北师大版七年级数学第五章-----一元一次方程

合集下载

北师大版七年级数学上册第5章第2节求解一元一次方程课件

北师大版七年级数学上册第5章第2节求解一元一次方程课件

学习新课
问题1: ①什么是去括号法则 ? ②什么是乘法分配律 ?
问题1: ①什么是去括号法则 ? 1)括号前面是“+”号,把括号和它前面的 “+”号去掉,括号里各项都不变符号. 2)括号前面是“-”号,把括号和它前面的 “-”号去掉,括号里各项都改变符号. ②什么是乘法分配律 ? 两个数的和同一个数相乘,等于把两个加数 分别同这个数相乘,再把两个积加起来,结果 不变。
议一议:视察上述两种解方 程的方法,说出它们的区分, 与同伴进行交流.
解方程
(1) 2(x-1)+3=3(x-1)
(2) 4( y 1) y 2( y 1) 2
归纳总结
问题5:解一元一次方程的一般步骤?
解一元一次方程,一般要通过 ①去分母, ②去括号, ③移项, ④合并同类项, ⑤未知数的系数化为1等 步骤; 1)去分母时注意不要漏乘,再者分母去掉了,分 数线变成了括号; 2)去括号要注意不要漏乘,再者注意符号变化问题; 3)移项注意变号; 4)合并同类项注意每一项都包括它前面的符号; 5)未知数的系数化为1注意未知数的系数做分母, 而不是做分子.
你来试试
5. 如果方程3x+2a=12和方程3x-4=2的解相
同,那么a=_3__.
6. 若m+2与2m-2不相等,则m不能为__4__.
7. 若x=0是方程2006x-a=2007x+3的解,那
么代数式-a+2的值是__5_.
8.如果方程6x+3a=21与方程3x+5=11的解
相同,那么a= (B )
a (b+c) =ab+ac
去、添括号法则(口诀) 去括号、添括号,关键看符号; 括号前面是正号,去、添括号不 变号;

北师大版七年级数学上册第5章第1节认识一元一次方程课件

北师大版七年级数学上册第5章第1节认识一元一次方程课件
7 (2)a的2倍与b的和___2_a_+_b______ (3)x的平方与3的差____x_2-_3______. (4)某足球场的长为x米,宽比长短25米, 则该足球场的周长为__2_(_x_+_x_-_2_5_)___米.
问题2:列方程式 (1)y与它的 1 的和是19_________
7
(2)a的2倍与b的和为7__2_a_+_b_=_7____ (3)x的平方与3的差等于-2_x_2_-_3_=_-_2_.
学习新知
五个情境中的三个方程为:
⑴ 40+15χ=100 ⑵ 2[χ+(χ+25)]=310 ⑶ χ(1+147.30%)=8930
上面情境中的三个方程 , 有什么共同点?
在一个方程中,只含有一个未知数χ(元), 并且未知数的指数是1(次),这样的方程叫做一 元一次方程。
你来试试
判断下列各式是不是一元一次方程,是的打 “√”,不是的打“x”。
• 解:设张叔叔原计划每时行走 x km,可 以得到方程:
情境 4 第六次全国人口普查统计数据,截至 2010年11月1日0时,全国每10万人中具有 大学文化程度的人数为8930人,比2000年 第五次全国人口普查时增长了147.30%.
如果设2000年6月每10万人
中约有x人具有大学文化程度, 2000年6月底
拓展提升
1、根据题意先设未知数,再列出方程 ①一个数的 1 与3的差等于最大的一位数, 求这
6
个数. ②购买一本书, 打八折比打九折少花2元钱, 求原 价. ③甲、乙两队开展足球对抗赛, 规定每队胜一 场得3分, 平一场得1分, 负一场得0分.甲队与乙 队一共比赛了10场, 甲队保持了不败记录, 一共 得了22 分, 甲队胜了多少场? 平了多少场?

2024年秋新北师大版七年级上册数学教学课件 第5章 一元一次方程小结

2024年秋新北师大版七年级上册数学教学课件 第5章 一元一次方程小结

因为两个方程的解相同, 所以-m-9=3-2m. 移项,得-m+2m=3+9. 合并同类项,得m=12.
能力提升 3.如图,数轴上两个动点A,B开始时所表示的数分别为-8, 4,A,B两点各自以一定的速度在数轴上运动,且A点的运动 速度为每秒2个单位长度. (1)A,B两点同时出发相向而行,在原点处相遇,求B点的运
知识回顾
四、一元一次方程的应用 1.列一元一次方程解决实际问题的一般步骤:
审:审清题意,分清已知量、未知量,找出题中的等量关系. 设:设未知数,并用未知数表示其他未知量. 列:根据题中的等量关系列方程. 解:解方程,求出未知数的值. 验:检验所求的解是否符合题意. 答:写出答案(包括单位).
知识回顾
第五章 一元一次方程
七上数学 BSD
知识梳理
方程

一元一次方程
元 一
方程的解

等式的基本性质


解一元一次方程
一元一次方程的应用
知识回顾
一、方程的有关概念 1、方程:含有未知数的表示量相等的等式称为方程. 2、一元一次方程:在一个方程中,只含有一个未知数,且 方程中的代数式都是整式,未知数的次数都是1,这样的 方程叫作一元一次方程. 3、方程的解:使方程左、右两边的值相等的未知数的值. 4、解方程:求方程的解的过程.
动速度.
能力提升 (2)A,B两点按上面的速度同时出发,沿数轴正方向运动,
几秒时两点相距6个单位长度? 解:设t s时两点相距6个单位长度. ①当A点在B点左侧时,2t-t=(4+8)-6, 解得t=6; ②当A点在B点右侧时,2t-t=(4+8)+6, 解得t=18. 答:6 s或18 s时两点相距6个单位长度.

