2016届苏科版九年级下数学期中测试卷及答案
苏教版九年级数学下册期中测试卷【参考答案】

苏教版九年级数学下册期中测试卷【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =44.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+26.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18二、填空题(本大题共6小题,每小题3分,共18分)1205=__________.2.分解因式:222m-=____________.3.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.如图,直线343y x=-+与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.5.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB =13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.6.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)232x x=+(2)21124xx x-=--2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、B4、D5、D6、D7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2(1)(1)m m +-.3、﹣34、5、6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)32x =- 2、-11x +,-14. 3、(1)阴影部分的面积为32)略;(3)略. 4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h 的学生人数约为720.。
苏教版九年级数学下册期中考试卷【及参考答案】

苏教版九年级数学下册期中考试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.2510.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.因式分解:a 3-a =_____________.3.正五边形的内角和等于__________度.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分) 1.解方程:24111x x x =+--2.先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2.3.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、D6、B7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、a(a-1)(a + 1)3、5404、35、36、5三、解答题(本大题共6小题,共72分)1、3x=2、2xyx y-,123、(1)略;(2)5 2.4、(1)略;(2)45°;(3)略.5、(1)600(2)见解析(3)3200(4)。
2016年江苏省九年级下学期期中考试数学试卷(附答案)

三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.)
19.(本题满分8分)
(1)计算: ,(2)化简:
20.(本题满分8分)
(1)解不等式组: (2)解方程: .
21.(本题满分8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.
江苏省九年级下学期期中考试数学试卷
注意事项:1.本卷满分130分.考试时间为120分钟.
2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意):
1. 的绝对值是()
A. B. C. D.
2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.1个B.2个C.3个D.4个
二、仔细填一填(本大题共8小题,每空2分,共计16分):
11.函数 中,自变量 的取值范围是.
12.因式分解: =.
13.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为.
14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.
购车预算(万元)
频数
频率
0~5
20
0.05
5~10
a
0.13
10~15
152
0.38
15~20
b
d
20~25
28
0.07
25~30
24
0.06
合计
(苏科版)初中数学九年级下册 期中测试(含答案)

期中测试一、选择题(每小题3分,共30分)1.抛物线()2325y x =-+的顶点坐标是( )A .(2-,5)B .(2-,5-)C .(2,5)D .(2,5-)2.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC △和11AB C △相似的是( )A .11AB ACAB AC = B .111AB BCAB B C = C .1B C ∠=∠D .1C C ∠=∠3.已知点C 是线段AB 的黄金分割点,且AC BC >,2AB =,则AC 为( ) A1-B.3CD .0.6184.一次函数()0y ax b a =+≠与二次函数()220y ax x b a =++≠在同一直角坐标系中的图像可能是( )A .B .C .D .5.如图,已知ABC △和ADE △均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,9AB =,3BD =,则CF 等于( )A .1B .2C .3D .46.二次函数21y ax bx c =++与一次函数2y mx n =+的图像如图所示,则满足2ax bx c mx n +++>的x 的取值范围是( )A .30x -<<B .3x -<或0x >C .3x -<D .03x <<7.如图,A ,B 两地之间有一个池塘,要测量A ,B 两地之间的距离,选择直线AB 外的一点O ,连接AO并延长到点C ,使得12OC AO =,连接BO 并延长到点D ,使得12OD BO =。
