开关磁阻电机SRM的原理及建模
开关磁阻电机控制器硬件设计及底层驱动开发

三、盘式开关磁阻电机控制器的 设计
针对洗衣机应用场景的特殊性,我们设计了一种盘式开关磁阻电机控制器。该 控制器由功率开关、磁传感器、控制电路板等组成。功率开关采用IGBT或 MOSFET等高性能开关器件,能够承受较高的电流和电压。磁传感器采用霍尔 元件或磁敏电阻等器件,能够准确检测磁场的变化。控制电路板采用微处理器 或FPGA等高性能芯片,能够实现复杂的控制逻辑和算法。
二、底层驱动开发
2、1驱动程序架构
底层驱动开发主要包括对STM32F4系列单片机的配置和编程。为了实现对电机 的精确控制,我们需要对单片机的GPIO(General Purpose Input/Output) 口、PWM口和ADC口进行配置和控制。我们使用C语言编写了相应的驱动程序, 包括初始化、配置、控制等函数。
2、4 ADC口配置与控制
ADC口是实现电机电流和电压采样的重要接口。我们使用STM32CubeMX工具对 ADC口进行了配置和初始化,设置了ADC的采样通道、采样速率等参数。通过 调用STM32F4系列单片机的ADC模块API函数实现ADC的采样和数据处理。我们 将采样到的电流和电压数据进行处理后,可以获得电机的实时运行状态信息, 从而为上层控制算法提供数据支持。
四、实验结果与分析
为了验证盘式开关磁阻电机控制器的性能,我们进行了一系列实验。实验结果 表明,该控制器具有较高的稳定性和可靠性,能够有效控制洗衣机的运转。同 时,该控制器具有较强的灵活性和可编程性,能够实现多种洗涤模式和洗涤程 序的快速切换。此外,该控制器具有较强的适应性和稳定性,能够在不同的洗 涤环境下稳定工作。
微控制器模块是整个控制器的核心,我们选择了具有高性能、低功耗特点的 STM32F4系列单片机作为主控制器。该系列单片机采用ARM Cortex-M4内核, 具有高达168MHz的时钟频率和丰富的外设接口,能够满足开关磁阻电机的高 精度控制需求。我们利用STM32F4系列单片机的PWM(Pulse Width Modulation)模块实现对电机的速度控制,利用ADC(Analog-to-Digital Converter)模块实现对电机电流和电压的采样和处理。
开关磁阻电动机调速系统在空气压缩机上的应用

开关磁阻电动机调速系统(SRD)在空气压缩机上的应用图 1:开关磁阻电动机原理图一、 SRD 工作原理简介开关磁阻电动机(SRM )是定子、转子双凸极可变磁阻电动机。
定子、转子均由硅钢片叠压而成,转子上既无绕组也无永磁体,定子极上绕有集中绕组。
开关磁阻电动机可设计成多种不同相数结构,且定、转子的极数有多种不同的搭配。
图1所示电动机为8/6极。
若以图1中定、转子的相对位置作为起始位置,依次给A →B →C →D 相绕组通电,转子即会逆着励磁顺序以逆时针方向连续旋转;反之,依次给D →C →B →A 相通电,则电动机会顺时针方向转动。
开关磁阻电动机的转向与相绕组的电流方向无关,只取决于相绕组通电的顺序。
该电动机结构比鼠笼式交流异步电动机还要简单,其突出的优点是定子上只有几个集中绕组,转子上无任何形式的绕组,机械强度很高,制造简单、可靠性高。
控制器通过电子电路控制功率开关器件的导通与关断,功率开关器件又控制电动机各相绕组的导通与关断,从而使电动机旋转,旋转方向与电流方向无关。
通过控制绕组导通与关断的顺序,可以控制电动机的旋转方向,通过控制绕组的电流及开通与关断角度可以控制电动机的转速。
控制器原理如图2所示。
模拟量输入RS232模拟量输出开关量输入开关量输出图2:开关磁阻电动机控制器原理图二、SRD系统特性开关磁阻电动机调速系统是由嵌入式微处理器、大规模数字模拟器件、电力电子功率器件及开关磁阻电动机共同组成的新型调速系统,其性能指标比普通交流变频调速系统及直流电机调速系统都要好,它是一种新颖的、高性价比的、具有典型机电一体化结构的无级调速系统。
