能力提升(十六)一、填空题1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为________.解析:本题中基本事件有(甲,乙),(甲,丙),(乙,丙)共三个,其中甲被选中包含两个基本事件,故甲被选中的概率为.23答案:232.在平面直角坐标系内,从横坐标与纵坐标都在集合A ={0,1,2}内取值的点中任取一个,此点正好在直线y =x 上的概率为________.解析:由x ,y ∈{0,1,2},这样的点共有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)9个,其中满足在直线y =x 上的点(x ,y )有(0,0),(1,1),(2,2)3个,所以所求概率为P ==.3913答案:133.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.解析:随机选取的a ,b 组成实数对(a ,b ),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种.其中b >a 的有(1,2),(1,3),(2,3),共3种,所以b >a 的概率为=.31515答案:154.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为.34答案:345.盒子里共有大小相同的3只白球、1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是________.解析:从3只白球、1只黑球中随机摸出两只小球,基本事件有(白1,白2),(白1,白3),(白2,白3),(白1,黑),(白2,黑),(白3,黑),其中颜色不同的有三种,故所求概率为P =.12答案:12二、解答题6.从3台甲型电脑和2台乙型电脑中任取两台,求两种品牌都齐全的概率.解:3台甲型电脑为1,2,3,2台乙型电脑为A ,B ,则所有基本事件为:(1,2),(1,3),(1,A ),(1,B ),(2,3),(2,A ),(2,B ),(3,A ),(3,B ),(A ,B ),共10个. 记事件C 为“一台为甲型,另一台为乙型”,则符合条件的事件为6个,所以P (C )==.610357.设集合P ={b ,1},Q ={c ,1,2},P ⊆Q ,若b ,c ∈{2,3,4,5,6,7,8,9}.(1)求b =c 的概率;(2)求方程x 2+bx +c =0有实根的概率.解:(1)因为P ⊆Q ,当b =2时,c =3,4,5,6,7,8,9;当b >2时,b =c =3,4,5,6,7,8,9,基本事件总数为14.其中b =c 的事件数为7种,所以b =c的概率为:=.71412(2)记“方程有实根”为事件A ,若使方程有实根,则Δ=b 2-4c ≥0,即b =c =4,5,6,7,8,9共6种. 所以P (A )==.614378.对某项工程进行竞标,现共有6家企业参与竞标,其中A 企业来自辽宁省,B ,C 两家企业来自江苏省,D ,E ,F 三家企业来自山东省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(1)列举所有企业的中标情况;(2)在中标的企业中,至少有一家来自江苏省的概率是多少?解:(1)从这6家企业中选出2家的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.(2)在中标的企业中,至少有一家来自江苏省的选法有(A ,B ),(A ,C ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.所以,“在中标的企业中,至少有一家来自江苏省”的概率为=.91535。
高中数学苏教版必修三教学案:第3章章末小结与测评含答案

一、随机事件及概率1.随机现象在必定条件下,某种现象可能发生,也可能不发生,预先不可以判定出现哪一种结果.2.事件的分类(1)必定事件:在必定条件下,必定发生的事件;(2)不行能事件:在必定条件下,必定不发生的事件;(3)随机事件:在必定条件下,可能发生也可能不发生的事件,常用大写字母表示随机事件,简称为事件.3.随机事件的概率(1)随机事件的概率:假如随机事件在次试验中发生了次,当试验的次数很大时,我们能够将事件发生m A 生的概率的近似 ,即m的 率 作 事件()≈. nP An(2) 概率的性 :①有界性: 随意事件A ,有 0≤ P ( A ) ≤1.② 范性:若Ω、 ?分 代表必定事件和不行能事件,P ( Ω) = 1; P ( ?) = 0.二、古典概型 1.基本领件在一次 中可能出 的每一个基本 果. 2.等可能事件若在一次 中, 每个基本领件 生的可能性都同样, 称 些基本领件 等可能基本领件.3.古典概型(1) 特色:有限性,等可能性.