测得C ,D 间的距离为30米,则A ,B 两地之间的距离为( )A .30米B .45米C .60米D .90米8.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F .已知AEF △的面积为1,则平行四边形ABCD 的面积是( )A .24B .18C .12D .99.四位同学在研究函数2y x bx c =++(b ,c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =。
2016-17江苏省九年级数学下学期期中考试试卷(附答案)

²D²F ²E 江苏省九年级数学下学期期中考试试卷一、选择题(本大题共l0小题.每小题3分.共30分)1.9的算术平方根是 ( ) A .3 B .-3 C .±3 D .32.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+17by ax by ax 的解,则a b -的值为( )A .-1B .1C .2D .33.分解因式269ab ab a -+的最终结果是 ( ) A .a(b -3) B .a(b 2-6b+9) C .a(b -3)2 D .(ab -3)24.已知圆锥的底面半径为4cm ,高为3cm ,则圆锥的侧面积是 ( ) A .20 cm 2 B .20兀cm 2 C .12兀cm 2 D .10兀cm 25.下列命题是假命题的是 ( )A .菱形的对角线互相垂直平分 B. 有一斜边与一直角边对应相等的两直角三角形全等 C .有一组邻边相等且垂直的平行四边形是正方形 D .对角线相等的四边形是矩形 6.如图,点A 、B 、C 是正方体三条相邻棱的中点,沿A 、B 、C 三点所在的平面将该正方体的 一个角切去后,所得几何体的正确展开图为 ( )7.如图,在8×4的矩形网格中,每格小正方形的边长都是1, 若△ABC 的三个顶点在图中相应的格点上,图中点D 、点E 、点F也都在格点上,则下列与△ABC 相似的三角形是 ( )A .△ACDB .△ADFC .△BDFD .△CDE8.某市70%的家庭年收入不少于3万元,下面一定不少于3万元的是( ) A .年收入的平均数 B .年收入的中位数C .年收入的众数D .年收入的平均数和众数 9.二次函数2y ax bx c =++的图象如图所示,反比例函数by x=与一次函数y cx a =+在同一平面( )10、在△ABC 中,∠ABC =30°,∠BAC =70°。
南菁高级中学实验学校2016届九年级下期中数学试卷(有答案)-(苏科版)AwqAMK

2015-2016学年江苏省无锡市江阴市南菁高级中学实验学校九年级(下)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.3的倒数是()A.3 B.﹣3 C.D.﹣2.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣23.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形 D.平行四边形4.tan45°的值为()A.B.1 C.D.5.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣16.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:CA﹦2:3,△ABC的面积是18,则△DEC的面积是()A.8 B.9 C.12 D.157.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣18.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°9.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()折.A.6折B.7折C.8折D.9折10.如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是()A.5个B.4个C.3个D.2个二.填空题(本大题共8小题,每小题2分,共16分.把答案直接填写在答题卡上相应的位置)11.“鸟巢”总占地面积21公顷,建筑面积258000m2.把258 000m2用科学记数法表示为m2.12.因式分解:a3+2a2+a=.13.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是.14.已知圆锥的母线长是5cm,侧面积是15πcm2,则这个圆锥底面圆的半径是cm.15.如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A=16.如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为cm.17.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为.18.如图,在扇形OAB中,∠AOB=105°,半径OA=10,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕BC交OA于点C,则图中阴影部分面积为.三.解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写证明过程或演算步骤)19.计算与化简:(1)计算:()﹣1﹣cos30°+(2014﹣π)0;(2)化简:a(a+1)﹣(a+1)(a﹣1).20.(1)解方程:.(2)解不等式组:.21.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.22.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.23.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.如图,已知在△ABC中,AB=15,AC=20,tanA=,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=时,试探究△APM与△PCN是否相似,并说明理由.25.某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:的代数式表示第三年的基础工资为万元;(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?26.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.27.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OA在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直线翻折,使OA与y轴正半轴的OC重合.点B的对应点为点D,连接AD交OB于点E.