该系统具有以下优点:1.系统效率高开关磁阻电动机调速系统在其宽广的调速范围内,整体效率比其它调速系统高出至少10%。
在低转速及非额定负载下高效率更加明显。
2.调速范围宽,低速下可长期运转开关磁阻电动机调速系统在整个调速范围内均可带负荷长期运转,电机及控制器的温升均低于工作在额定负载时的温升。
第2章开关磁阻电机

磁链方程 第2章开关磁阻电机
所以:
Uk
Rkik
k ik
dik k
dt q
dq
dt
Rkik
Lk
ik
Lk ik
ddikt ik
Lk
q
dq
dt
电阻压降
变压器电动势
运动电动势 (转子位置改变)
第2章开关磁阻电机机 械运动方程:
Te Jdd2tq2 kddqt TL
式中Te——电磁转矩; J——系统的转动惯量; k——摩擦系数;
1)电动机结构简单、成本低、适用于高速, 开关磁阻电动机的结构比通常认为最简 单的鼠笼式感应电动机还要简单。
2)功率电路简单可靠 因为电动机转矩方向 与绕组电流方向无关,即只需单方向绕 组电流,故功率电路可以做到每相一个 功率开关。
第2章开关磁阻电机
SRD特点:
3)各相独立工作,可构成极高可靠性系统 从电 动机的电磁结构上看,各相绕组和磁路相互 独立,各自在一定轴角范围内产生电磁转矩。 而不像在一般电动机中必须在各相绕组和磁 路共同作用下产生一个圆形旋转磁场,电动 机才能正常运转。
第2章开关磁阻电机 2.1.5 SRD发展概况
7.5 kW 、1500 r/min几种调速系统性能比较
第22章.开1关磁.6阻电机SRD的应用与研究动向
电动车
航空工业
应
家用电器
用
机械传动
精密伺服系统
的研究方向 SRD 第2章开关磁阻电机
v SR电机设计研究:
™ 铁心损耗计算、转矩脉动、噪声、优化设计等理论
第2章开关磁阻电机 2.1 SRD传动系统 2.1.1 SRD传动系统的组成
电源
功率变换器
三相12-8极开关磁阻电机驱动系统建模与仿真

三相12-8极开关磁阻电机驱动系统建模与仿真1 概述开关磁阻电机(SRM)定子和转子都是凸极形状,且都是由高磁导率的硅钢片堆叠而成,只在定子磁极上安装有集中绕组,转子上既没有绕组也没有永磁体。
与其他电机相比,其结构简单牢固、成本低、调速范围宽、控制灵活等优势十分突出,因此在需要调速和高效率的场合得到了广泛应用。
但是双凸极的结构也带来了磁路饱和、涡流、磁滞效应等一系列的非线性特性,严重影响了开关磁阻电机的运行性能,并且使开关磁阻电机的具体分析研究十分困难。
为了准确研究开关磁阻电机的特性,必须对开关磁阻电机进行建模仿真。
文章基于MATLAB/Simulink仿真系统对三相12/8极开关磁阻电机的驱动系统进行了整体建模仿真研究,將组成系统的开关磁阻电机(SRM)、功率变换器、控制器和位置检测器四部分模块化,对整个系统采用转速、电流双闭环控制方法。
仿真结果验证了搭建模型的正确性。
文章的模型具有参数修改方便,通用性强,适用于开关磁阻电机各种运行模式的特点,为开关磁阻电机及其驱动系统的优化控制研究创造了条件。
2 基于Matlab的SRD仿真模型的建立文章在Matlab/Simulink环境中,利用软件自带的丰富模块库,在分析了开关磁阻电机非线性模型的基础上,搭建出了SRD仿真模型。
系统采用转速、电流双闭环的控制方法,其中转速外环采用PI调节控制,电流环内环采用低速时的电流斩波和高速时的角度位置控制方式。
整个SRD包括电机本体模块、功率变换器模块、控制器模块和位置检测器模块四部分,通过各个模块的协调配合,实现开关磁阻电机的稳定运行。
3 仿真结果基于建立的开关磁阻电机驱动系统模型进行仿真,设定直流母线电压为513V,最大电感为140mH,最小电感为20mH,每相绕组电阻为1.1Ω,转动惯量为0.02kg·m2,摩擦系数为0.001N.ms,将定子凸极和转子凸极对齐的位置定义为0°。
可以得到不同条件下电机运转时的电流、电压、转矩、转速的仿真波形。
开关磁阻电机的电磁设计

