非线性动力分析方法
非线性动力学中的非线性动力响应分析

非线性动力学中的非线性动力响应分析在非线性动力学研究中,非线性动力响应分析是一种重要的方法,用于描述和解释系统在非线性情况下的动态行为。
非线性动力学研究系统内在的非线性相互作用和复杂的动力学行为,并通过非线性动力响应分析来揭示这些行为的性质和规律。
1. 动力学系统的基本概念在开始分析非线性动力系统的非线性动力响应之前,我们首先需要了解一些动力学系统的基本概念。
动力学系统是指由多个相互作用的部分组成的系统,这些部分之间存在着物理或数学上的关系。
动力学系统的行为可以用一组微分方程或差分方程来描述。
其中,非线性项则表示系统内各种相互作用的非线性特性。
2. 非线性动力响应的概念与研究方法非线性动力响应是指系统对于外界扰动或变化的非线性反应。
与线性系统相比,非线性系统在响应上表现出更为丰富和复杂的行为。
为了研究非线性动力响应,可以采用多种方法,其中最常用的方法是波形分析法、频谱分析法和相图分析法。
波形分析法是通过观察系统的时域波形来分析非线性响应,可以直观地展示出系统的动力学行为。
而频谱分析法则是通过对系统的频谱进行分析,来研究不同频率下系统的特性和响应规律。
相图分析法则是通过绘制系统的相图,揭示系统在相空间中的运动轨迹和稳定性。
3. 非线性动力响应的典型现象在非线性动力学中,存在许多典型的非线性动力响应现象,其中一些典型现象包括:分岔现象、混沌现象、周期倍增等。
分岔是指当某个参数值变化时,系统的解发生了突变,从而导致系统行为发生明显的变化。
分岔现象常常伴随着系统的稳定性突变和动态态变化。
混沌是非线性动力系统中最为复杂和难以预测的一种动力学行为。
混沌现象体现为系统的解在相空间中呈现出无规律的运动轨迹,具有高度的灵敏性和依赖初始条件的特点。
周期倍增是指当某个参数值逐渐变化时,系统的周期解逐渐增加,从而导致系统呈现出周期加倍的现象。
周期倍增是非线性动力学中一种典型的周期性动力响应。
4. 非线性动力响应的应用领域非线性动力响应的研究在许多领域都具有重要的应用价值。
非线性动力学定性理论方法

非线性动力学定性理论方法非线性动力学定性理论方法是一种研究动力系统行为的方法,用于研究非线性动力系统的稳定性、周期性、混沌性等特性。
在非线性动力学定性理论中,主要有相图分析法、频谱分析法、Lyapunov指数法、Poincaré截面法等多种方法。
相图分析法是研究非线性动力系统的最常用方法之一。
相图是描述动力系统状态变化规律的图形,其中横坐标表示系统的状态变量,纵坐标表示状态变量的导数或变化率。
相图可以通过绘制状态变量和导数之间的关系曲线得到。
相图分析法通过分析相图的形状和特征,可以判断系统的稳定性、周期运动和混沌运动等特性。
频谱分析法是一种通过分析系统输出信号的频谱特性来研究非线性动力系统的方法。
在频谱分析中,通过将系统的输出信号用傅立叶变换或小波变换等方法,将信号分解成一系列的频谱分量。
通过分析频谱的峰值位置、能量分布等特征,可以判断系统是否存在周期运动或混沌运动等特性。
Lyapunov指数法是研究非线性动力系统稳定性的一种方法。
Lyapunov指数可以用来描述系统状态的指数变化率,即用来刻画系统状态的稳定性或者混沌性。
通过计算Lyapunov指数,可以得到系统状态的变化趋势,从而判断系统是否稳定或者出现混沌行为。
Poincaré截面法是一种通过截取动力系统的轨迹与特定平面的交点,来研究非线性动力系统行为的方法。
在Poincaré截面法中,通过选择合适的截面,可以将系统的运动轨迹转化为一系列的离散点。
通过分析离散点的分布和变化规律,可以判断系统是否存在周期运动或混沌运动等特性。
以上介绍的是非线性动力学定性理论的一部分方法,这些方法在研究非线性动力系统的行为特性方面具有重要的应用价值。
通过相图分析、频谱分析、Lyapunov 指数计算和Poincaré截面分析等方法,可以全面地了解非线性动力系统的稳定性、周期性和混沌性等特性,为非线性动力系统的建模、控制和应用提供了重要的理论基础。
非线性系统动力学的研究与分析

非线性系统动力学的研究与分析随着科技的进步和社会的发展,非线性系统动力学的研究与应用逐渐受到广泛关注。
非线性系统动力学是指在系统中包含非线性成分,且系统的演化过程不仅受到外部环境的影响,还受到系统内部动力学过程的调控与变化。
