沪教版七年级数学上册练习题 用尺规作线段与角

合集下载

沪科版数学 七年级上册 4.6 用尺规作线段与角 课后练习题

沪科版数学 七年级上册 4.6 用尺规作线段与角 课后练习题

一、单选题1. 下列说法正确的是()A.延长直线到点B.延长射线到点C.延长线段至点,使D.延长线段至点,使2. 下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧3. 下列画图语言表述正确的是()A.延长线段AB至点C,使AB=ACB.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b4. 如图,已知线段a,b.按如下步骤完成尺规作图,则的长是()①作射线;②在射线上截取;③在线段上截取.A.B.C.D.5. 从直观上看,下列线段中最长的是()B.A.C.D.二、填空题6. 在数学中,我们常限定用___________和___________作图,这就是尺规作图.7. 尺规作图:作一条线段等于已知线段.已知:线段AB,如图求作:线段CD,使CD=AB.小亮的作法如下:如图,(1)作射线________;(2)以点________为圆心,________长为半径作弧交CE于点________.线段CD就是所求作的线段.8. 如图,用圆规比较两条线段A′B′和AB的长短,A′B′和AB的大小关系是_____.三、解答题9. 如图,在同一平面内有三个点A、B、C.(1)连接AC,面出直线AB,射线BC;(2)尺规作图(保留作图痕迹):在线段AC上作一点D,使得.10. 如图所示,已知线段AB,点P是线段AB外一点.按要求画图,保留作图痕迹;(1)作射线PA,作直线PB;(2)延长线段AB至点C,使得AC=2AB.11. 已知:∠AOB内一点C及线段(如图) ,求作:∠AOB内的点P,使P点到射线OA,OB的距离相等且PC= (不写作法但要保留作图痕迹,写出结论)。

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计

2023-2024学年沪科版七年级数学上册教学设计:4.6用尺规作线段与角教学设计一. 教材分析《沪科版七年级数学上册》第四章第六节“用尺规作线段与角”是学生在掌握了尺规作图的基本方法之后,进一步学习尺规作线段和角的方法。

本节内容让学生通过尺规作线段和角,培养学生的动手操作能力和空间想象能力,同时也能让学生更好地理解线段和角的特征。

二. 学情分析七年级的学生已经掌握了尺规作图的基本方法,对于尺规作线段和角,他们可能已经有一定的了解,但可能没有系统地学习和练习。

因此,在教学过程中,需要注重引导学生理解和掌握尺规作线段和角的方法,并通过大量的练习让学生熟练掌握。

三. 教学目标1.让学生掌握尺规作线段和角的方法。

2.培养学生的动手操作能力和空间想象能力。

3.让学生能够运用尺规作线段和角的方法解决一些实际问题。

四. 教学重难点1.教学重点:尺规作线段和角的方法。

2.教学难点:如何让学生理解和掌握尺规作线段和角的方法,以及如何运用尺规作线段和角的方法解决实际问题。

五. 教学方法采用问题驱动法、示范教学法、分组合作法、练习法等教学方法,引导学生通过自主学习、合作学习、探究学习,掌握尺规作线段和角的方法。

六. 教学准备1.准备尺规作图的工具,如直尺、圆规等。

2.准备一些线段和角的实际问题,以便在课堂上进行解决。

3.准备一些练习题,以便在课堂上进行练习。

七. 教学过程1.导入(5分钟)教师通过一些实际问题,引导学生思考如何用尺规作线段和角。

例如,如何用尺规作出两条相等的线段,如何用尺规作出一个特定大小的角。

2.呈现(10分钟)教师通过示范教学,向学生展示如何用尺规作线段和角的方法。

在示范过程中,教师要注意讲解清楚每一步的操作方法,以及为什么要这样做。

3.操练(10分钟)学生分组合作,用尺规作线段和角。

在操作过程中,教师要巡回指导,解答学生的问题,并引导学生注意操作的准确性。

4.巩固(10分钟)学生独立完成一些关于尺规作线段和角的练习题。

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷(解析版)