(2) 概率的 算公式:假如一次 的等可能基本领件共有n 个,那么每一个等可能基本领件 生的概率都是1 ;nm假如某个事件 A 包括了此中 m 个等可能基本领件,那么事件A 生的概率P ( A ) =n .即P (A )= 事件 A 包括的基本领件数.的基本领件 数三、几何概型(1) 特色:无穷性,等可能性.(2) 概率的 算公式:在几何地区 D 中随机地取一点, 事件“ 点落在其内部一个地区d 内” 事件 A , 事件A 生的概率P ( A ) =d 的 度.D 的 度里要求 D 的 度不0,此中“ 度”的意 依 D 确立,当 D 分 是 段、平面 形和立体 形 ,相 的“ 度”分 是 度、面 和体 等.四、基本领件1.互斥事件(1) 定 :不可以同 生的两个事件称 互斥事件.假如事件A 1,A 2,⋯, A n 中的任何两个都是互斥事件,就 事件A 1, A 2,⋯, A n 相互互斥.(2) 定: A , B 互斥事件,若事件 A 、 B 起码有一个 生,我 把 个事件 作 A +B . 2.互斥事件的概率加法公式(1)若事件 A、B 互斥,那么事件 A+ B 生的概率等于事件 A、 B 分生的概率的和即 P( A+B)=P(A)+P(B).(2)若事件 A1, A2,⋯, A n两两互斥.P( A1+A2+⋯+ A n)= P( A1)+ P( A2)+⋯+ P( A n).3.立事件(1) 定:两个互斥事件必有一个生,称两个事件立事件.事件 A 的立事件A.(2)性: P( A)+P( A)=1,P( A)=1-P( A).( 考:90 分卷分: 120 分 )一、填空 ( 本大共14 小,每小 5 分,共 70 分)1.以下事件属于必定事件的有 ________.① 2, 2, 4 的三条段,成等腰三角形② 在响一声就被接到③ 数的平方正数④全等三角形面相等分析:① 2+ 2= 4,不可以成三角形,不行能事件;② 随机事件;③中0 的平方0,随机事件;④ 必定事件.答案:④2.同抛两枚地均匀的硬,出两个正面向上的概率是__________ .分析:共出 4 种果其两正面向上只有 1 种,1故 P=4.答案:143.在座平面内,已知点集M={( x, y)| x∈N,且 x≤3, y∈N,且 y≤3)},在 M中任取一点,个点在x 上方的概率是________.分析:会合 M中共有16个点,此中在 x 上方的有12 个,故所求概率123= . 1643答案:44.某人随机地将注A, B, C 的三个小球放入号1, 2, 3 的三个盒子中,每个盒子放一个小球,所有放完.则标明为B 的小球放入编号为奇数的盒子中的概率等于________.分析:随机地将标明为, , C 的三个小球放入编号为 1,2,3 的三个盒子中共有 6 种状况,A B而将标明为B 的小球放入编号为奇数的盒子中有,,;,,;,,;,,,共4种BACBCAACBCAB2状况,所以所求概率等于3.2答案: 35.已知射手甲射击一次,命中 9 环以上 ( 含 9 环 ) 的概率为 0.5 ,命中 8 环的概率为0.2 ,命中 7 环的概率为 0.1 ,则甲射击一次,命中6 环以下 ( 含 6 环 ) 的概率为 ________.分析:以上事件为互斥事件,故命中 6 环以下 ( 含 6 环 ) 的概率为 1-0.5 - 0.2 - 0.1 = 0.2.答案: 0.26.投掷一颗骰子, 察看掷出的点数, 设事件A 为出现奇数点, 事件B 为出现 2 点,已知 ( )P A11= 2, P ( B ) = 6,则出现奇数点或 2 点的概率之和为 ________.1 12 分析:出现奇数点或 2 点的概率为 P = 2+ 6= 3.2 答案: 37.某部三册的小说,随意排放在书架的同一层上,各册从左到右或从右到左恰巧为第1,2,3 册的概率为 ________.分析:所有基本领件为:123,132,213,231, 312,321 共 6 个.此中“从左到右或从右到2 1左恰巧为第 1, 2, 3 册”包括 2 个基本领件,故 P = 6= 3.答案: 138.函数 f ( x ) = x 2- x - 2,x ∈ [ - 5,5] ,那么随意 x 0∈[ - 5,5] 使 f ( x 0) ≤0的概率为 ________.1 2,x ∈ [ - 5, 5] ,区间长度为 10,分析: f ( x ) = x 2- x - 2= x --924129∵f ( x 0) = x 0- 2 - 4≤0,3∴- 1≤ x 0≤ 2,区间长度为 3,∴概率为 10.3答案: 109.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为 90%,则甲、乙两人下成平手的分析:甲不输为两个事件的和事件,其一为甲获胜( 事件A),其二为甲获平手( 事件B) ,并且两事件是互斥事件.∵P( A+ B)=P( A)+ P( B),∴P( B)= P( A+ B)- P( A)=90%-40%=50%.答案: 50%10.同时投掷两枚质地均匀的骰子,所得的点数之和为 6 的概率是 ________.