本文将探讨非线性系统动力学的研究与分析方法,介绍其在各个领域的应用,并展望未来的发展趋势。
一、非线性系统动力学的基本概念与原理非线性系统动力学的研究是基于系统的复杂性与非线性的特点展开的。
与线性系统不同,非线性系统的输入与输出之间的关系不具备比例关系,而是呈现出非线性的特征。
非线性系统动力学研究的基本概念主要包括:相空间、吸引子、分岔现象等。
相空间是非线性系统动力学中的重要概念,其描述了系统状态随时间演化的轨迹。
相空间中的每个点代表系统的一个具体状态,通过描述系统在相空间中的运动轨线,可以揭示系统的动力学特性。
吸引子是非线性系统动力学中的一个重要现象,指的是系统在长时间演化过程中,稳定地趋向于某个状态的集合。
吸引子可以是一个点、一条线或者一个空间区域,它揭示了系统从无序到有序、从混沌到稳定的过渡过程。
分岔现象是非线性系统动力学中的另一个重要现象,指的是系统参数发生微小变化时,系统演化过程发生根本性改变的现象。
分岔现象揭示了系统演化过程中的多样性和复杂性,对于理解和分析非线性系统的行为具有重要意义。
二、非线性系统动力学的研究方法与分析工具为了研究和分析非线性系统动力学,学者们提出了许多方法和工具。
其中,数值模拟方法、符号计算方法和实验观测方法是应用最广泛的研究手段。
数值模拟方法是基于计算机技术,通过数值计算的方式模拟非线性系统的演化过程。
这种方法可以模拟较为复杂的非线性系统,并通过分析系统的特性参数,揭示系统动力学的行为。
符号计算方法是利用数学符号运算的方式,推导和分析非线性系统的动力学行为。
通过建立系统的数学模型,使用符号计算软件进行求解和分析,可以得到系统的稳定性、周期性、分岔等动力学特征。
非线性动力学系统的建模与分析

非线性动力学系统的建模与分析深入探究非线性动力学系统的建模与分析在科学研究中,许多系统都具有非线性特征,只有对这些系统进行深入的研究和建模,才能更好地了解其规律和特性。
非线性动力学系统的建模与分析,便是其中重要的一个方面。
一、非线性动力学系统的基本概念非线性动力学系统是由一个或多个非线性微分方程组成的系统,其特点在于其响应不随着输入信号呈线性变化。
这种系统一般存在着混沌现象、周期现象或者其他的非线性现象,因此其建模和分析具有很大的挑战性。
二、非线性动力学系统的建模方法1. 全局建模法全局建模法是一种直接把原系统转化为通用数学形式的建模方法,其核心是准确地描述系统的动力学状态,并且建立一个合适的数学模型以描述其动态行为。
2. 基于神经网络的建模法基于神经网络的建模法通过构建一种可以学习的算法,来从实验数据中获取非线性系统的内在结构和动态特征。
3. 非线性滤波法非线性滤波法是以基本的线性和非线性滤波器为基础来建立非线性动力学系统模型的方法。
三、非线性动力学系统的分析方法1. 稳态分析法稳态分析法主要是通过计算系统的稳定点、特征值和特征向量等指标来研究非线性系统的稳定性和性态。
2. 线性化分析法线性化分析法是将非线性系统模型线性化后,研究其内在特征,例如特征值和特征向量。
3. 数值分析法数值分析法是通过计算机模拟和数值解析方法,来研究非线性系统的动态特性和性态。
其中最为常用的方法包括Euler法和Runge-Kutta法等。
四、实例分析以一个简单的非线性动力学系统为例,假设其状态方程如下:$$\begin{cases} \dot{x}=y \\ \dot{y}=-\sin{x}-\cos{y}\end{cases}$$应用数值分析法,我们可以通过Euler法进行模拟仿真。
在t=10时,得出系统的稳定点位于(x,y)=(nπ,nπ/2),n为整数。
此外,我们还可以通过计算特征值和特征向量等指标,来研究该系统的特性。
非线性动力分析方法课件

反馈线性化控制
优点
能够处理非线性问题,提高系统的控制精度 和稳定性。
缺点
实现较为复杂,需要精确的系统模型和参数。
自适应控制
通过不断调整控制参数,以适应系统参数的变化。
优点:能够适应系统参数的变化,提高系统的鲁 棒性和适应性。
自适应控制是一种能够自动调整控制参数,以适 应系统参数变化的控制方法。这种方法通过实时 测量系统参数的变化,不断更新控制参数,以保 证系统性能的稳定性和最优性。
机构运动
在机构运动中,非线性动 力系统可以用于描述机构 的运动规律,如连杆机构、 凸轮机构等。