2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.842.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对3.如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A .6B .4C .3D .6或4或3 5.将一个棱长为m (m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( )A .16B .18C .26D .326.平面内的9条直线任两条都相交,交点数最多有m 个,最少有n 个,则m +n 等于( ) A .36 B .37 C .38 D .397.已知A 、B 为平面上的2个定点,且AB =5.若点A 、B 到直线l 的距离分别等于2、3,则满足条件l 的直线共有( )条.A .2B .3C .4D .58.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在( )A .B 楼 B .C 楼 C .D 楼 D .E 楼9.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若AP =PB ,则这条绳子的原长为( )A .100cmB .150cmC .100cm 或150cmD .120cm 或150cm10.如图,依据尺规作图的痕迹,计算∠α=( )A.56°B.68°C.28°D.34°二.填空题(共8小题)11.一个棱柱有12个面,它有个顶点,条棱.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为cm2.14.如图,图中共有个梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为cm3.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为cm3.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有个小正方体;一面涂色的:在面上,共有个;两面涂色的:在棱上,共有个;三面涂色的:在顶点处,共个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?20.在下列两行图形中,分别找出相互对应的图形,并用线连接.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?24.如图,已知∠AOB.(1)利用直尺和圆规在图①中画图:在OA,OB上分别截取OC,OD,并且使OC=OD,连接CD,过点O作OP⊥CD垂足为P;(2)根据(1)的作图,试说明∠AOP=∠BOP;(3)运用你所学的数学知识,在图②中再设计一种方法,作出∠AOB的平分线.(上述(1)的方法除外,不必说明理由,只在图中保留作图痕迹)25.已知:如图:∠AOB.求作:∠AOB的平分线OC.(不写作法,保留作图痕迹)26.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.2019年七年级沪科新版数学上册《第4章直线与角》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方体叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.2.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A .1对B .2对C .3对D .4对【分析】根据矩形的性质,由全等三角形的判定得出△EPD ≌△HDP ,则S △EPD =S △HDP ,通过对各图形的拼凑,得到的结论.【解答】解:在矩形ABCD 中,∵EF ∥AB ,AB ∥DC ,∴EF ∥DC ,则EP ∥DH ;故∠PED =∠DHP ;同理∠DPH =∠PDE ;又PD =DP ;所以△EPD ≌△HDP ;则S △EPD =S △HDP ; 同理S △GBP =S △FPB ;则(1)S 梯形BPHC =S △BDC ﹣S △HDP =S △ABD ﹣S △EDP =S 梯形ABPE ;S ▱AGPE =S 梯形ABPE ﹣S △GBP =S 梯形BPHC ﹣S △FPB =S ▱FPHC ;(2)S ▱AGHD =S ▱AGPE +S ▱HDPE =S ▱PFCH +S ▱PHDE =S ▱EFCD ;(3)S ▱ABFE =S ▱AGPE +S ▱GBFP =S ▱PFCH +S ▱GBFP =S ▱GBCH .故选:C .【点评】考查了矩形的性质,本题是一道结论开放题,掌握矩形的性质,很容易得到答案.3.如图,是一个正方体的展开图,这个正方体可能是( )A .B .C .D .【分析】结合正方体的展开图中圆点所在面的位置,把展开图折叠再观察其位置,即可得到这个正方体.【解答】解:把展开图折叠后,只有B 选项符合图形,故选:B .【点评】此题考查几何体展开图,对于正方体的展开图再折叠成几何体的问题,可以多动手具体折一折,增强空间想象能力.4.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A.6B.4C.3D.6或4或3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知1,2,5,第二个正方体已知1,2,4,第三个正方体已知1,4,6,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,∴4相邻的数字是1,2,3,6,∴数字5的对面的数字是4.故选:B.【点评】本题考查了正方体相对两个面上的文字,立意新颖,是一道不错的题.5.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.32【分析】只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m的值.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.6.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36B.37C.38D.39【分析】求出平面内的9条直线任两条都相交,交点数最多的个数,再求得最少的个数;则即可求得m+n的值.【解答】解:三条最多交点数的情况.就是第三条与前面两条都相交:1+2四条最多交点数的情况.就是第四条与前面三条都相交:1+2+3五条最多交点数的情况.就是第五条与前面四条都相交:1+2+3+4六条最多交点数的情况.就是第六条与前面五条都相交:1+2+3+4+5七条最多交点数的情况.就是第七条与前面六条都相交:1+2+3+5+6八条最多交点数的情况.就是第八条与前面七条都相交:1+2+3+5+6+7九条最多交点数的情况.就是第九条与前面八条都相交:1+2+3+4+5+6+7+8=36则m+n=1+36=37故选:B.【点评】此题考查了平面图形,主要培养学生的观察能力和几何想象能力.7.已知A、B为平面上的2个定点,且AB=5.若点A、B到直线l的距离分别等于2、3,则满足条件l的直线共有()条.A.2B.3C.4D.5【分析】根据题意,可以分别以A、B为圆心,以2cm,3cm为半径画圆,然后求两圆的公切线,公切线的条数就是直线l 的条数.【解答】解:如图所示:∵AB =5,点A 、B 到直线l 的距离分别等于2、3,∴⊙A 与⊙B 外切,共有3条公切线,∴满足条件l 的直线共有3条.故选:B .【点评】本题考查的是两点确定一条直线,题中数据AB =5与点A 、B 到直线l 的距离分别等于2、3起到了关键的限制作用,利用数形结合进行解答更形象直观.8.如图,一条街道旁有A ,B ,C ,D ,E 五幢居民楼.某大桶水经销商统计各楼居民每周所需大桶水的数量如下表:他们计划在这五幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这五幢楼内的居民取水所走路程之和最小,可以选择的地点应在() A .B 楼 B .C 楼 C .D 楼 D .E 楼【分析】此题为数学知识的应用,由题意设立大桶水供应点,肯定要尽量缩短居民取水所走路程之间的里程,即需应用两点间线段最短定理来求解.【解答】解:设AB =a ,BC =b ,CD =c ,DE =d .每户居民每次取一桶水.以点A 为取水点,则五幢楼内的居民取水所走路程之和=55AB +50AC +72AD +85AE =262a +207b +157c +85d ,以点B 为取水点,则五幢楼内的居民取水所走路程之和=38AB +50BC +72BD +85BE =38a +207b +157c +85d ,以点C为取水点,则五幢楼内的居民取水所走路程之和=38AC+55BC+72CD+85CE=38a+93b+157c+85d,以点D为取水点,则五幢楼内的居民取水所走路程之和=38AD+55BD+50CD+85DE=38a+93b+143c+85d,以点E为取水点,则五幢楼内的居民取水所走路程之和=38AE+55BE+50CE+72DE=38a+93b+143c+215d,以点D为取水点,五幢楼内的居民取水所走路程之和最小.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.9.如图,将一根绳子对折以后用线段AB表示,现从P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP=PB,则这条绳子的原长为()A.100cm B.150cmC.100cm或150cm D.120cm或150cm【分析】根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得PB=30cm,AP=PB=20cm,AB=AP+PB=50cm,这条绳子的原长为2AB=100cm;当AP的2倍最长时,得AP=30cm,AP=PB,PB=AP=45cm,AB=AP+PB=75cm,这条绳子的原长为2AB=150cm.