(1)求经过O、A、D三点的抛物线的解析式;(2)若动点P从点A出发,以每秒1个单位的速度沿射线AO运动,线段AP的垂直平分线交直线AD于点M,交(1)中的抛物线于点N,设线段MN的长为d(d≠0),点P的运动时间为t秒,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,连接PM,当t为何值时,直线PM与过D、E、O三点的圆相切,并求出此时切点的坐标.28.【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=,=.(2)如图2,在△ABC 中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)2015-2016学年江苏省无锡市江阴市南菁高级中学实验学校九年级(下)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.3的倒数是()A.3 B.﹣3 C.D.﹣【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数3的倒数是.故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【考点】多项式乘多项式;整式的加减.【分析】对各项计算后再利用排除法求解.【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.【点评】本题考查面较广,但都是基础知识,掌握好基础对学好数学非常重要.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形 D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形不是中心对称图形,是轴对称图形,A不合题意;圆是中心对称图形,也是轴对称图形,B不合题意;矩形是中心对称图形,是轴对称图形,C不合题意;平行四边形是中心对称图形但不是轴对称图形,D符合题意,故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.tan45°的值为()A.B.1 C.D.【考点】特殊角的三角函数值.【分析】根据45°角这个特殊角的三角函数值,可得tan45°=1,据此解答即可.【解答】解:tan45°=1,即tan45°的值为1.故选:B.【点评】此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是牢记30°、45°、60°角的各种三角函数值.5.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2=()A.3 B.﹣3 C.1 D.﹣1【考点】根与系数的关系.【分析】本题要求算出x1+x2的结果,x1+x2正好与两根之和公式一致,根据两根之和公式(韦达定理)可以求出x1+x2的值.【解答】解:∵一元二次方程x2﹣3x+1=0的两根为x1和x2,∴x1+x2=3.故选A.【点评】本题考查了一元二次方程根与系数的关系.若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.6.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:CA﹦2:3,△ABC的面积是18,则△DEC的面积是()A.8 B.9 C.12 D.15【考点】相似三角形的判定与性质.【分析】根据已知条件得到△CDE∽△CAB,根据相似三角形的性质得出=()2,代入求出即可.【解答】解:∵AD:DC=1:2,∴CD:CA=2:3,∵DE∥AB,∴△CDE∽△CAB,∴=()2=()2=,∵△ABC的面积是18,∴△DEC的面积是8.故选:A.【点评】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.7.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【考点】二次函数的性质.【专题】探究型.【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.【解答】解:二次函数y=2(x+1)(x﹣3)可化为y=2(x﹣1)2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C.【点评】本题考查的是二次函数的性质,根据题意把二次函数化为顶点式的形式是解答此题的关键.8.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°【考点】圆周角定理.【专题】几何图形问题.【分析】根据圆周角定理求得、:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°﹣∠AOD,∴∠BCD=32°.【解答】解:连接OD.∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);又∵∠BOD=180°﹣∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);∴∠BCD=32°;故选B.【点评】本题考查了圆周角定理.解答此题时,通过作辅助线OD,将隐含在题中的圆周角与圆心角的关系(同弧所对的圆周角是所对的圆心角的一半)显现出来.9.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()折.A.6折B.7折C.8折D.9折【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意,可以设至少打x折,根据利润率=进价×20%这个等量关系列方程解答.【解答】解:至少可以打x折,根据题意得800×(1+20%)=1200×,解得x=8.故选C.【点评】此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.解题时要明确利润率是指进价的20%.10.