组合数学作业讲解共33页

合集下载

【免费下载】组合数学作业1-8

【免费下载】组合数学作业1-8
1 个小三角形。
由鸽巣原理可知: mn 个点必有两点落于同一个小三角形内,
则其距离不大于 1/n.
2.证: a1, a2 …… am m 个数,i=1,2…..m.
设 ai mi q ri
0≤ ri ≤m-1
当 ri =0 时,存在一个整数可以被 m 整除。
当 ri 从 1…..m-1 这 m-1 个中取值,那么 m 个 ri 中只有 m-1
rj
,i>j,则有 = 可以被 n 整除。
ri
sk
ai
aj
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

组合数学作业讲解

组合数学作业讲解

习题三 [2.18(a)] a −6a +8a = 0 n n−1 n−2 解:设 G( x) = a0 + a1 x + a2 x2 + a3 x3 + ...... 则 D( x) = 1 − 6x + 8x2
D( x) G( x) = (1 − 6x + 8x2 )(a0 + a1 x + a2 x2 + ...) = a0 + (a1 − 6a0 ) x
1 1− x2 (2) G x) = −x − x3 − x5 −... = − x ( 2 1− x
(3)G x) =1− x + x2 − x3 + x4 − x5 +... = (
1 1+ x
9
2011-9-6
离散数学
∞ 1+ x [2.12]已知 [2.12]已知 an = ∑k2, ,求序列{ = ∑(n+1)2xn 求序列{an}的母函数 3 (1− x) n=0 k=1 是序列{ 的母函数, 解:令 B(x) = 1+ x 是序列{bn}的母函数, (1− x)3 即有 bn = (n+1)2 n+1
2011-9-6
离散数学
5
习题一
[1.38] 给出 r +r +1 +r + 2 +... +n = n+1 的组合意义? 的组合意义?
组合意义一: 组合意义一:
r r r
r r +1
从{a1, a2, … , an+1}不可重复的取r +1个的组合数为 n+1 不可重复的取r +1个的组合数为

组合数学 第一章 排列组合4允许重复的排列与组合及不相邻的组合

组合数学 第一章 排列组合4允许重复的排列与组合及不相邻的组合

设所求方案数为p(m+n;m,n)
则P(m+n;m,n)·m!·n!=(m+n)!
故P(m+n;m,n)=
—(mm—+!nn—!)!
=
(
m+n m
)
=(m+nn
)
=C(m+n,m)

设c≥a,d≥b,则由(a,b)到(c,d)的简单格路数
为|(a,b)(c,d)|=(
(c-a)+(d-b) c-a
y y=x
(m,n)
y x-y=1
(m,n. )
(0,1) . .
0 (1,0)
x (0,0) .. ..
x
(1,-1)
容易看出从(0,1)到(m,n)接触x=y的格路与
(1,0)到(m,n)的格路(必穿过x=y)一一对应
故所求格路数为( m+mn-1)-( mm+n-1-1)
=
(—m+—n-1—)!
例A {1, 2,3, 4,5, 6, 7},取3个作不相邻的组合的组合数。
例 已知线性方程 x1 x2 ... xn b, n和b都是整数,n 1, 求此方程的非负整数解的个数

简单格路问题
|(0,0)→(m,n)|=(
m+n m
)
从 (0,0)点出发沿x轴或y轴的正方向每步
走一个单位,最终走到(m,n)点,有多少
m!(n-1)!
-(m—+n—-1)—!
(m-1)!n!
=(m—(m-1+—)!n(-n—1-)1!)—!
( m1—

1n—)
=
—n-n—m
(

组合数学课件--第一章第三节组合意义的解释(共27张PPT)

组合数学课件--第一章第三节组合意义的解释(共27张PPT)
21
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:

《组合数学》教案1章讲解

《组合数学》教案1章讲解

《组合数学》教案1章讲解组合数学教案第一章讲解一、教学目标:1.了解组合数学的基本概念和方法2.掌握排列和组合的计算方法3.学会应用排列和组合解决问题二、教学重点:1.排列和组合的基本概念2.排列和组合的计算方法三、教学难点:1.排列和组合的应用问题的解决四、教学准备:1.教材《组合数学》2.课件3.黑板、粉笔五、教学过程:1.导入通过举例引入排列和组合的概念,引发学生对组合数学的兴趣。

例如:小明有5本不同的书,他想从这些书中选出三本看。

那么他有多少种不同的选择方法?2.引入通过引入数学公式引出排列和组合的计算方法以及其应用。

首先引入乘法原理,介绍排列的概念和计算方法。

然后引入除法原理,介绍组合的概念和计算方法。

3.排列的概念和计算方法从实际问题中引出排列的概念,如小红有4个不同的糖果,她想把这些糖果排成一排,一共有多少种不同的排列方法?然后介绍排列的计算方法,如何计算排列的种数。

4.组合的概念和计算方法从实际问题中引出组合的概念,如小明有8个不同的苹果,他想从中选出3个苹果吃,一共有多少种不同的选择方法?然后介绍组合的计算方法,如何计算组合的种数。

5.排列和组合的应用问题解决通过实际问题的解决引出排列和组合的应用。

如有5个不同的音乐家,要从中选出3人组成一支乐队,一共有多少种不同的组合方法?然后引出组合计数原理,帮助学生解决应用问题。

6.练习和总结让学生通过练习巩固排列和组合的计算方法,解决应用问题。

然后总结排列和组合的基本概念和计算方法。

七、课堂小结通过本节课的学习,我们了解了组合数学的基本概念和计算方法,掌握了排列和组合的计算方法,并学会应用排列和组合解决问题。

八、作业布置布置相关习题作业,巩固所学知识。

九、课后拓展鼓励学生自学相关拓展内容,如组合数学的其他应用等。

以上是《组合数学》第一章的教案讲解,通过本节课的学习,相信学生能够掌握排列和组合的基本概念和计算方法,并能够应用排列和组合解决问题。

初中数学知识归纳解组合数的问题

初中数学知识归纳解组合数的问题

初中数学知识归纳解组合数的问题组合数是数学中一个非常重要的概念,它在组合数学、概率论、统计学等领域中都有广泛的应用。

本文将对初中阶段学习的数学知识进行归纳总结,重点解析组合数的相关问题。

一、组合数的定义与性质组合数是从n个不同元素中取出m个元素(不考虑元素的顺序)所组成的集合的个数,通常用C(n,m)或者(n, m)表示。

组合数的计算公式为:C(n,m) = n! / (m!(n-m)!)其中,n!表示n的阶乘,即n! = n × (n-1) × ... × 3 × 2 × 1。

组合数的性质有:1. C(n,0) = C(n,n) = 1,即从n个元素中取出0个元素或者取出n个元素的组合数都等于1。

2. C(n,1) = C(n,n-1) = n,即从n个元素中取出1个元素或者取出n-1个元素的组合数都等于n。

3. C(n,m) = C(n,n-m),即从n个元素中取出m个元素的组合数与取出n-m个元素的组合数相等。

二、组合数的计算方法1. 利用组合数的计算公式直接计算。

例如,计算C(5,2)的值,按照组合数的计算公式,可以得到:C(5,2) = 5! / (2!(5-2)!) = 5! / (2!3!) = (5×4×3×2×1) / ((2×1)×(3×2×1)) = 10。

2. 利用递推关系进行计算。

根据组合数的递推关系,可以通过前一行组合数的值计算出下一行的组合数。

具体方法是,利用C(n+1,m) = C(n,m) + C(n,m-1)的递推关系,逐次计算出所需要的组合数。

例如,计算C(5,3)的值,可以通过如下计算过程得到:C(5,3) = C(4,3) + C(4,2) = (C(3,3) + C(3,2)) + (C(3,2) + C(3,1)) = 1 + 3 + 3 + 3 + 1 = 10。

组合数学作业.