故选:C.【点评】本题考查了两点间的距离,分类讨论是解题关键.10.如图,依据尺规作图的痕迹,计算∠α=()A.56°B.68°C.28°D.34°【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故选:A.【点评】本题考查的是作图﹣基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.二.填空题(共8小题)11.一个棱柱有12个面,它有20个顶点,30条棱.【分析】一个直棱柱有12个面,故为十棱柱.根据十棱柱的概念和特点求解即可.【解答】解:∵棱柱有12个面,∴它是十棱柱.∴十棱柱有20个顶点,30条棱.故答案为:20;30.【点评】本题主要考查的是棱柱的概念,掌握棱柱的概念是解题的关键.12.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.【分析】根据旋转的性质、圆锥体的特征即可求解.【解答】解:如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是圆锥.故答案为:圆锥.【点评】考查了点、线、面、体,关键是熟悉点动成线,线动成面,面动成体的知识点.13.“舒肤佳”香皂盒的长、宽、高分别是10cm、4cm、6cm,将这样的四个盒子拼成一个大的长方体,那么在这个大长方体的各种拼法中,表面积的最小值为592cm2.【分析】表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10x6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10x8)重叠,长是10cm,宽是8cm,高是6+6=12(cm),由此计算即可;【解答】解:表面积要最小,一定要用最大的面重叠.先2个香皂盒重叠,用最大的面(10×6)重叠,可以组成了2个较大的长方体,长是10cm,宽是6cm,高是4+4=8(cm).再把这2个较大的长方体重叠,用最大的面(10×8)重叠,长是10cm,宽是8cm,高是6+6=12(cm).这个大长体的表面积是:(10×8+10×12+8×12)×2=(80+120+96)x2=296×2=592(平方厘米),故答案为592.【点评】本题考查几何体的表面积,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,图中共有10个梯形.【分析】根据图形认真分析由图中可知一个梯形需一个平行四边形和一个三角形组成.【解答】解:由图形的特点可知,一个平行四边形和一个三角形可组成一个梯形,且图形中的梯形的形状、大小相同,共有10个.故答案为10.【点评】有一组对边平行,另一组对边不平行的四边形是梯形.15.一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为800cm3.【分析】先用20cm减去15cm求出高为5cm,再用15cm减去5cm求出宽为10cm,再用26cm减去10cm求出长为16cm,再根据长方体的体积公式计算即可求解.【解答】解:20﹣15=5(cm),15﹣5=10(cm),26﹣10=16(cm),16×10×5=800(cm3).答:其容积为800cm3.故答案为:800.【点评】考查了几何体的展开图,解题的关键是得到长方体的长宽高.16.如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC=24cm,则这个展开图可折成的正方体的体积为27cm3.【分析】首先设这个展开图围成的正方体的棱长为xcm,然后延长FE交AC于点D,根据三角函数的性质,可求得AC的长,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:如图,设这个展开图围成的正方体的棱长为xcm,延长FE交AC于点D,则EF=2xcm,EG=xcm,DF=4xcm,∵DF∥BC,∴∠EFG=∠B,∵tan∠EFG==,∴tan B==,∵BC=24cm,∴AC=12cm,∴AD=AC﹣CD=12﹣2x(cm)∵DF∥BC,∴△ADF∽△ACB,∴=,即=,解得:x=3,即这个展开图围成的正方体的棱长为3cm,∴这个展开图可折成的正方体的体积为27cm3.故答案为:27.【点评】此题考查了相似三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为﹣3.【分析】根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.【解答】解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.18.如图,一个5×5×5的正方体,先在它的前后方向正中央开凿一个“十字形”的孔(打通),再在它的上下方向正中央也开凿一个“十字形”的孔(打通),最后在它的左右方向正中央开凿一个“十字形”的孔(打通),这样得到一个被凿空了的几何体,则所得几何体的体积为76.【分析】从5×5×5的正方体的8个顶点进行分割,可得8个2×2×2的正方体,再加上12条棱中间的12个小正方体,依此求得小正方体的个数,再乘以1个小正方体的体积即可求解.【解答】解:如图所示:该正方体可按如图方式分割,则体积为(1×1×1)×(8×8+12)=1×76=76故所得几何体的体积为76.故答案为:76.【点评】考查了截一个几何体,正方体的体积,关键是得到小正方体的个数.三.解答题(共8小题)19.[问题提出]一个边长为ncm(n≥3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[问题探究]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,6个面,共有24个;两面涂色的:在棱上,每个楼上有2个,共有24个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.…[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.[问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,然后把它切成棱长2cm的小正方体,没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块?【分析】[问题解决]依据正方体内部的小正方体的体积之和,可得没有涂色的正方体数量;依据正方体每个面上的内部的小正方体的面积,即可得到一面涂色的正方体的数量;依据正方体的棱上处于中间部分的小正方体的数量,可得两面涂色的小正方体数量;依据正方体的顶点数量,即可得到三面涂色的小正方体的数量;[问题应用]设正方体棱长为ncm,依据有两面涂色的小正方体有96个,可得方程12(n ﹣2)=96,再根据棱长即可得到体积;[问题拓展]依据一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,类比上述问题的解决方法,即可得到没有面涂色有几块,一面涂色有几块,两面涂色有几块,三面涂色有几块.【解答】解:[问题解决]一个边长为ncm(n≥3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有(n﹣2)3个小正方体;一面涂色的:在面上,共有6(n﹣2)2个;两面涂色的:在棱上,共有12(n﹣2)个;三面涂色的:在顶点处,共8个.故答案为:(n﹣2)3,6(n﹣2)2,12(n﹣2),8;[问题应用]设正方体棱长为ncm,∵有两面涂色的小正方体有96个,∴12(n﹣2)=96,∴n=10,∴这个大正方体的体积为1000cm3.[问题拓展]把一个长16cm、宽10cm、高8cm的长方体表面涂上红漆,把它切成棱长2cm的小正方体,没有面涂色有(16﹣4)(10﹣4)(8﹣4)÷8=36块,一面涂色有2[(16﹣4)(8﹣4)÷4+(16﹣4)(10﹣4)÷4+(10﹣4)(8﹣4)÷4]=72块,两面涂色有4[(16﹣4)÷2+(10﹣4)÷2+(8﹣4)÷2]=44块,三面涂色有8块.【点评】本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.在下列两行图形中,分别找出相互对应的图形,并用线连接.【分析】利用面动成体解答即可.【解答】解:如图,【点评】本题主要考查了点,线,面,体,解题的关键是培养学生的空间想象能力.21.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?【分析】结合图形、根据矩形的面积公式计算即可.【解答】解:这个五棱柱有7个面,它的所有侧面的面积之和是:5×12×5=300(cm2),答:这个五棱柱有7个面,它的所有侧面的面积之和是300cm2.【点评】本题考查的是几何体的表面积的计算,认识立体图形是解题的关键.22.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了8条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.23.已知∠ABC.(1)用尺规作图:作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);(2)在上述作图过程中,得到哪些相等的线段?【分析】(1)首先作射线DH;再以B为圆心,任意长为半径作弧交AB、BC于点A′、。