如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的个数是()A.5个B.4个C.3个D.2个【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得===2,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH 于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;∵∠BAD=90°,AM⊥DE,∴△AED∽△MAD∽△MEA,∴===2,∴AM=2EM,MD=2AM,∴MD=2AM=4EM,故④正确;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF===a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故⑤正确;如图,过点M作MN⊥AB于N,则==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理,BM===a,过点M作GH∥AB,过点O作OK⊥GH于K,则OK=a﹣a=a,MK=a﹣a=a,在Rt△MKO中,MO===a,根据正方形的性质,BO=2a×=a,∵BM2+MO2=(a)2+(a)2=2a2,BO2=(a)2=2a2,∴BM2+MO2=BO2,∴△BMO是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.二.填空题(本大题共8小题,每小题2分,共16分.把答案直接填写在答题卡上相应的位置)11.“鸟巢”总占地面积21公顷,建筑面积258000m2.把258 000m2用科学记数法表示为 2.58×105m2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:258 000=2.58×105,故答案为:2.58×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.因式分解:a3+2a2+a=a(a+1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3+2a2+a,=a(a2+2a+1),…(提取公因式)=a(a+1)2.…(完全平方公式)故答案为:a(a+1)2.【点评】本题考查了提公因式法,公式法分解因式,难点在于对余下的项利用完全平方公式进行二次分解因式.13.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是.【考点】方差;极差.【专题】压轴题.【分析】根据平均数确定出a后,再根据方差的公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算方差.【解答】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1﹣4)2+(3﹣4)2+(3﹣4)2+(6﹣4)2+(7﹣4)2]÷5=.故答案为:.【点评】此题考查了平均数和方差的定义.平均数是所以数据的和除以所有数据的个数.方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].14.已知圆锥的母线长是5cm,侧面积是15πcm2,则这个圆锥底面圆的半径是3cm.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l===6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===3cm,故答案为:3.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.15.如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A= 1.2【考点】锐角三角函数的定义.【分析】作BE⊥AC于E,根据tan∠A=计算即可.【解答】解:作BE⊥AC于E,则BE=6,AE=5,∴tan∠A===1.2故答案为1.2.【点评】本题考查锐角三角函数的定义,解题的关键是构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.16.如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为18 cm.【考点】正多边形和圆.【专题】探究型.【分析】过P作AB的垂线,交AB、DE分别为H、K,连接BD,由正六边形的性质可知AB∥DE,AF∥CD,BC∥EF,故HK⊥DE,过C作CG⊥BD,由等腰三角形的性质及正六边形的内角和定理可知,DB⊥AB⊥DE,再由锐角三角函数的定义可求出BG的长,进而可求出BD的长,由正六边形的性质可知点P到AF与CD 的距离和及P到EF、BC的距离和均为BD的长,故可得出结论.【解答】解:过P作AB的垂线,交AB、DE分别为H、K,连接BD,∵六边形ABCDEF是正六边形,∴AB∥DE,AF∥CD,BC∥EF,且P到AF与CD的距离和及P到EF、BC的距离和均为HK的长,∵BC=CD,∠BCD=∠ABC=∠CDE=120°,∴∠CBD=∠BDC=30°,∴BD∥HK,且BD=HK,∵CG⊥BD,∴BD=2BG=2×BC×cos∠CBD=2×2×=6,∴点P到各边距离之和为3BD=3×6=18.故答案为:18.【点评】本题考查的是正多边形和圆及锐角三角函数的定义、特殊角的三角函数值,根据题意画出图形,利用数形结合求解时是解答此题的关键.17.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为y=.【考点】待定系数法求反比例函数解析式;坐标与图形变化-平移.【分析】由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(﹣3,),AD∥x轴,即可得到B(﹣3,),C(﹣1,),D(﹣1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣3+m,),C(﹣1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(﹣3+m)=(﹣1+m),即可求得结果.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,BC=AD=2,∵A(﹣3,),AD∥x轴,∴B (﹣3,),C (﹣1,),D (﹣1,);∵将矩形ABCD 向右平移m 个单位,∴A ′(﹣3+m ,),C (﹣1+m ,),∵点A ′,C ′在反比例函数y=(x >0)的图象上,∴(﹣3+m )=(﹣1+m ),解得:m=4,∴A ′(1,),∴k=,∴反比例函数的解析式为:y=.故答案为y=. 【点评】本题考查了矩形的性质,图形的变换﹣平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.18.如图,在扇形OAB 中,∠AOB=105°,半径OA=10,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕BC 交OA 于点C ,则图中阴影部分面积为 ﹣25﹣25 .【考点】扇形面积的计算;翻折变换(折叠问题).【分析】先连接OD ,由折叠的性质,可得CD=CO ,BD=BO ,∠DBC=∠OBC ,则可得△OBD 是等边三角形,△OCD 是等腰直角三角形,故可得出OC 的长,再根据S 阴影=S 扇形AOB ﹣S △OCD ﹣S △OBD 即可得出结论.