弹性力学
非线性动力系统在弹性力 学中可以用于描述材料的 非线性行为,如材料的弹 塑性、断裂等。
电力系统中的应用实例
电力系统的稳定性分析
非线性动力系统可以用于分析电力系统的稳定性,如电压波动、 频率稳定等。
谱方法的基本思想是将原问题转化为求解特征值或特征向量 的问题,通过选取适当的正交变换,将原问题转化为易于求 解的数值问题。该方法广泛应用于数值计算、流体动力学等 领域。
边界元法
边界元法是一种只对边界进行离散化 的数值方法,通过求解边界上的离散 方程来近似求解原问题的数值方法。
边界元法的基本思想是将问题只离散 化边界上的点,通过求解边界上的离 散方程来近似求解原问题的数值方法。 该方法广泛应用于流体动力学、电磁 学等领域。
缺点:可能会产生抖振现象, 需要精确的系统模型和参数。
05
非性力系的
欧拉方法
总结词
欧拉方法是数值计算中最基础的方法 之一,适用于求解初值问题。
详细描述
欧拉方法基于差分思想,通过已知的 初值和微分方程,逐步计算出未知的 函数值。该方法简单易懂,但精度较 低,适用于求解简单问题。
非线性动力系统的建模与分析

非线性动力系统的建模与分析非线性动力系统是指其运动方程包含非线性项的动力系统。
与线性动力系统不同,非线性动力系统具有更加复杂的行为和特性。
因此,建模和分析非线性动力系统是理解和预测实际系统行为的重要一环。
本文将介绍非线性动力系统的建模方法以及各种分析工具和技术。
一、非线性动力系统建模方法:1. 分析系统的特性:了解系统的背景和工作原理,找出系统的主要组成部分和相互作用关系。
这样可以更好地理解系统行为和特性,为后续的建模提供基础。
2. 选择适当的数学模型:非线性动力系统可以用多种数学模型进行描述,如微分方程、差分方程、动力学方程等。
根据系统的特性和需求,选择适合的数学模型是非常重要的。
3. 确定系统的状态变量:状态变量是描述系统状态的变量,可以是位置、速度、温度等。
根据系统的特性和需要,确定适当的状态变量是非线性动力系统建模的关键一步。
4. 构建系统的运动方程:根据数学模型和状态变量,建立非线性动力系统的运动方程。
这些方程描述了系统的演化规律和相互关系,是进一步分析系统行为的基础。
5. 校验和验证模型:将模型与实际数据进行比较和验证,确保模型能够准确描述系统的行为和特性。
如果有必要,可以对模型进行调整和改进,以提高模型的准确性和可靠性。
二、非线性动力系统分析工具和技术:1. 稳态分析:稳态分析是研究系统在长时间尺度下的行为稳定性和平衡点的性质。
通过稳态分析,可以判断系统的稳定性和吸引子的性质,进一步预测系统的长期行为。
2. 线性化分析:将非线性动力系统线性化为一组近似的线性方程,以便在局部范围内对系统进行分析。
线性化分析可以简化非线性系统的复杂性,从而更好地理解系统的行为和特性。
3. 相平面分析:相平面分析是用相图表示系统状态的演化和相互关系。
通过分析相图的特征,可以得到系统的稳定性和周期解等信息,为进一步研究系统的行为提供参考。
4. 分岔分析:分岔分析是研究系统参数变化时系统行为的变化和性质的分析方法。
动力系统非线性分析研究
动力系统非线性分析研究
0引言
本文旨在研究动力系统中的非线性分析,探讨非线性系统的分析方法。
非线性系统可能会产生复杂的运动模式,如振动、混沌等,这些模式的改
变可能会对系统的性能产生影响,因此,对动力系统中的非线性分析和研
究将有助于我们更好地理解和掌握动力系统的运动规律,进而更有效地运
用动力系统的优势,提高系统的工作效率。
本文将简要介绍非线性分析在
动力系统中的应用,并结合实际例子,提出详细的分析方法,以帮助读者
更好地理解和掌握非线性动力系统。
1非线性研究
非线性分析是一种应用于动力系统的分析方法,区别于线性系统,它
具有结构复杂、数学模型不易建立、瞬时变化大、瞬变响应快以及系统的
随机性、混沌性等特点,因此,分析非线性系统的研究非常困难。
非线性分析不仅可以用来预测系统的动态响应,还可以用来研究系统
的结构特性、谐振状态以及瞬变反应,从而研究非线性系统的运动规律。
非线性动力学系统的分析与控制
非线性动力学系统的分析与控制随着科学技术的不断发展,人们对复杂系统的研究日益深入。
非线性系统时常出现在自然界和工程技术中,例如气象系统、化学反应、电路、生物系统、机械系统等等。