分析:掷两枚骰子共有36 种基本领件,且是等可能的,所以“所得点数之和为6”的事件为(1 ,5),(2 , 4),(3 ,3) ,(4 ,2) ,(5 ,1) 共 5 个,故所得的点数之和为 6 的概率是P=5 . 365答案:3611.从分别写有ABCDE的五张卡片中任取两张,这两张卡片上的字母次序恰巧相邻的概率为________.分析:随机抽取两张可能性有AB, AC, AD, AE, BC, BD, BE,CD, CE,DE, BA,CA, DA,EA, CB,DB, EB,DC, EC,ED,共20种.卡片字母相邻:AB, BA, BC, CB, CD, DC, DE, ED共8种.∴概率为8 =2.20 52答案:512.如图,半径为10 cm的圆形纸板内有一个同样圆心的半径为 1 cm 的小圆.现将半径为2 cm的一枚铁片抛到此纸板上,使铁片整体随机落在纸板内,则铁片落下后把小圆所有覆盖的概率为 ________.分析:铁片整体随机落在纸板内的测度D=π R2=64π;而铁片落下后把小圆所有覆盖的测度d =πr2=π,所以所求的概率=d=π=1.P D64π641答案:6413. ( 安徽高考改编 ) 若某企业从五位大学毕业生甲、乙、丙、丁、戊中录取三人,这五人被录取的时机均等,则甲或乙被录取的概率为________.分析:由题意,从五位大学毕业生中录取三人,所有不一样的可能结果有( 甲,乙,丙 ), ( 甲,乙,丁 ) , ( 甲,乙,戊 ) ,( 甲,丙,丁 ) , ( 甲,丙,戊 ) , ( 甲,丁,戊 ) , ( 乙,丙,丁 ) , ( 乙,丙,戊 ) , ( 乙,丁,戊 ) ,( 丙,丁,戊 ) ,共 10 种,此中“甲与乙均未被录取”的所有不一样的可能结果只有 ( 丙,丁,戊 ) 这 1 种,故其对峙事件“甲或乙被录取”的可能结果有9 种,所求概率9P=10.9答案:1014.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次拿出后不放回,连续取两次,求拿出的两件产品中恰有一件次品的概率为________.分析:每次拿出一个,取后不放回地连续取两次,其全部可能的结果构成的基本领件有 6 个,即 ( a1,a2) , ( a1,b1) ,( a2,a1) ,( a2,b1) , ( b1,a1) ,( b1,a2) .此中小括号内左侧的字母表示第1 次拿出的产品,右侧的字母表示第2 次拿出的产品.用A表示“拿出的两件中,恰巧有一件次品”这一事件,则 A 包括( a1,b1),( a2,b1),( b1,a1),( b1,a2),即事件 A 由4个基本领件构成,4 2因此, P( A)=6=3.2答案:3二、解答题 ( 本大题共 4 小题,共50 分 )15. ( 本小题满分12 分 ) 除了电视节目中的游戏外,我们平常也会碰到好多和概率相关的游戏问题,且看下边的游戏:以下图,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1) 在第一轮抵达“车站”的概率是多少?(2) 假定你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?解: (1) 第一轮要到“车站”, 则一定掷出的点数之和为5,而用 2 颗骰子掷出 5 会有 4 种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1 ,4) , (2 ,3) , (3 , 2) , (4 , 1)4 种组合,4 1 而投掷两颗骰子共有 36 种可能结果,所以第一轮抵达“车站”的概率为36=9.(2) 需要掷出的点数之和为6 或 8 或 9,而要得出这 3 种结果共有以下 14 种组合: (5 , 1) ,(4 ,2),(3 , 3),(2 ,4) ,(1 ,5) ,(6 ,2) ,(5 ,3) ,(4 , 4) ,(3 ,5) ,(2 , 6) ,(6 , 3) ,(5 ,14 7 4) , (4 , 5) , (3 , 6) ,所以抵达这一地区的概率为36= 18.16.( 辽宁高考 )( 本小题满分 12 分 ) 现有 6 道题,此中4 道甲类题, 2 道乙类题,张同学从中任取 2 道题解答.试求:(1) 所取的 2 道题都是甲类题的概率;(2) 所取的 2 道题不是同一类题的概率.解: (1) 将 4 道甲类题挨次编号为1, 2,3, 4; 2 道乙类题挨次编号为 5, 6,任取 2 道题,基本领件为: {1 , 2} , {1 , 3} , {1 ,4} , {1 ,5} , {1 ,6} , {2 ,3} , {2 ,4} , {2 ,5} , {2 ,6} ,{3 , 4} , {3 , 5} , {3 , 6} , {4 , 5} ,{4 , 6} ,{5 , 6} ,共 15 个,并且这些基本领件的出现是等可能的.