七年级数学(沪科版)上册4.6用尺规作线段与角能力培优训练(含答案)

七年级数学(沪科版)上册4.6用尺规作线段与角能力培优训练(含答案)

2. 如图,小林同学想把一张矩形的纸沿对角线
BD 对折,对
合, BC′和 AD 相交于 E,请你用尺规作图的方法作出 C′点,并保留作图痕迹.
折后 C 点与 C′点重
3. 一副三角板由一个等腰三角形和一个含
30°角的直角三角形组成 , 利用这副三角板构成
请你画出其中三种不同构成的示意图 ,并在图上作出必要的标注 ,不写作法 .
则 C′为所要画的点.(图略) 3. 解: 如图所示 :
15
45
30
(1)
45
1弹不会进入 F 号洞,图略. 5. 解: (1) OC
( 2) AOB > BOC > COD > DOE .
(3)在直角的一边上从顶点开始依次取等距离的一些点, 形成的角最小 .
15°角的方法很多 ,
专题二 与尺规作线段与角有关的实际应用问题
4.如图所示,打台球时,用白球沿着直线方向击黑球,已知入射角的余角等于反射角的余角(注:人射角的
余角和反射角的余角均指黑球前进的方向与台边所夹的锐角)
.请问黑球经过一次反弹是否会进入
请你用尺规作图来判断.(保留作图痕迹,不写作法)
F 洞?
两弧相交于点 ×、 ×;⑤作射线 ××. 【温馨提示】
尺规作图的工具只能是直尺和圆规 .其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆
弧等 .值得注意的是直尺是没有刻度的或不考虑刻度的存在
.
参考答案
1 1.( 1) l (2)任意长 A B ( 3)大于 AB C 点
2
2. 解: 分别以 B、 D 为圆心,以 BC、 CD 为半径画弧,两弧在 AD 的上方相交于一点 C′,
4.6 用尺规作线段与角

七年级数学上册《用尺规作线段与角》教案、教学设计

七年级数学上册《用尺规作线段与角》教案、教学设计
b.设计丰富多样的练习题,让学生在课后巩固所学知识,提高作图技能。
c.开展小组讨论和分享,促进学生之间的交流与合作,提高学生的沟通能力。
4.关注个体差异,因材施教:
a.对基础薄弱的学生,进行个别辅导,帮助他们掌握基本的尺规作图方法。
b.对学有余力的学生,提供拓展性学习资源,提高他们的几何作图技能。
5.融入情感态度与价值观教育:
2.尺规作线段的方法:
a.作给定长度的线段:利用尺子和圆规,按照步骤进行操作,边讲解边示范。
b.作等分线段:介绍等分线段的原理,演示等分线段的尺规作图方法。
3.尺规作角的方法:
a.作直角:利用圆规和直尺,按照步骤作出直角。
b.作等角:以已知的角为基准,利用圆规和直尺作出与之相等的角度。
4.结合实际例子,讲解尺规作图在实际问题中的应用。
1.引入:教师出示一张白纸,提出问题:“如何用最简单的方法在纸上画出一条指定长度的线段?”引导学生思考并回答。
2.背景知识:简要介绍尺规作图的历史和在实际生活中的应用,让学生了解尺规作图的价值和意义。
3.导入新课:通过以上铺垫,引出本节课的主题——《用尺规作线段与角》。
(二)讲授新知
1.尺规作图的基本概念:介绍尺子和圆规在几何作图中的作用,讲解基本的作图方法。
4.能够运用尺规作图方法探索数学规律,发现几何图形中的对称美和几何关系。
(二)过程与方法
1.通过观察、实践、探索,让学生掌握尺规作图的基本方法和技巧。
2.培养学生的动手操作能力,提高空间想象力和逻辑思维能力。
3.引导学生运用尺规作图方法解决实际问题,培养学生分析问题、解决问题的能力。
4.鼓励学生在尺规作图过程中,积极与他人交流与合作,提高沟通能力。