非线性系统具有极其丰富的动态行为,不同的系统之间存在着很大的差异性。
面对这些复杂多样的非线性系统,如何进行分析与控制是非常重要的。
一、非线性动力学系统的定义及特点非线性动力学系统是指在时间和空间上均发生动态行为的系统,其系统关系不是线性关系。
由于非线性因素的存在导致了系统的复杂性和不可预测性,系统可能表现出各种奇异的动态行为。
这些动态行为包括周期性运动、混沌、周期倍增等等。
一个非线性系统通常由多个部分组成,每个部分之间有相互作用,这种相互作用可以是线性的,也可以是非线性的。
与线性系统不同的是,非线性系统的各种状态和运动是非简单叠加的,微小的扰动可能会导致系统出现完全不同的行为,所以非线性系统的行为很难被准确地预测和控制。
二、非线性动力学系统的分析方法1. 数值方法数值方法是研究非线性系统的基本工具之一。
数值方法的核心是计算机程序,基本思路就是用计算机模拟系统的行为,通过计算机的演算,得出系统的动态变化。
在数值模拟中,巨大的数据量和模拟误差可能导致计算结果的不确定性。
为了解决这个问题,可以采用随机性和模糊性来描述不确定性,将非确定性的信息融入到模型和模拟中。
2. 动力学分析动力学分析是利用动力学知识进行对非线性系统的分析和研究。
通过对系统的本质特性进行分析,了解系统的发展趋势和行为特征。
动力学分析主要通过相空间画图、稳定性分析、流形理论等方法对非线性系统进行分析。
其中,相空间画图是研究非线性系统最常用的方法之一。
它可以将非线性系统的状态表示为相空间中的一点,通过画出系统在相空间中的运动轨迹,了解系统在不同初态下的动态行为。
3. 控制方法控制方法是为了改变非线性系统的行为,使其达到预期目标或保持稳定状态。
非线性系统的控制可以分为开环控制和反馈控制。
非线性动力系统的数值计算方法及稳定性分析
非线性动力系统的数值计算方法及稳定性分析非线性动力系统是指系统中的动力学方程无法通过线性变换等简单方法化简为线性形式的动力系统。
这类系统具有复杂的行为和性质,其数值计算方法和稳定性分析非常具有挑战性。
本文将介绍非线性动力系统的数值计算方法,并对其中一些常用方法的稳定性进行分析。
为了数值计算非线性动力系统,在时间上离散化动力学方程是首要任务。
最简单的方法是使用欧拉法,即将连续时间上的动力学方程转化为离散时间上的差分方程。
欧拉法公式如下:\[x_n = x_{n-1} + hf(x_{n-1})\]其中,\(x_n\)表示在时间步n上的系统状态,\(f(x_{n-1})\)是在时间步n-1上的系统状态的导数。
h是时间步长。
这种方法的优点是简单易行,但由于其误差随时间步长的平方增长,因此需要小心选择时间步长,以保证计算结果的精确性。
一种改进的方法是四阶龙格-库塔法(RK4)。
RK4方法将时间步长内的系统动力学进行多次迭代,以获得更精确的结果。
RK4方法的公式如下:\begin{align*}k_1 & = hf(x_{n-1}) \\k_2 & = hf(x_{n-1} + \frac{k_1}{2}) \\k_3 & = hf(x_{n-1} + \frac{k_2}{2}) \\k_4 & = hf(x_{n-1} + k_3) \\x_n & = x_{n-1} + \frac{k_1}{6} + \frac{k_2}{3} +\frac{k_3}{3} + \frac{k_4}{6}\end{align*}\]与欧拉法相比,RK4方法具有更高的精度,但计算量也相对更大。
此外,还有一种常见的数值计算方法是基于级数展开的方法,如幂级数法和泰勒级数法。
这些方法通过将非线性动力学方程展开为多项式级数,以近似求解系统的状态。
这些方法的优点是可以通过增加级数的项数来提高精度,但随着级数项的增加,计算量也会显著增加。
非线性动力学行为的建模与分析方法
非线性动力学行为的建模与分析方法非线性动力学是研究非线性系统行为的一门学科。
在许多自然和社会现象中,非线性动力学行为都起着重要作用。
为了更好地理解和预测这些现象,人们需要建立合适的模型和分析方法。
建立非线性动力学模型的一种常用方法是基于微分方程。
微分方程是描述系统状态随时间变化的数学工具。
对于线性系统,微分方程可以用简单的线性方程表示,但对于非线性系统,方程往往更加复杂。