用 A 表示“都是甲类题”这一事件,则A 包括的基本领件有 {1 , 2} , {1 , 3} , {1 , 4} , {2 ,6 23} ,{2,4} , {3,4} ,共 6 个,所以 P ( A ) =15=5.(2) 基本领件同 (1) .用 B 表示“不是同一类题”这一事件,则B 包括的基本领件有 {1 , 5} ,8{1 ,6},{2 , 5},{2 ,6} ,{3 ,5} ,{3 ,6} ,{4 ,5} ,{4 , 6} ,共 8 个,所以P ( B ) =15.17.( 本小题满分 12 分 ) 某服务电话,打进的电话响第1 声时被接的概率是 0.1 ;响第2 声时被接的概率是 0.2 ;响第 3 声时被接的概率是0.3 ;响第 4 声时被接的概率是0.35.(1) 打进的电话在响 5 声以前被接的概率是多少?(2)打的响 4 声而不被接的概率是多少?解: (1) 事件“ 响第k 声被接” A k( k∈N),那么事件A k相互互斥,“打的在响 5 声以前被接” 事件A,依据互斥事件概率加法公式,得P(A)=P(A1+A2+A3+A4)=P(A1)+P( A2)+P( A3)+ P( A4)=0.1+0.2+0.3+0.35=0.95.(2) 事件“打的响 4 声而不被接”是事件A“打的在响 5 声以前被接”的立事件, A;依据立事件的概率公式,得P( A)=1-P( A)=1-0.95=0.05.18.( 本小分14 分 ) 一个袋中装有大小同样的 5 个球,将 5 个球分号1,2,3,4, 5.(1)从袋中拿出两个球,每次只拿出一个球,并且拿出的球不放回,求拿出的两个球上号之奇数的概率;(2)若在袋中再放入其余 5 个同样的球,量球的性,, 10 个球的性得分以下:8.7 , 9.1 , 8.3 ,9.6 , 9.4 , 8.7 , 9.7 , 9.3 ,9.2 , 8.0 ,把10 个球的得分当作一个体,从中任取一个数,求数与体均匀数之差的不超0.5的概率.解: (1) “拿出的两个球上号之奇数” 事件,Ω= {(1 ,2) ,(1 ,3) ,(1, 4) ,B(1 ,5),(2 , 1),(2 ,3) ,(2 ,4) ,(2 ,5) ,(5 ,1) ,(5 , 2),(5 , 3) ,(5 , 4) ⋯} ,共包括 20个基本领件;此中B={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包括6个基本领件,63P(B)== .20101(2) 本均匀数x=10(8.7+9.1+8.3+9.6+9.4+8.7+9.7+ 9.3 + 9.2+ 8.0) = 9,B 表示事件“从本中任取一数,数与本均匀数之差的不超0.5 ”,包括{8.7 ,9.1 , 9.4 , 8.7, 9.3 , 9.2}6 个基本领件,所以P( B) =6=3. 105。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、随机事件及概率1.随机现象在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果.2.事件的分类(1)必然事件:在一定条件下,必然发生的事件;(2)不可能事件:在一定条件下,肯定不发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件,常用大写字母表示随机事件,简称为事件.3.随机事件的概率(1)随机事件的概率:如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A 发生的频率m n 作为事件A 发生的概率的近似值,即P (A )≈m n. (2)概率的性质:①有界性:对任意事件A ,有0≤P (A )≤1.②规范性:若Ω、∅分别代表必然事件和不可能事件,则P (Ω)=1;P (∅)=0.二、古典概型1.基本事件在一次试验中可能出现的每一个基本结果.2.等可能事件若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.3.古典概型(1)特点:有限性,等可能性.(2)概率的计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1n ;如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=m n. 即P (A )=事件A 包含的基本事件数试验的基本事件总数. 三、几何概型(1)特点:无限性,等可能性.(2)概率的计算公式:在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度. 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.四、基本事件1.互斥事件(1)定义:不能同时发生的两个事件称为互斥事件.如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,就说事件A 1,A 2,…,A n 彼此互斥.