七年级数学上册 第4章 直线与角单元综合测试 (新版)沪科版-(新版)沪科版初中七年级上册数学试题

七年级数学上册 第4章 直线与角单元综合测试 (新版)沪科版-(新版)沪科版初中七年级上册数学试题

《直线与角》单元测试一.选择题(共12小题)1.下列图形中()可以折成正方体.A.B. C.D.2.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间3.学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°4.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20° B.40° C.20°或40°D.30°或10°5.如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,06.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.7.下面图形不能围成一个长方体的是()A.B. C.D.8.长方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形9.用平面截一个正方体,可能截出的边数最多的多边形是()A.七边形B.六边形C.五边形D.四边形10.下面各正多面体的每个面是同一种图形的是()①正四面体;②正六面体;③正八面体;④正十二面体;⑤正二十面体.A.①②③B.①③④C.①③⑤D.①④⑤11.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B.C. D.12.如图中,三角形的个数为()A.26个B.30个C.28个D.16个二.填空题(共4小题)13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是.14.若一个角为60°30′,则它的补角为.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.16.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.解答题(共7小题)17.如图,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.18.如图,B、C两点把线段MN分成三部分,其比为MB:BC:=2:3:4,点P是MN的中点,PC=2cm,求MN的长.19.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.20.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.21.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.22.如图①,已知线段AB=20cm,点C为AB上的一个动点,点D,E分别是AC和BC的中点(1)若点C恰好是AB中点,则DE的长是多少?(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE的大小与射线OC的位置是否有关?23.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.参考答案与试题解析一.选择题(共12小题)1.下列图形中()可以折成正方体.A.B. C.D.【解答】解:A,C,D围成几何体时,有两个面重合,故不能围成正方体;只有B能围成正方体.故选:B.2.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间【解答】解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.3.学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25° D.65°【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.4.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20° B.40° C.20°或40°D.30°或10°【解答】解:∠BOC在∠AOB内部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB﹣∠BON=30°﹣10°=20°;∠BOC在∠AOB外部∵∠AOB=60°,其角平分线为OM∴∠MOB=30°∵∠BOC=20°,其角平分线为ON∴∠BON=10°∴∠MON=∠MOB+∠BON=30°+10°=40°.故选:C.5.如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【解答】解:根据以上分析:填入正方形A,B,C中的三个数依次是1,﹣3,0.故选:A.6.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【解答】解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.7.下面图形不能围成一个长方体的是()A.B. C.D.【解答】解:选项A,B,C折叠后,都可以围成一个长方体,而D折叠后,最下面一行的两个面重合,缺少一个底面,所以不能围成一个长方体.故选:D.8.长方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:长方体的截面中,边数最多的多边形是六边形.如:在长方体ABCD﹣A′B′C′D′中,取BC、CD、BB′、DD′、A′B′、A′D′的中点,可以证明它们都在同一平面,那么,这个截面就是六边形.故选:C.9.用平面截一个正方体,可能截出的边数最多的多边形是()A.七边形B.六边形C.五边形D.四边形【解答】解:正方体有六个面,截面与其六个面相交最多得六边形.故选:B.10.下面各正多面体的每个面是同一种图形的是()①正四面体;②正六面体;③正八面体;④正十二面体;⑤正二十面体.A.①②③B.①③④C.①③⑤D.①④⑤【解答】解:根据以上分析,正四面体,正八面体正二十面体的每个面是同一种图形.故选:C.11.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B.C. D.【解答】解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形不交于一个顶点,•与正方体三个剪去三角形交于一个顶点不符.故选:B.12.如图中,三角形的个数为()A.26个B.30个C.28个D.16个【解答】解:最里面的正方形内的三角形有10个,第三层的正方形内三角形的个数有10+4=14个,第二层的正方形内三角形个数有14+2+5+5=26个,最外层的正方形内的三角形的个数为26+4=30个.最小的三角形共有16个,其余的三角形共有14个,所以共有三角形30个.故选:B.二.填空题(共4小题)13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是祠.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“晋”与“祠”是相对面,“汾”与“酒”是相对面,“恒”与“山”是相对面.故答案为:祠.14.若一个角为60°30′,则它的补角为119°30′.【解答】解:180°﹣60°30′=119°30′.故答案为:119°30′.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB= 180°.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.16.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走27 个小正方体.【解答】解:第1列最多可以搬走9个小正方体;第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体.9+8+3+5+2=27个.故最多可以搬走27个小正方体.故答案为:27.三.解答题(共7小题)17.如图,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.【解答】解:∵AC=15 cm,CB=AC.∴CB=10 cm,AB=15+10=25 cm.又∵E是AB的中点,D是AC的中点.∴AE=AB=12.5 cm.AD=AC=7.5 cm∴DE=AE﹣AD=12.5﹣7.5=5 cm18.如图,B、C两点把线段MN分成三部分,其比为MB:BC:=2:3:4,点P是MN的中点,PC=2cm,求MN的长.【解答】解:∵MB:BC:=2:3:4,∴设MB=2xcm,BC=3xcm,=4xcm,∴MN=MB+BC+=2x+3x+4x=9xcm,∵点P是MN的中点,∴PN=MN=xcm,∴PC=PN﹣,即x﹣4x=2,解得x=4,所以,MN=9×4=36cm.19.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.20.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【解答】解:∵AC:CD:DB=1:2:3,∴设AC=xcm,则CD=2xcm,DB=3xcm,∵AB=36cm,∴x+2x+3x=36,解得x=6,∵M、N分别是AC、BD的中点,∴CM=AC=x,DN=BD=x,∴MN=CM+CD+DN=x+2x+x=4x=4×6=24(cm).21.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.22.如图①,已知线段AB=20cm,点C为AB上的一个动点,点D,E分别是AC和BC的中点(1)若点C恰好是AB中点,则DE的长是多少?(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE的大小与射线OC的位置是否有关?【解答】解:(1))∵点C恰为AB的中点,∴AC=BC=AB=10cm,∵点D、E分别是AC和BC的中点,∴DC=AC=5cm,CE=BC=5cm,∴DE=10cm.(2)∵AB=20cm,BC=14cm,∴AC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=7cm,∴DE=CD+CE=10cm;(3)∵点D、E分别是AC和BC的中点,∴CD=AC,CE=BC,∴DE=CD+CE=(AC+BC)=AB=10cm,∴不论AC取何值(不超过20cm),DE的长不变.(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=∠AOC,COE=∠COB,∴∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB,∵∠AOB=130°,∴∠DOE=65°.∴∠DOE的度数与射线OC的位置无关.23.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BO D.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BO C=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.。