组合数学作业.

作业11.设想一个监狱有64个囚室组成,这些囚室排列得象一张8X8的棋盘。

所有相邻的囚室之间都有门相通。

一个被囚在某个角上囚室中的犯人被告知,如果他能够恰好通过每个囚室一次而到达对角位置上的囚室,他就将被释放。

问:该犯人能否得到自由?2.构造一个6阶幻方。

3.证明3阶幻方必然在中心位置有一个5。

试推导:恰好存在8个3阶幻方。

4.各堆大小分别为22,19,14和11的4-堆Nim取子游戏是平衡的还是非平衡的?游戏人I的第一次取子方式是从大小为19的堆中取走6枚硬币,游戏人II的第一次取子方式是什么?5.一局游戏在两个游戏人之间如下交替进行:游戏从一空堆开始。

当轮到一个游戏人时,他可以往该堆中加进1,2,3或4枚硬币。

往堆中加进第100枚硬币的游戏人为得胜者。

确定在这局游戏中是游戏人I还是游戏人II能够确保获胜。

获胜的策略是什么?作业21.证明:有理数m/n展开的十进制小数最终是要循环的。

2.一个学生有37天用来准备考试。

根据过去经验,她知道她需要不超过60小时的学习时间。

她还希望每天至少学习1小时。

证明,无论她如何安排学习时间(假设每天的学习时间都是整数个小时),都存在连续的若干天,在此期间她恰好学习了13个小时。

3.证明,从边长为2的正方形中任选5个点,它们当中存在2个点,这2点的距离至多为根号2。

4.有一个100人的聚会。

每个人都有偶数个(可能是0个)熟人。

证明,在这次聚会上存在3个人有相同个数的熟人。

5.确定一副牌中(52张)下列类型的一手牌(5张)的数目。

(1)full house(3张一样大小的牌及2张相同点数的另外的牌)(2)顺牌(5张点数相连的牌)(3)同花(5张一样花色的牌)(4)同花顺(5张点数相连的同样花色的牌)(5)恰好两个对(6)恰好一个对6.15人围坐一个圆桌。

如果B拒绝挨着A坐,有多少种围坐方式?如果B只拒绝坐在A 的右侧,又有多少种围坐方式?7.给定8个车,其中5个红车,3个蓝车。

组合数学PPT课件

组合数学PPT课件

k 0
k 0
2n
C C 另一方面,从展开式 (1 x)2n
k x k 知道 x n 的系数为 n ,因而得
2n
2n
k 0
n
2
C C ( k) n
n
2n
k 0
2021/6/16
20
n
2
C C 例 4-1(2006 复旦) 求证: ( k) n
n
2n
k 0
法二(构造模型) 某班共有 2n 名学生,现从中选出 n 个学生参加某项活动,显然这样
个数互不相邻的子集
{a1, a2 ,, a6}, ai 1 ai1, i 1,2,3,4,5 记满足(1)式的所有 6 元子集的集合为 A ,并令
f : (a1, a2 ,, a6 ) (b1, b2 ,, b6 ) 其中
(1) (2)
bi ai i 1,i 1,2,3,4,5,6.
一类是 Sn 与 S1 不同色,此时的染色方法有 an 种;另一类是 Sn 与 S1 同色,则将 Sn 与 S1 合并为一个扇形,
并注意到此时 Sn1 与 S1 不同色,故这时的的染色方法有 an1 种,由加法原理得 ≥2)
an + an1 = m(m 1)n1( n
(3)求 an 。令 bn
= an (m 1)n
C 的选法共有 n 种;另一方面,将这 2n 名学生分成 A 、B 两组,每组 n 2n
个学生,若从 A 组中选出 0 个学生,从 B 组中选出 n 个学生,有
C C C 0 n ( 0)2 种选法;从 A 组中选出 1 个学生,从 B 组中选出 n 1个
C 由于 || B | 就是集合 {1,2,, n 4} 的四元子集的个数,即 4 ,从而 n4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档