【解答】解:连接OD ,∵△CBD 由△CBO 翻折而成,∴CD=CO ,BD=BO ,∠DBC=∠OBC ,∴△OBD 是等边三角形.∵∠AOB=105°,∴∠COD=∠CDO=45°,∴△OCD 是等腰直角三角形.∵半径OA=10,∴OC===5,∴S 阴影=S 扇形AOB ﹣S △OCD ﹣S △OBD =﹣×5×5﹣×10×10×=﹣25﹣25.故答案为:﹣25﹣25.【点评】此题考查的是扇形面积公式,在解答此题时要注意数形结合思想的应用,注意辅助线的作法.三.解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写证明过程或演算步骤)19.计算与化简:(1)计算:()﹣1﹣cos30°+(2014﹣π)0;(2)化简:a (a+1)﹣(a+1)(a ﹣1).【考点】实数的运算;整式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)原式=2﹣×+1=;(2)原式=a 2+a ﹣(a 2﹣1)=a+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(1)解方程:.(2)解不等式组:. 【考点】解分式方程;解一元一次不等式组.【分析】(1)去分母后解方程求解;(2)分别解每个不等式,然后求公共部分得不等式组的解集.【解答】解:(1)去分母,得 1=3(x ﹣3)﹣x .去括号,得 1=3x ﹣9﹣x .解得 x=5.经检验,x=5 是原方程的解.(2)解不等式(1)得:x≥1;…解不等式(2)得:x<5;…所以不等式组的解集为1≤x≤5.…【点评】此题考查解分式方程和不等式组,难度中等.21.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定.【专题】证明题.【分析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【点评】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.22.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【考点】条形统计图;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.23.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【考点】列表法与树状图法.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,已知在△ABC中,AB=15,AC=20,tanA=,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=时,试探究△APM与△PCN是否相似,并说明理由.【考点】切线的性质;勾股定理;相似三角形的判定与性质.【分析】(1)作BD⊥AC,垂足为点D.则BD就是⊙P的半径.根据勾股定理即可得出BD,即⊙P的半径;(2)当AP=6时,可求出AM、CN.可证出△AMP∽△PNC.【解答】解:(1)作BD⊥AC,垂足为点D.∵⊙P与边AC相切,∴BD就是⊙P的半径,设BD=x,则AD=2x,由勾股定理得:x2+(2x)2=152,解得:,∴半径为;(2)相似;过点P作PH⊥AC于点H,求得PH=6,MH=3,AH=12,∴AM=9,∴CN=5,∴,又∵PM=PN,∴∠PMN=∠PNM,∴∠AMP=∠PNC,∴△AMP∽△PNC.【点评】本题考查了切线的性质,勾股定理相似三角形的判定和性质,正确的作出辅助线是解题的关键.。
苏科版数学九年级下期中试题含答案解析

第1页 共10页初三年级数学学科期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,)1.﹣3的绝对值是 ( )A .﹣3B .3C .-13D .132.二次根式x −1中字母x 的取值范围是 ( ) A .x <1 B . x ≤1 C . x >1 D . x ≥13.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( ) A .0.845×104亿元 B .8.45×103亿元 C .8.45×104亿元 D .84.5×102亿元 4.方程2x ﹣1=3的解是 ( ) A .x=2 B .x=0.5 C .x=1 D .x= −15.在同一平面直角坐标系中,函数y =mx +m 与y=mx(m ≠0)的图象可能是 ( )A .B .C .D .①平行四边形的对边相等; ①正方形既是轴对称图形,又是中心对称图形; ①对角线相等的四边形是矩形; ①一条对角线平分一组对角的平行四边形是菱形. A .1 B .2 C .3 D .4 7.如图,已知①ABC 的三个顶点均在格点上,则cosA 的值为 ( )A . 13 3B . 15 5C .25 5D . 2338.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为 ( ) A .13 B .14 C .15 D .16第7题 第8题 第9题 9.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) A .B .C .D .10.已知一次函数y=2x−4的图像与x 轴、y 轴分别相交于点A 、B ,点P 在该函数图像上, P 到x 轴、y 轴的距离分别为d 1、d 2,若d 1+d 2=m ,当m 为何值时,符合条件点P 有且只有两个( ) (A)m >2 (B) 2<m <4 (C) m ≥4 (D) 0<m <4第2页 共10页二、填空题(本大题共8小题,每小题2分,共16分。
2016届九年级(下)期中数学试卷(解析版)