开关磁阻电机的电磁设计开关磁阻电机(Switched Reluctance Motor,简称SRM)是一种利用磁阻力产生转矩的电机。
在SRM电机中,转动部件是一个由一系列磁场互相耦合的铁磁材料构成的转子,它和定子之间没有任何电磁感应元件。
因此,SRM电机具有许多优点,例如结构简单、容量小、重量轻、高效率以及低成本等。
SRM电机的电磁设计是SRM电机设计中的一个重要环节。
其设计目标是使电机的转矩和功率因数优化,并使其达到高效率运行。
为了实现这个目标,需要进行以下几个方面的电磁设计。
首先,需要确定电机的工作原理和各种性能指标。
在SRM电机的设计中,常用的工作原理是磁阻推力原理。
在该原理下,通过改变定子上电流的大小和方向,可以产生一个斥力,进而驱动转子转动。
因此,需要确定电机的定子电流和栅极火花的位置和数量等参数。
其次,需要进行电机的磁路设计。
磁路设计主要包括定子和转子的磁路结构设计。
在定子的磁路设计中,需要确定定子的槽形和定子线圈的绕组方式。
在转子的磁路设计中,需要确定转子的磁阻分布和转子磁通闭合的路径。
通过对定子和转子的磁路设计,可以优化电机的磁通分布,提高电机的磁阻和转矩。
然后,需要进行电机的线圈设计。
线圈设计主要包括定子线圈和转子线圈设计。
定子线圈设计中,要考虑线圈元件的形状和尺寸,以及线圈的绕组结构和电流密度。
转子线圈设计中,要考虑转子线圈的尺寸和形状,以及线圈的绕组方式和电流密度。
通过优化线圈的设计,可以提高电机的工作效率和功率因数。
最后,需要进行电机的性能评估和优化设计。
性能评估主要包括电机的转矩、功率因数、效率等。
通过对电机的性能进行评估,可以找出电机的不足之处,进行相应的优化设计,以提高电机的性能。
总之,SRM电机的电磁设计是SRM电机设计中的一个重要环节。
通过合理的电磁设计,可以提高电机的转矩和效率,实现电机的高效运行。
但是,电磁设计还需要考虑其他因素,如电机的机械设计、控制系统设计等。
srm开关磁阻电机控制器说明书

srm开关磁阻电机控制器说明书SRM开关磁阻电机控制器说明书一、概述SRM开关磁阻电机控制器是一种用于控制开关磁阻电机的电气装置。
本文将详细介绍SRM开关磁阻电机控制器的工作原理、特点以及使用注意事项。
二、工作原理SRM开关磁阻电机是一种基于磁阻转矩原理工作的电机,其特点是无需永磁体,具有低成本、高效率和高可靠性的优势。
SRM开关磁阻电机控制器通过控制电流的通断来实现对电机的转速和转矩的控制。
在电机工作时,控制器根据电机转子位置信息和用户设定的转速、转矩要求,通过电流开关器控制电流的通断。
当电流通断时,电机的转矩和转速将发生相应的变化,从而实现对电机的精确控制。
三、特点1. 高效率:SRM开关磁阻电机控制器采用先进的控制算法,能够实现高效的电机控制,提高能源利用效率。
2. 高可靠性:SRM开关磁阻电机控制器采用高品质的电子元件和稳定性强的控制系统,具有较高的可靠性和稳定性,能够在恶劣环境下正常工作。
3. 精确控制:SRM开关磁阻电机控制器能够根据用户的需求精确控制电机的转速和转矩,满足不同应用场景的要求。
4. 多功能:SRM开关磁阻电机控制器具有多种控制模式和保护功能,可适应不同工况和应用环境的需求。
四、使用注意事项1. 安全操作:在使用SRM开关磁阻电机控制器时,务必遵守相关安全操作规程,确保人身安全和设备正常运行。
2. 维护保养:定期对SRM开关磁阻电机控制器进行维护保养,清洁电气元件和散热器,确保设备的正常运行。
3. 防护措施:在安装SRM开关磁阻电机控制器时,应采取防护措施,避免水、尘等外界物质对设备的影响。
4. 温度控制:SRM开关磁阻电机控制器在工作过程中会产生一定的热量,应确保控制器周围的温度适宜,防止过热造成设备损坏。
5. 电源稳定:SRM开关磁阻电机控制器对电源的稳定性要求较高,应确保电源的稳定和可靠,避免电压波动对设备的影响。
总结:本文详细介绍了SRM开关磁阻电机控制器的工作原理、特点以及使用注意事项。