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明
解:36 km/h=10 m/s,则4.87n+5.4(n-1)=20×10,
解得n=20. 答:n的值是20.
课堂检测
能力提升题
操场一周是400米,小明每秒跑5米,小华骑自行车每秒10 米,两人绕跑道同时同地相背而行,则两个人何时相遇?
解:设经过x秒两人第一次相遇,
小明
依题意,得 10x+5x=400,
解:设战斗是在开始追击后x小时发生的. 根据题意,得 8x-5x=25-1. 解得 x=8.
答:战斗是在开始追击后8小时发生的.
探究新知
议一议 根据下面的事实提出问题并尝试去解答. 育红学校七年级学生步行到郊外旅行.七(1)班的学生组成 前队,步行的速度为4千米/小时,七(2)班的学生组成后队, 速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/小时. 问题1:后队追上前队用了多长时间?
解:设后队追上前队用了x小时,由题意 列方程得: 6x=4x+4 . 解方程得:x=2.
答:后队追上前队时用了2小时.
探究新知
问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时,因此联络员共行 进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米. 问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 由题意列方程得: 12x = 4x + 4.
北师大版 数学 七年级 上册
5.6 应用一元一次方程 ——追赶小明
导入新知 龟兔赛跑
素养目标
2. 通过分析追及问题中的数量关系,从而建立方程解 决实际问题.进一解决实际问题,进一步感知数学 在生活中的作用.

2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程

2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程
2或-2
1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y


7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.

北师大版数学七年级上册5.去分母解一元一次方程课件

北师大版数学七年级上册5.去分母解一元一次方程课件
D.等式的两边乘同一个数,或除以同一个不为0的
数,结果仍相等
当堂训练
+ −
3.若代数式 比
的值多1,则a=(



A.﹣5
B.−
C.5

4.解下列方程:

D.


(2) (x﹣2)- (x+4)=0.


(2)去分母得:
解:去分母,得:
7(x﹣2)﹣4(x+4)=0,




C.若 = ,则2x=3y
D.若ax=ay,则x=y
3.解方程:3x+5=2(x+4)
解:(1)去括号,可得:3x+5=2x+8,
移项,可得:3x﹣2x=8﹣5,
合并同类项,可得:x=3.

讲授新知
讲授新知
知识点一:用去分母解一元一次方程


解方程: (x+14)= (x+20)




山顶测得温度是﹣1℃,小莉此时在山脚测得温度是5℃.
已知该地区高度每增加100米,气温大约降低0.8℃,这个
山峰的高度大约是多少米?
设这个山峰的高度大约是x米,

根据题意得:5- ×0.8=﹣1,

解得:x=750.
即这个山峰大约是750米;

课堂小结
课堂小结
1.去分母时注意哪些问题?
2.解一元一次方程的基本步骤有哪些?
合并
同类

合并同类
项法则
系数 等式基本
化成1
性质2
具体方法
注意事项
(1)不含分母的项也要乘

北师大版七年级上册第五章《一元一次方程》复习资料:行程问题

北师大版七年级上册第五章《一元一次方程》复习资料:行程问题

行程问题
往返问题(去的路程=回的路程)变速重复行走(第一次走的路程=第二次走的路程)
两次不同方式表示同一个量
例1:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.
例2:甲从A城去B城,第一天甲车每小时行驶35千米,感觉到的比较晚,第二天甲车每小时行驶40千米,结果发现比第一天提前半小时到达B城.则A,B两城间相距多少千米?
例3.甲、乙两车同时从A城去B城,甲车每小时行驶35千米,乙车每小时行驶40千米,结果乙车比甲车提前半小时到达B城.则A,B两城间相距多少千米?
1
例4:甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。

途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地。

两地间的路程是多少千米?
例5:家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1小时.
根据上面信息,他做出如下计划:
(1)在山顶游览1小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
2。

北师大版七年级数学上册知识点归纳:第五章一元一次方程

北师大版七年级数学上册知识点归纳:第五章一元一次方程

一元一次方程知识点(一)、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程. (例1)3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. (例2)注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.(二)、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b ,那么a ±c=b ±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c ≠0),那么a c =b c(三)、移项法则:把等式一边的某项变号后移到另一边,叫做移项.(例3)(四)、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.(五)、解方程的一般步骤(例4)1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a ≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=b a). 一.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二、一元一次方程的实际应用1. 和、差、倍、分问题:增长量=原有量×增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.例1:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x .(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.(2) 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =h r 2π ②长方体的体积 V =长×宽×高=abc例2 将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14). 解:设圆柱形水桶的高为x 毫米,依题意,得3. 工程问题:工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=1例3. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x 12=1 4.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.例4. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 一元一次方程
思维导图

方次一元
一⎪










⎪⎪

⎪⎩
⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧写出答案检验解一元一次方程列一元一次方程设出适当的未知数找出等量审清题意题的一般步骤列一元一次方程解应用未知数的系数化为
合并同类项移项去括号去分母
解一元一次方程的步骤
结果仍是等式,所得的数或除以同一个不为个数:等式两边同时乘同一
性质结果仍是等式同一个代数式,所得的或减:等式两边同时加性质等式的基本性质数的值右两边的值相等的未知方程的解:使方程左、
数的等式方程的概念:含有未知未知数的指数都是式方程中的代数式都是整只含有一个未知数一元一次方程的概念
1)0(2)(11
考点精讲。

相关文档
最新文档