九年级(下)期中数学试卷学校:班级:教师:科目:得分:一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a43.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=08.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.二、填空题(共8小题,每小题3分,满分24分)11.4是的算术平方根.12.因式分解:x2y﹣y=.13.函数中,自变量x的取值范围是.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为.16.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为千瓦时(保留两个有效数字).17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为cm(结果保留π).18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.三、解答题(本大题共76分)19.计算:.20.先化简,再求值:,其中.21.解不等式组,并把解集在数轴上表示出来.22.解方程:.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 1007:00﹣8:00 2 43 11 n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.2015-2016学年九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣2【考点】相反数.【分析】根据相反数的概念,互为相反数的两个数和为0,即可得出答案.【解答】解:由题意得a﹣2=0,则a=2.故选A.2.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.3.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念进而判断得出答案.【解答】解:在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形有正方形、菱形共有2个.故选:B.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】随机事件;全面调查与抽样调查;众数;方差.【分析】利用必然事件的定义、普查和抽样调查的特点、众数的定义、方差的定义即可作出判断.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,故本选项错误,B、想了解某饮料中含色素的情况,应用抽样调查,故本选项正确,C、数据1,1,2,2,3的众数是1、2,故本选项错误,D、一组数据的波动越大,方差越大,故本选项错误,故选B.6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选B.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=0【考点】根的判别式.【分析】分别求出每个一元二次方程根的判别式△与0的关系,进而选择正确的选项.【解答】解:A、x2﹣2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;B、x2+2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;C、x2﹣2x﹣4=0,△=4+4×4=20>0,此选项正确;D、x2+4=0,△=0﹣4×4=﹣16<0,此选项错误;故选C.8.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°【考点】圆周角定理;解直角三角形.【分析】先画图,再根据垂径定理得出AC,根据三角函数得出∠O,由圆周角定理得出答案.【解答】解:如图,过点O作OD⊥AB,交⊙O于点D,交AB于点C,∵OA=4,AB=4,∴AC=2,∴sin∠O==,∴∠O=60°,∴∠E=60°,∴∠F=120°,故选D.9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选:D.二、填空题(共8小题,每小题3分,满分24分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.因式分解:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).13.函数中,自变量x的取值范围是x≠﹣5.【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5≠0,解得x≠﹣5.故答案为x≠﹣5.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=35°.【考点】平行线的性质.【分析】根据平行线的性质求出∠EFD,根据三角形外角性质得出∠E=∠EFD﹣∠C,代入求出即可.【解答】解:∵AB∥CD,∠A=55°,∴∠EFD=∠A=55°,∵∠C=20°,∴∠E=∠EFD﹣∠C=55°﹣20°=35°,故答案为:35°.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为8.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知等式的值代入计算即可求出值.【解答】解:∵a﹣2b=﹣2,∴4﹣2a+4b=4﹣2(a﹣2b)=4+4=8.故答案为:816.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为 2.3×105千瓦时(保留两个有效数字).【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.题中226 900有6位整数,n=6﹣1=5.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:226 900=2.269×105≈2.3×105.故答案为:2.3×105.17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为10πcm(结果保留π).【考点】弧长的计算.【分析】根据弧长公式计算.【解答】解:l===10πcm.18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.【考点】反比例函数系数k的几何意义.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=|k|=2,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是s1=2,s2=,s3=,∴图中阴影部分的面积之和=2++=2.故答案为:2.三、解答题(本大题共76分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据绝对值的性质、负整数指数幂的运算法则及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3+1﹣2+3=5.20.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.21.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.解方程:.