因此,研究者们提出了各种方法来处理非线性动力学模型。
其中一种常用的方法是使用数值模拟。
数值模拟是通过计算机程序来模拟系统的行为。
通过将微分方程转化为差分方程,可以使用数值方法来近似求解系统的演化。
数值模拟可以提供系统的详细行为,但也有一定的计算复杂性和误差。
另一种常用的方法是使用符号计算。
符号计算是利用计算机代数软件来进行数学推导和计算。
通过对微分方程进行符号化处理,可以得到系统的解析解或近似解。
符号计算可以提供系统的精确解,但对于复杂的非线性系统,符号计算的复杂性也会增加。
除了数值模拟和符号计算,还有一些其他的方法可以用于建模和分析非线性动力学行为。
例如,混沌理论是研究非线性系统中混沌行为的一门学科。
混沌行为是指系统在非线性影响下表现出的不可预测和随机的行为。
混沌理论提供了一些方法来描述和分析混沌行为,例如分岔图、Lyapunov指数等。
另一个重要的方法是网络动力学。
网络动力学是研究网络中节点之间相互作用所导致的动力学行为的一门学科。
网络动力学可以用于描述和分析复杂网络中的非线性行为,例如脑网络、社交网络等。
通过构建网络模型和分析网络拓扑结构,可以揭示网络中的非线性动力学行为。
在实际应用中,非线性动力学模型和分析方法被广泛应用于各个领域。
例如,在天气预报中,气象学家使用非线性动力学模型来预测气象系统的演化。
在金融市场中,经济学家使用非线性动力学模型来分析市场的波动和风险。
在生物学中,生物学家使用非线性动力学模型来研究生物系统的行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 非线性动力系统
3.吸引子及其特性 c.Torus 准周期 不可通约
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
• 奇怪吸引子 相对于平庸吸引子而言,它 们的特点之一是终态值与初始值密切相关 ,或者说对初始值具有极端敏感性;初始 取值的细微差别可能会导致完全不同的结 果,这时的吸引子毫无周期可言,即所谓 混沌。
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
3.吸引子及其特性 d.Chaotic attractor 具有收敛性 无周期 分型结构 “奇怪吸引子”
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
高维吸引子
艺术认知与计算实验室 Mind Art Computation
艺术认知与计算实验室 Mind Art Computation
吸引子可存在于高维相空间内。在这相空间中大于零的李雅普诺夫指数可 能不止一个,这样体系的运动将为更复杂。人们称高维相空间中有多个正值 指数的混沌为超混沌 超混沌。推广到高维空间后,由指数 的值决 超混沌 定的各种类型的吸引子归纳如下:
(λ
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
• 设 为多维相空间中两点的初始距离,经 n 次迭代后两 点的距离为: λt
ε (t ) ≅ ε 0 e
i
• 式中指数 λi 值可正可负。 表示沿该方向扩展, 表示沿该方向收缩。在经过一段时间(数次迭代)以后,两 个不同李雅普诺夫指数值将使相空间中原来的圆演变为椭 圆演变为椭 圆。
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
稳定体系的相轨线相应 于趋向某个平衡点,如果出 现越来越远离平衡点,则体 系是不稳定的。系统只要有 系统只要有 一个正值的就可出现混沌运 动。 判别一个非线性系统是 否存在混沌运动时,需要检 查它的最大李雅普诺夫指数 λ 是否为正值。
艺术认知与计算实验室 Mind Art Computation
a.Point attractor 静止在定态
艺术认知与计算实验室 Mind.吸引子及其特性 b.Limit cycle 周期性运动
艺术认知与计算实验室 Mind Art Computation
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