(2)规定:设A ,B 为互斥事件,若事件A 、B 至少有一个发生,我们把这个事件记作A+B .2.互斥事件的概率加法公式(1)若事件A 、B 互斥,那么事件A +B 发生的概率等于事件A 、B 分别发生的概率的和即P (A +B )=P (A )+P (B ).(2)若事件A 1,A 2,…,A n 两两互斥.则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).3.对立事件(1)定义:两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A .(2)性质:P (A )+P (A )=1,P (A )=1-P (A ).(考试时间:90分钟 试卷总分:120分)一、填空题(本大题共14小题,每小题5分,共70分)1.下列事件属于必然事件的有________.①长为2,2,4的三条线段,组成等腰三角形②电话在响一声时就被接到③实数的平方为正数④全等三角形面积相等解析:①2+2=4,不能组成三角形,为不可能事件;②为随机事件;③中0的平方为0,为随机事件;④为必然事件.答案:④2.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是__________.解析:共出现4种结果其两正面向上只有1种,故P =14. 答案:143.在坐标平面内,已知点集M ={(x ,y )|x ∈N ,且x ≤3,y ∈N ,且y ≤3)},在M 中任取一点,则这个点在x 轴上方的概率是________.解析:集合M 中共有16个点,其中在x 轴上方的有12个,故所求概率为1216=34.44.某人随机地将标注为A ,B ,C 的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则标注为B 的小球放入编号为奇数的盒子中的概率等于________.解析:随机地将标注为A ,B ,C 的三个小球放入编号为1,2,3的三个盒子中共有6种情况,而将标注为B 的小球放入编号为奇数的盒子中有B ,A ,C ;B ,C ,A ;A ,C ,B ;C ,A ,B ,共4种情况,因此所求概率等于23. 答案:235.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)的概率为________.解析:以上事件为互斥事件,故命中6环以下(含6环)的概率为1-0.5-0.2-0.1=0.2. 答案:0.26.抛掷一颗骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________. 解析:出现奇数点或2点的概率为P =12+16=23. 答案:237.某部三册的小说,任意排放在书架的同一层上,各册从左到右或从右到左恰好为第1,2,3册的概率为________.解析:所有基本事件为:123,132,213,231,312,321共6个.其中“从左到右或从右到左恰好为第1,2,3册”包含2个基本事件,故P =26=13. 答案:138.函数f (x )=x 2-x -2,x ∈[-5,5],那么任意x 0∈[-5,5]使f (x 0)≤0的概率为________.解析:f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94,x ∈[-5,5],区间长度为10, ∵f (x 0)=⎝⎛⎭⎫x 0-122-94≤0, ∴-1≤x 0≤2,区间长度为3,∴概率为310.109.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________.解析:甲不输为两个事件的和事件,其一为甲获胜(事件A ),其二为甲获平局(事件B ),并且两事件是互斥事件.∵P (A +B )=P (A )+P (B ),∴P (B )=P (A +B )-P (A )=90%-40%=50%.答案:50%10.同时抛掷两枚质地均匀的骰子,所得的点数之和为6的概率是________.解析:掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,故所得的点数之和为6的概率是P =536. 答案:53611.从分别写有ABCDE 的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为________.解析:随机抽取两张可能性有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,BA ,CA ,DA ,EA ,CB ,DB ,EB ,DC ,EC ,ED ,共20种.卡片字母相邻:AB ,BA ,BC ,CB ,CD ,DC ,DE ,ED 共8种.∴概率为820=25. 答案:2512.