【考点】解分式方程.【分析】由于x2﹣4=(x+2)(x﹣2),本题的最简公分母是(x+2)(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘(x﹣2)(x+2),得:x(x+2)﹣(x2﹣4)=1,化简,得2x=﹣3,∴x=,检验:当x=时,(x﹣2)(x+2)≠0,∴x=是原方程的根.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)利用全等三角形的判定方法结合SAS得出即可;(2)利用菱形的判定方法对角线互相垂直且平分的四边形是菱形得出即可.【解答】(1)证明:∵AB=AC,点O是BC的中点,∴∠BAO=∠CAO,在△ABD和△ACD中∵,∴△ABD≌△ACD(SAS);(2)解:当AO=AD时,四边形ABDC是菱形.理由:∵AO=AD,∴AO=DO,又∵BO=CO,AO⊥BC,∴四边形ABDC是菱形.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率,再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.支持“警示戒烟”这种方式的人有10000•35%=3500(人).25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACD的度数,然后利用三角函数的知识求解即可求得答案.【解答】解:由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°.作BD⊥AC于D.在Rt△ABD中,(海里),在Rt△BCD中,(海里).答:此时渔船C与海监船B的距离是海里.26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为⊙O切线;(2)①连结BC,如图,在Rt△ACD中利用勾股定理计算出AD=2,再Rt△ACD∽Rt△ABC,利用相似比计算出AB=,从而得到⊙O半径长为;②证明△EOC∽△EAD,然后利用相似比可计算出BE的长.【解答】(1)证明:连结OC,如图,∵AC平分∠EAB,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∴DC为⊙O切线;(2)解:①连结BC,如图,在Rt△ACD中,∵CD=1,AC=,∴AD==2,∵AB为直径,∴∠ACB=90°,∵∠1=∠2,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,即:AB=2:,∴AB=,∴⊙O半径长为;②∵OC∥AD,∴△EOC∽△EAD,∴=,即=,∴BE=.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.【考点】反比例函数综合题;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;直角梯形;相似三角形的判定与性质.【分析】(1)把x=0代入y=kx+2即可求出D的坐标;根据相似三角形的判定得出=,求出AP,即可求出BD;(2)根据三角形PBD的面积求出P的坐标,把P的坐标分别代入一次函数和反比例函数的解析式求出即可;(3)根据图象上P的坐标求出即可;(4)作DQ∥x轴,把y=2代入反比例函数的解析式,求出即可.【解答】解:(1)在y=kx+2中,当x=0,得:y=2,∴点D的坐标是(0,2),∵AP∥OD,∴△PAC∽△DOC,∵=,∴==,∴AP=6,∵BD=6﹣2=4,答:点D的坐标是(0,2),BD的长是4.(2)∵S△PBD=PB•BD=×PB×4=4,∴BP=2,∴P(2,6),把P(2,6)分别代入y=kx+2和y=得:k=2,m=12,∴一次函数的解析式是y=2x+2,反比例函数的解析式是y=,(3)由图形可知一次函数的值大于反比例函数值的x的取值范围是x>2.(4)Q(6,2).28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43 11 n ……………根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当EF⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.2016年8月8日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年第二学期期中测试
初三数学试卷(卷一)
一、选择题(每小题3分,共30分)
1.如果a 与-2的和为0,那么a 是
A .2
B .12
C .-12
D .-2
2.下列运算正确的是
A.326a a a ⋅=
B. 632)(a a -=-
C. 33)(ab ab =
D.428a a a =÷
3.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为
A .1个
B .2个
C .3个
D .4个
4.下面四个几何体中,俯视图为四边形的是
5. 下列说法中正确的是
A .“打开电视,正在播放《新闻联播》”是必然事件
B .想了解某种饮料中含色素的情况,宜采用抽样调查
C .数据1,1,2,2,3的众数是3
D .一组数据的波动越大,方差越小
6.从1-9这九个自然数中任取一个,是2的倍数的概率是
A .32
B .95
C . 94
D . 9
2 7.下列关于x 的一元二次方程中一定有实数根的是
A .2240x x -+=
B .2240x x ++=
C .2240x x --=
D .240x +=
8.在半径等于4cm 的圆内有长为43cm 的弦,则此弦所对的圆周角为
A .60º B. 120º C. 30º或150º D. 60º或120º
9.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..
10. 如图,边长为2a 的等边三角形ABC 中,M 是高CH 所在直线上
的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,
连接HN .则在点M 运动过程中,线段HN 长度的最小值是
A .12a
B .a
C
D .
A. B. C.
D.
二、填空题(每小题3分,共24分)
11. 4的算术平方根为 ____ .
12.因式分解:2
x y y -= ________.
13. 函数5x y x =+中,自变量x 的取值范围是 . 14.如图,AB ∥CD ,∠C =20o ,∠A =55o ,则∠E = o .
15. 已知a -2b =-2,则4-2a +4b 的值为
16.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为 千瓦时(保留两个有效数字).