基于最优开通角的开关磁阻电机调速系统建模与仿真

基于最优开通角的开关磁阻电机调速系统建模与仿真张正苏【摘要】开关磁阻电机驱动系统(S RD )是一种广泛应用于工业技术领域的新型电动机驱动系统,如何对其建立精确的非线性模型是其高性能得以实现的必要前提。
应用 Ansoft Maxwell有限元分析软件,经计算获得开关磁阻电机(SRM )的静态电磁特性,在此基础之上,针对开关磁阻电机驱动系统(SRD)进行建模并通过Matlab软件平台进行仿真。
采取固定关断角、选取最优开通角的控制策略进行S RD系统仿真,针对不同设置模式下的仿真结果对比分析,为后续的S RD实验测试环节完成前期的必要准备。
%Switched reluctance motor speed control system is a new type of motor drive system applied to the field of industrial technology ,and a wide range ,accurate nonlinear model is very important for the high performance of SRD . In this paper , finite elementis used to analyze and calculate the static electromagnetic characteristicsof SRM .Based on this ,the nonlinear model of SRD is established and the simulation is realized by the use of Matlab software platform .Turn‐off angle is fixed and the opening angle is variable .Under the control strategy in this paper ,the simulation results of different mode are analyzed in detailed ,and the data of future SRD experimental test is predicted effectively ,which will have a certain reference value for theoretical research and practical application .【期刊名称】《黑龙江工程学院学报(自然科学版)》【年(卷),期】2015(000)004【总页数】6页(P37-42)【关键词】SRM;电磁特性;建模仿真;开通角;关断角【作者】张正苏【作者单位】黑龙江工程学院电气与信息工程学院,黑龙江哈尔滨 150050【正文语种】中文【中图分类】TM352开关磁阻电机(SRM)是20世纪80年代中期随着电力电子技术、微型计算机技术和现代控制理论的迅猛发展而发展起来的一种新型机电一体化产品,是调速领域的一个新分支。
开关磁阻电机

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
开关磁阻电机的工作原理
SRM的工作原理
• 电磁感应原理:转子绕组切割磁力线产生感应电动势 • 磁阻变化原理:定子凸极与转子凸极相对位置变化导致 磁阻变化 • 扭矩产生:磁阻变化产生电磁扭矩,驱动转子旋转
SRM的运转过程
• 启动阶段:电流通过定子绕组产生磁场,转子开始旋转 • 运行阶段:转子转速增加,磁阻变化减小,电流逐渐减 小 • 停止阶段:转子停止旋转,磁阻变化消失,电流降至零
应用领域的拓展
• 新能源汽车:提高电动汽车性能,降低能耗 • 家用电器:提高家用电器性能,降低能耗 • 工业自动化:提高生产效率,降低能耗
技术水平的提升