4.K熵 K熵(柯尔莫哥洛夫熵) S熵(香农熵,信息论) 一个吸引子的K熵是它(吸引子)所表示 的动态系统的信息损失率。 等于该系统具有的所有正Lyapunov指数 之和。
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
• 在随机运动系统中,K熵是无界的; • 在规则运动系统中,K熵为零; • 在混沌运动系统中,K熵大于零,K熵越大 ,那么信息的损失速率越大,系统的混沌 程度越大,或者说系统越复杂
艺术认知与计算实验室 Mind Art Computation
三 例子
正常人与癫痫发作时的比较 1.EEG &2.相空间轨迹
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
2.加入动力学行为 记忆效应(与t相关): 无记忆效应(与t无关):
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
混沌: 混沌是指发生在确定性系统中的貌似随 机的不规则运动,一个确定性理论描述的 系统,其行为却表现为不确定性--不可 重复、不可预测,这就是混沌现象。
奇怪吸引子(混沌) D = 2~3(非整数)
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
3.相关维度 C(r)为吸引子上两个随机点之间距离小于 给定距离r的似然估计。是r的函数
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
1 ,
λ
2 ,
λ
3 ,
λ
4 ,
L
( −, −, −, −,L) ( 0, −, −, −,L)
)
吸引子类型 不动点 极限环 二维环面 三维环面 超混沌
维数 D=0 D=1 D=2 D=2 D = 高于3非整数
( 0, 0, −, −,L) ( 0, 0, 0, −,L) ( +, 0, −, −,L) ( +, +, 0, −,L)
艺术认知与计算实验室 Mind Art Computation
三 例子
3.相关维度
艺术认知与计算实验室 Mind Art Computation
三 例子
4.Lyapunov指数
艺术认知与计算实验室 Mind Art Computation
四 小结
• 小结 采用何种方法 非线性分析
艺术认知与计算实验室 Mind Art Computation
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
典型非线性方程: 人口模型: x(t+1)=k*x(t)*(1-x(t))
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
• 混沌二分叉图:
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
1.Lorenz 散点图
艺术认知与计算实验室 Mind Art Computation
二 经典非线性测量方法
2.Lyapunov 指数
Lyapunov 指数用于判断一个系统是否属于混 沌系统。系统的Lyapunov 指数谱中存在正值,则 表明该系统具有混沌特征。因此,只要系统的 Lyapunov 指数谱中最大的Lyapunov 指数为正,则 该系统为混沌系统。
一 非线性动力系统
Lorenz方程组:
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
3.吸引子及其特性
• 吸引子 能量耗散系统最终收缩到的一种定常状态。这是 一个动力系统在t →∞时所呈现的与时间无关的定态,并 且不管选取什么样的初始值其终值的定态只有一个,也就 是说终值与初始值无关。这类吸引子也称平庸吸引子。 • 如:阻尼单摆有不动点吸引子,范德玻耳方程有极限 环吸引子,等等。
非线性动力系统 与其分析方法
刘楚
艺术认知与计算实验室 Mind Art Computation
Outline
一、非线性动力系统 二、经典非线性测量方法 三、例子 四、小结
艺术认知与计算实验室 Mind Art Computation
一 非线性动力系统
1.线性与非线性 线性方程: y(t)=a*t+b1 非线性方程: Y(t)=cos(t)+b2; Y(t)=t^2+b3