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为2 cm 的一枚铁片抛到此纸板上,使铁片整体随机落在纸板内,则铁片落下后把小圆全部覆盖的概率为________.解析:铁片整体随机落在纸板内的测度D =πR 2=64π;而铁片落下后把小圆全部覆盖的测度d =πr 2=π,所以所求的概率P =d D =π64π=164.答案:16413.(安徽高考改编)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.解析:由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910. 答案:91014.从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率为________.解析:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 包含(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即事件A 由4个基本事件组成,因而,P (A )=46=23. 答案:23二、解答题(本大题共4小题,共50分)15.(本小题满分12分)除了电视节目中的游戏外,我们平时也会遇到很多和概率有关的游戏问题,且看下面的游戏:如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1)在第一轮到达“车站”的概率是多少?(2)假设你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?解:(1)第一轮要到“车站”,则必须掷出的点数之和为5,而用2颗骰子掷出5会有4种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1,4),(2,3),(3,2),(4,1)4种组合,而抛掷两颗骰子共有36种可能结果,所以第一轮到达“车站”的概率为436=19. (2)需要掷出的点数之和为6或8或9,而要得出这3种结果共有下列14种组合:(5,1),(4,2),(3,3),(2,4),(1,5),(6,2),(5,3),(4,4),(3,5),(2,6),(6,3),(5,4),(4,5),(3,6),所以到达这一区域的概率为1436=718. 16.(辽宁高考)(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6,任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25. (2)基本事件同(1).用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815. 17.(本小题满分12分)某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少?解:(1)设事件“电话响第k 声时被接”为A k (k ∈N ),那么事件A k 彼此互斥,设“打进的电话在响5声之前被接”为事件A ,根据互斥事件概率加法公式,得P (A )=P (A 1+A 2+A 3+A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=0.1+0.2+0.3+0.35=0.95.(2)事件“打进的电话响4声而不被接”是事件A “打进的电话在响5声之前被接”的对立事件,记为A ;根据对立事件的概率公式,得P (A )=1-P (A )=1-0.95=0.05.18.(本小题满分14分)一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回,求取出的两个球上编号之积为奇数的概率;(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测,这10个球的弹性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.解:(1)设“取出的两个球上编号之积为奇数”为事件B ,Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(5,1),(5,2),(5,3),(5,4)…},共包含20个基本事件;其中B ={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包含6个基本事件,则P (B )=620=310. (2)样本平均数为x =110(8.7+9.1+8.3+9.6+9.4+8.7+9.7+9.3+9.2+8.0)=9, 设B 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则包含{8.7,9.1,9.4,8.7,9.3,9.2}6个基本事件,所以P (B )=610=35.。