• 高性能电机的研究与应用:提高电机性能 • 新型控制策略的研究与应用:提高控制精度和响应速度 • 高性能驱动电路的研究与应用:提高驱动效率和可靠性
开关磁阻电机的技术发展趋势
高性能材料的应用
• 高磁能永磁材料:提高电机磁能密度 • 高强度绝缘材料:提高电机绝缘性能 • 高导热材料:提高电机散热性能
高性能电机设计
• 优化磁路设计:提高电机效率和扭矩 • 优化绕组设计:降低铜损,提高效率 • 优化轴承设计:提高电机运行稳定性
开关磁阻电机的研究热点与挑战
研究热点
• 新型控制策略:提高控制精度和响应速度 • 高性能驱动电路:提高驱动效率和可靠性 • 高性能材料的研究与应用:提高电机性能
挑战
• 高效率与高性能的平衡:提高电机效率,同时保持高性能 • 控制策略的优化:实现精确控制,提高系统性能 • 制造工艺的改进:提高电机制造工艺水平,降低成本
开关磁阻电机的未来展望
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关磁阻电机SRM的原理及建模
1、SRM工作原理
SRM的转矩是磁阻性质,其运行原理遵循“磁阻最小原理”——磁通总是要沿磁阻最小的路径闭合。
当定子某相绕组通电时,所产生的磁场由于磁力线扭曲而产生切向磁拉力,试图使相近的转子极旋转到其轴线对齐的位置,即磁阻最小位置。
SRM为双凸极结构,其定、转子均由普通硅钢片叠加而成。
转子上既无绕组也无永磁体,定子齿极上绕有几种绕组,径向相对的两个绕组可以串联或并联在一起,构成“一相”。
转动方向总是逆着磁场轴线的移动方向,改变SRM的定子绕组的通电顺序,即可改变电机的转动方向;而改变通电相电流的方向,并不影响转子转动的方向。
2、SRM控制方式
(1)斩波控制:
在SRM起动、低、中速运行时,电压不变,旋转电动势引起的压降小,电感上升期的时间长,而的值相当大,为避免电流脉冲峰值超过电流的允许值,采用滞环控制来限制电流。
如本文中的电流滞环控制模块的作用是实现电流斩波,两个输入分别为实际电流和参考电流,输出即作为SRM的输入信号,模块结构如图1-1所示。
当A 相主开关开始导通,相电流I从零开始上升,当I超过参考电流且偏差大于滞环比较器的环宽时,即实际电流I大于电流上限值Imax,开始斩波;主开关器件关断,I下降,当I低于参考电流且偏差大于滞环比较器的环宽时,即实际电流I小于电流下限值控制Imin,主开关器件重新导通,I便开始上升,如此主开关器件反复通断,直到转子转到关断角的位置时,主开关器件关断,I一直下降到零。
当转子转过一个周期后,这相电流斩波过程又开始重复。
一般斩波是在相电感变化区域内进行的,由于电机的平均电磁转矩与相电流I的平方成正比,因此通过设定相电流允许限值Imax和Imin,可使SRM工作在恒转矩区。
在一个周期内,由于相绕组电感不同,电流的变化率也不同,因此,斩波频率疏密不均。
在低电感区,斩波频率较高;高电感区,斩波频率下降。
其电流波形如图1-2所示。
(2)角度控制:
直接调控主开关器件的导通角θon和关断角θoff,可以影响电机的励磁过程。
通常导通角只能在电感不变和电感增大的区域,关断角只能在电感上升区域或电感最大区域,不能在电感下降区域。
θon提前或θoff推后都增加励磁时间,增励
磁电流。
但值得注意的是,对于SR发电机,θoff推后比θon提前对电流的影响大,这一点与SR电动机有所不同。
(3)电压控制:
将导通角和关断角固定在优化值上,用PWM信号对功率变换器中主开关的触发信号,调整PWM信号的占空比来调节平均励磁电压,从而调控励磁电流,占空比增大,励磁电流增大。
PWM控制需要较高的开关频率,增加了开关损耗及电机损耗,所以系统效率略微降低。
对于双开关型功率变换器主电路,可以采用双管同时调制,也可单管调制。
单管调制比多管调制有利,可以减小电流脉动,有利于降低振动噪声;可以减小功率开关的动态损耗,提高运行效率。
3、三相6/4 SRM建模。