沪科版七年级上册第4章直线与角复习专题汇编【举一反三系列】

沪科版七年级上册第4章直线与角复习专题汇编【举一反三系列】

第4章直线与角专题汇编知识链接举一反三考点1:几何图形【例1】下面的几何体中,属于棱柱的有()A.1个B. 2个C. 3个D. 4个【变式1-1】如图,下面的平面图形绕轴旋转一周,可以得到的立体图形是()A. B. C. D.【变式1-2】图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A. B. C. D.【变式1-3】下图右边四个图形中,哪个是左边立体图形的展开图?()A. B. C. D.考点2:基本概念【例2】下列说法中正确的个数是()线段AB和射线AB都是直线的一部分;直线AB和直线BA是同一条直线;射线AB和射线BA是同一条射线;把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.A. 1B. 2C. 3D. 4【变式2-1】下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A. 1个B. 2个C. 3个D. 4个【变式2-2】下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示-1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB和射线BA是同一条射线;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A. 2个B. 3个C. 4个D. 5个【变式2-3】如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C.其中正确的语句的个数有()A. 0个B. 1个C. 2个D. 3个考点3:钟面上的角度计算【例3】上午9点30分时,时钟的时针和分针所夹的较小的角是______度.【变式3-1】钟表上11点15分时,时针与分针的夹角为______.【变式3-2】中午12点30分时,钟面上时针和分针的夹角是______度.【变式3-3】上午八点二十五分,钟表上时针和分针的夹角的度数为______.考点4:尺规作图【例4】已知:∠α,∠β,线段c.求作:△ABC,使∠A=α,∠B=∠β,AB=c(不写作法,保留作图痕迹)【变式4-1】用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b-a.【变式4-2】作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连结B′C′,这样△A′B′C′就和已知的△ABC 一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)【变式4-3】如图,在同一平面内有四个点A,B,C,D.(1)请按要求作出图形(注:此题作图不需写出画法和结论):①作射线AC②作直线BD,交射线AC于点O③分别连接AB,AD.(2)观察所作图形,我们能得到:AO+OC=______;DB-OB=______(空格处填写图中线段)考点5:与线段中点有关的计算【例5】已知:点C在直线AB上,,,点M、N分别是AC、BC的中点,求线段MN的长.【变式5-1】如图,线段AB,C是线段AB上一点,M是AB的中点,N是AC的中点.若,,求线段MN的长;若,试用含a的式子表示线段MN的长.【变式5-2】如图,点C是线段AB上,AC=10cm,CB=8cm,M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=acm,其他条件不变,不用计算你猜出MN的长度吗?(3)若C在线段AB的延长线上,且满足AC-BC=acm,M,N仍分别为AC,BC的中点,你还能猜出线段MN的长度吗?(4)由此题你发现了怎样的规律?【变式5-3】综合与探究:问题情境:已知:点M,N分别是线段AC,BC的中点.初步探究:(1)如图1,点C在线段AB上,且AC=9,CB=6,求线段MN的长;问题解决:(2)若点C为线段AB上任一点,且AC=a,CB=b,求出线段MN的长度.(用含有a,b 的代数式表示)类比应用:(3)若点C在线段AB的延长线上,且AC=a,CB=b,请你画出图形,并直接写出线段MN的长度.(用含有a,b的代数式表示)拓展延伸:(4)已知:如图2,C为线段AB的中点,D为线段AC的中点,E为线段BC上任意一点,M为线段EB的中点,DM=m,CE=n,请你直接写出线段AB的长度.(用含有m,n 的代数式表示)考点6:与角平分线有关的角度计算【例6】如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.求:(1)∠AOC的度数;(2)∠MON的度数.【变式6-1】如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求:(1)求∠BOE的度数.(2)求∠EOF的度数.【变式6-2】如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【变式6-3】已知∠AOB=α,过O作射线OC,OM平分∠AOC,ON平分∠BOC.(1)如图,若α=120°,当OC在∠AOB内部时,求∠MON的度数;(2)当OC在∠AOB外部时,画出相应图形,求∠MON的度数(用含α的式子表示).考点7:与旋转有关的角度计算【例7】O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为____,∠COF和∠DOE的数量关系为____;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE 之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF 和∠DOE之间的数量关系.【变式7-1】已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.【变式7-2】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM 与∠NOC的数量关系,并说明理由.【变式7-3】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.考点8:与几何有关的规律探索【例8】阅读表:解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有______ 种不同的票价?②要准备______ 种车票?(直接写答案)【变式8-1】(1)试验探索:如果过每两点可以画一条直线,那么请下面三组图中分别画线,并回答问题:第(1)组最多可以画条直线;第(2)组最多可以画条直线;第(3)组最多可以画条直线.(2)归纳结论:如果平面上有n(n≥3)个点,且每3个点均不在一条直线上,那么最多可以画出直线条.(作用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握一次手问好,则共握______次手;最后,每两个人要互赠礼物留念,则共需______件礼物.【变式8-2】为了探究n条直线能把平面最多分成几部分.我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分……把上述探究的结果进行整理,列表如下:(1)当直线条数为5时.把平面最多分成________部分,写成和的形式为________;(2)当直线条数为10时,把平面最多分成________部分;(3)当直线条数为n时.把平面最多分成几部分?【变式8-3】归纳与猜想:如图,在已知角内画射线.(1)(2)(3)(4)(1)如图(1),画1条射线,图中共有______个角;(2)如图(2),画2条射线,图中共有______个角;(3)如图(3),画3条射线,图中共有______个角,(4)若画n条射线所得的角的个数为______(用含n的式子表示)。