17.已知扇形的圆心角为120°,半径为15cm ,则它的弧长为 cm (结果保留π) 18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x
=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,
分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 .
三、解答题(本大题共76分)
19.(5分)
011(2()3
π----+. 20.(5分) 先化简,再求值:22121124x x x x ++⎛⎫-÷ ⎪+-⎝⎭,其中12x -=. 21.(6分) 解不等式组20512112
3x x x ->⎧⎪+-⎨+⎪⎩,≥,并把解集在数轴上表示出来. 22.(6分) 解方程:21124
x x x -=--.
23.(6分) 如图,在△ABC 中,AB =AC ,点O 是BC 的中点,连结AO ,在AO 的延长线上
取一点D ,连结BD ,CD .
(1)求证:△ABD ≌△ACD ;
(2)当AO 与AD 满足什么数量关系时,四边形ABDC 是菱形?并
说明理由.
(第23题)
A
B C D
O
(第24题)
戒烟戒烟
戒烟戒烟15%10%强制戒烟警示戒烟替代品戒烟
药物戒烟
24.(6分)吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.有消息称,我国准备在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如上统计图,根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把条形统计图补充完整;
(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式.
25.(6分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)
26.(8分) 如图,AB 为⊙O 直径,E 为⊙O 上一点,∠EAB 的
平分线AC 交 ⊙O 于C 点,过C 点作CD ⊥A E 的延长线于D
点,直线CD 与射线AB 交于
P 点.
(1)求证:DC 为⊙O 切线;
(2)若DC=1,O 半径长;②求PB 的长.
27.(8分) 如图,一次函数y =k x +2的图象与反比例函数m y x =
的图象交于点P ,点P 在第一象限,PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且4PBD S ∆=,
12OC OA =. (1)求点D 的坐标及BD 长;
(2)求一次函数与反比例函数的解析式;
(3) 根据图象直接写出当x >0时,一次函数的值大于反比例
函数值的x
的取值范围;
⑷若双曲线上存在一点Q
,使以B 、D 、P 、Q 为顶点的四
边形是直角梯形,请直接写出符合条件的Q 点的坐标.
(第25题)
28.(8分)“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行
车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量……依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
(1) m= ,解释m的实际意义: ;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00 ~10:00这个时段的还车数比借车数的3倍少4.求此时段的借车数.
29.(12分) 如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB.动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的
平行线,分别交OA、AB于E、F,连结PE、PF.设动点P、Q同时出发,当点P到达点B 时,点Q也停止运动,它们运动的时间为t秒(t≥O).
(1)点E的坐标为,F的坐标为;
(2)当t为何值时,四边形OPFE是平行四边形;
(3)是否存在某一时刻艺,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.
2015-2016学年青云中学第二学期期中测试
初三数学试卷参考答案
一、选择题(每小题3分,共30分)
1. A
2.B
3.B
4.D
5.B
6.C
7.C
8.D
9.D 10.A
二、填空题(每小题3分,共24分)
11. 2 12. (1)(1)y x x +- 13. 5x ≠- 14. 35° 15. 0 16. 52.310⨯ 17. 10π 18. 4
9
三、解答题(本大题共76分)
19. 原式=31235+-+=
20. 原式=2
1x x -+=121. 12x -<≤ 22. 3
2x =- (检验)
23. (1)略 (2)当AD =2AO 时,四边形ABDC 是菱形. 理由略
24. (1)一共调查了300人
(2)由(1)可知,完整的统计图 略
(3) 3500(人)
25.
26. (1)证明略;(2)5
4r = PB=5
6
27. (1)D(0,2) BD=4 (2)22y x =+ 12
y x = (3)2x > (4)
Q (6,2) 28. (1)60m =,实际意义即6点之前的存量为60.
(2)二次函数解析式为244460y x x =-++(x 为1~12的整数).
(3)此时段借出自行车10辆.
29. (1)3
,4E t t ⎛⎫ ⎪⎝⎭ 20,2t F t -⎛⎫
⎪⎝⎭
(2)40
13t =
(3)分三种情况
①∠PEF=90°不成立
②∠PFE=90°4t =
③∠EPF=90°100
33t =。