七年级数学上册第四单元《几何图形初步》-解答题专项阶段练习(含答案)

七年级数学上册第四单元《几何图形初步》-解答题专项阶段练习(含答案)

一、解答题1.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.解析:(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=,所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.2.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段OA′,OB′,OC′,使它们分别与线段a 相等; (2)在射线OD 上作线段OD′,使OD′与线段b 相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.3.如图,C,D,E为直线AB上的三点.(1)图中有多少条线段,多少条射线?能用大写字母表示的线段、射线有哪些?请表示出来;(2)若一条直线上有n个点,则这条直线上共有多少条线段,多少条射线?解析:(1)有10条线段,10条射线.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.(2)(1)2n n条线段,2n条射线.【解析】【分析】对于(1),这条直线上共5个点,求直线上的线段条数,相当于求从5个点中任取两个点的不同取法有多少种,可从点A开始,用划曲线的方法从左向右依次连接其它各点,再从点C开始,用同样的划曲线方法,直到将线段EB画出为止,即可找到所有的线段,由于每个点对应两条射线,由直线上的5个点即可知有多少条射线;对于(2),和(1)类似,当一条直线上有n个点时,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段,结合其中有一半重合的线段,则可计算出n个点所组成的线段条数;一个点对应延伸方向相反的两条射线,可表示出当一条直线上有n个点时的射线条数.【详解】解:(1)图中有10条线段,10条射线.如图所示.能用大写字母表示的线段:线段AC、线段AD、线段AE、线段AB、线段CD、线段CE、线段CB、线段DE、线段DB、线段EB.能用大写字母表示的射线:射线AC、射线CD、射线DE、射线EB、射线CA、射线DC、射线ED、射线BE.(2)因为n 个点,其中任意1个点与剩余的(n-1)个点都能组成(n-1)条线段, 所以n 个点就组成n(n-1)条线段.因为其中有一半重合的线段,如线段AC 与线段CA , 所以这条直线上共有(1)2n n -条线段. 因为一个端点对应延伸方向相反的两条射线,所以当一条直线上有n 个点时,共有2n 条射线.【点睛】此题考查直线、射线、线段,解题关键在于掌握直线上射线、线段条数的求法. 4.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.5.已知直线l 上有三点A 、B 、C ,AB=3,AC=2,点M 是AC 的中点.(1)根据条件,画出图形;(2)求线段BM 的长.解析:(1)见解析;(2)2或4.【分析】(1)分C 点在线段AB 上和C 点在BA 的延长线上两种情况画出图形即可;(2)利用(1)中所画图形,根据中点的定义及线段的和差故选,分别求出MB 的长即可.【详解】(1)点C 的位置有两种:当点C 在线段AB 上时,如图①所示:当点C 在BA 的延长线上时,如图②所示:(2)∵点M 是AC 的中点,AC=2,∴AM=CM=12AC=1, 如图①所示,当点C 在线段AB 上时,∵AB=AM+MB ,AB=3,∴MB=AB-AM=2.如图②所示:当点C 在BA 的延长线上时,MB=AM+AB=4.综上所述:MB 的长为2或4.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用分类讨论的思想是解题关键. 6.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ;(2)若AC=6,求a 的值;(3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.7.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.8.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.9.说出下列图形的名称.解析:依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.10.蜗牛爬树一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x天才爬到树顶不下滑,即爬到九丈八需x天,可列方程(10-7.8)(x-1)+10=98,解得x=41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.AB BC CD ,点M是线段AC的中11.如图,点B、C在线段AD上,且::2:3:4点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①.【详解】设AB=2x ,则BC=3x ,CD=4x .∴AC=AB+BC=5x ,∵点M 是线段AC 的中点,∴MC=2.5x ,∵点N 是线段CD 的中点,∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x , ∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x ,∴MN=MC+CN=58319236x x x +== 解得,5431x =,∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】 本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.12.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.13.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.14.直线l上有A,B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=__________cm,OB=___________cm;(2)若C点是线段AO上的一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发向右运动,点P的速度为2cm/s,点Q的速度为1cm s⁄,设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP−OQ=8;②当点P经过点O时,动点M从点O出发,以3cm s⁄的速度向右运动.当点M追上点Q后立即返回.以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为___________cm.解析:(1)16,8;(2)83;(3)①t=165或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设CO的长为x cm.由题意,得x+(x+8)=24−8−x.解得x=83.所以CO的长为83cm.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=165,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=165或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.15.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)解析:(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 18.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 19.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11 【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD +∠BOC =360°﹣∠AOB ﹣∠DOC =360°﹣90°﹣90°=180°,所以∠AOD 和∠BOC 互补.(2)因为OE 平分∠AOD ,所以∠AOE =∠DOE ,因为∠COF =180°﹣∠DOC ﹣∠DOE =90°﹣∠DOE ,∠BOF =180°﹣∠AOB ﹣∠AOE =90°﹣∠AOE ,所以∠COF =∠BOF ,即OF 是∠BOC 的平分线.(3)因为OG 将∠COF 分成了4:3的两个部分,所以∠COG :∠GOF =4:3或者∠COG :∠GOF =3:4.①当∠COG :∠GOF =4:3时,设∠COG =4x °,则∠GOF =3x °,由(2)得:∠BOF =∠COF =7x °因为∠AOB +∠BOF +∠FOG =180°,所以90°+7x +3x =180°,解方程得:x =9°,所以∠AOD =180°﹣∠BOC =180°﹣14x =54°.②当∠COG :∠GOF =3:4时,设∠COG =3x °,∠GOF =4x °,同理可列出方程:90°+7x +4x =180°,解得:x = 90()11, 所以∠AOD =180°﹣∠BOC =180°﹣14x 720()11=. 综上所述:∠AOD 的度数是54°或720()11. 【点睛】 本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.20.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.解析:(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.21.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.22.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.解析:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【分析】设这个锐角为x 度,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】设这个锐角为x 度,由题意得:()18049030x x -=--,解得50x =.即这个锐角的度数为50︒.905040︒︒︒-=,18050130︒︒︒-=.答:这个锐角的度数为50︒,这个角的余角的度数为40︒,补角的度数为130︒.【点睛】本题考查了余角与补角,熟记“余角的和等于90°,补角的和等于180°”是解题的关键. 24.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.26.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】 解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.27.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠,90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒. (1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒,OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,∠内部时(如图3-1),①当射线OP在BOC∠=∠-∠=︒-︒=︒;COP BOC BOP1005050∠外部时(如图3-2),②当射线OP在BOC∠=∠+∠=︒+︒=︒.COP BOC BOP10050150∠的度数为50︒或150︒.综上所述,COP【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.29.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.30.如图,在数轴上有A,B两点,点A在点B的左侧.已知点B对应的数为2,点A对应的数为a.(1)若a=﹣1,则线段AB的长为;(2)若点C到原点的距离为3,且在点A的左侧,BC﹣AC=4,求a的值.解析:(1)3;(2)﹣2【分析】(1)根据点A、B表示的数利用两点间的距离公式即可求出AB的长度;(2)设点C表示的数为c,则|c|=3,即c=±3,根据BC﹣AC=4列方程即可得到结论.【详解】(1)AB=2﹣a=2﹣(﹣1)=3,故答案为:3;(2)∵点C到原点的距离为3,∴设点C表示的数为c,则|c|=3,即c=±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为﹣3,∵BC﹣AC=4,∴2﹣(﹣3)﹣[a﹣(﹣3)]=4,解得a=﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相关资料
4.6用尺规作线段与角
一、判断题
1.尺规作图是指用刻度尺和圆规作图.( )
2.尺规中的尺是指没有刻度的直尺.( )
3.用直尺和三角板过直线外一点作已知直线的平行线是尺规作图.( )
4.最基本的尺规作图是作线段和角.( )
二、选择题:
1. 如图1,射线OA 表示的方向 是( )
A.西北方向;
B.西南方向;
C.西偏南10°;
D.南偏西10° 2.如图2所示,下列说法正确的 是( )
A.OA 的方向是北偏东30°;
B.OB 的方向是北偏西60° (1) (2)
C.OC 的方向是北偏西75°;
D.OC 的方向是南偏西75°
3.画一个钝角∠AOB ,然后以O 为顶点,以OA 为一边, 在角的内部画一条射线OC ,
使∠AOC =90°,正确的图形是( )
B
C
D
A
O B
C
A
O
B
C
A
O B
C A
C
B
A
O
三、填空题
1.已知线段AB ,求作:线段A ′B ′,使A ′B ′= A B .
A
80︒
O 东

北西
30︒
15︒
C
B
A
60︒
O 东


西
作法:
(1)作A′C′.
(2)以点A′为圆心,以________ ____交A′C′于点B′,
(3)_________就是所作的线段.
2.已知:∠A O B求作:∠A′O′B′,使∠A′O′B′=∠A O B.
作法:
(1)作O′A′
(2)以点O为圆心,以_________长为半径画弧交OA于点C,交OB于点D.
(3)以点O′为圆心,以_________长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以_________长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′,∠A′O′B′就是所求作的角
.
四、作图
用尺规完成下列作图.
1.已知线段a ,b(a>b),利用尺规作线段c,使c =2a-b.
a
b
2.已知∠α、∠β(∠α>∠β),求作一个角,使它等于2∠α-∠β
. 3.已知,直线AB和AB外一点P,作一条经过点P的直线CD,使C D∥A B。

P
B A
A
4.已知,如图,∠AOB及其两边上的点C、D,过点C作CE∥OB,过点D作DF∥OA,CE、DF交于点P。

相关文档
最新文档