分式的乘除(1)

合集下载

8.4分式的乘除(1)

8.4分式的乘除(1)

初中数学八年级下册8.4分式的乘除(1)班级 姓名 学号学习目标:(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 学习重点:掌握分式的乘除运算。

学习难点:分子、分母为多项式的分式乘除法运算。

教学过程一、情境引入:你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?(1)b ac 34·3229ac b = (2)b ac 34 3229acb = 二、探究学习:(1)你能说出前面两道题的计算结果吗?(2)你能验证分式乘.除运算法则是合理的.正确的吗?(3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗? 归纳小结:(1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

即: a b ×c d =ac bd。

(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

即:a b ÷c d =a b ×d c =ad bc。

(3)分式的乘方法则:分式乘方是把分子、分母各自乘方。

即:( a b )n =a nb n三、典型例题:例1、计算:1. ba a 2284-.6312-a ab 2。

(c b a 4+)2 例2、计算、1.x y 62÷231x 2.2244196a a a a +++-÷12412+-a a 归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.四、反馈练习:(1) xyz y x z 54232÷- (2) b a b a 22+-.2222b a b a -+ (3) (a-4).1681622+--a a a (4) 2222)1()1()1(--+x x x ÷1)1(22--x x 五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?(2)你认为买大西瓜合算还是买小西瓜合算?七、课堂小结:1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。

分式的乘除(一)

分式的乘除(一)

反思小结: (1)分式的乘除法运算的法则; (2)运用法则时要注意符号的变化; (3)注意因式分解在分式的乘除法中的运用; (4)步骤要完整,结果要化为最简分式或整式;
达标检测(时量:5 分钟 满分:10 分) 1.下列各式正确的是( )
1 ( a b) 1 A. ab a2 a 2 (a 1) a 1 C. a
学习目标 理解并掌握分式的乘除法 则,运用法则进行运算,能 解决一些与分式有关的实际 问题.
• 观察下列运算
2 4 2 4 5 2 5 2 ,........... , 3 5 3 5 7 9 79 2 4 2 5 25 5 2 5 9 5 9 ,.... 3 5 3 4 3 4 7 9 7 2 72 b d b d 猜一猜 ? ....... ? a c a c 你能总结出分式乘除法的法则吗?与同伴交流。
4 4 3 3 答:)西瓜瓤的体积V1 (R d ) , 整个西瓜的体积V R (1 3 3 V1 d 3 (2) (1 ) V R
合作探究

◆ 探究任务三:
3a 3b 25a 2 b 3 2 (1) 10 ab a b2
x2 4y2 x 2y 2 2 2 (2) x 2 xy y 2 x 2 xy
分式运算的结果通常要化成最简分式或整式.
• 做一做
通常购买同一品种的西瓜时,西瓜的质量越大,花费的 钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大 越好.假如我们把西瓜都看成球形,并把西瓜瓤的密 度看成是均匀的,西瓜的皮厚都是d,已知球的体积公 4 V R 3 (其中R为球的半径),那么 式为 3 • (1)西瓜瓤与整个西瓜的体积各是多少? (2)西瓜瓤与整个西瓜的体积的比是多少? (3)你认为买大西瓜合算还是买小西瓜合算?与同伴交 流.

分式的乘除法 1

分式的乘除法 1
2
4、完成下列运算,你想到了什么?说出来与同学们分享.
2 4 1. 3 5 5 2 2 . 7 9 2 4 3. 3 5 5 2 4 . 7 9
2 4 3 5
5 2 79 2 5 25 3 4 3 4 5 9 5 9 7 2 72
2 2 2
a 2 xy a 2 yz (11) 2 2 2 2 ; b z b x
1、整式与分式运算时,可以把整式看作分母是 1 的式 子。 2、分子和分母都是单项式的分式乘除法的解题步骤是: ①把分式除法运算变成分式乘法运算; ②求积的分式; ③确定积的符号; ④约分。
பைடு நூலகம்
3、计算:
a2 1 2 ( 1) ; a 2 a 2a
2
2 2
3
x y yx 3m n 4mn (7 ) ;( 8 ) 。 3 2 yx x y 2mn 9m n
2 3
2 2
y ;(2) ; 2 x 2 3b ;(4) ; 2a 4 2 2 2 3 x y y ;(6) ; y x x
练习1:
1、下面的计算对吗?如果不对,应该怎样改正?
x 6b 3b 2 (1) 2b x x
4x a 2 (2) 3a 2 x 3
2、计算: b a ( 1) ; a c
2a 1 ( 4) 2 x ax
3
b a a b ( 2) 2 ; ( 3 ) 2 2 ; 2a b b a 2 6a 2 y 2 9 a 8 b ; ( 5) 2 ; ( 6) 2 ; 8 y 3a 4b 6a
那么 :

分式乘除(第1课时)

分式乘除(第1课时)

徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主! 执笔:林朝清第 周 星期 第 节 本学期学案累计: 6 课时 姓名:________课题:16.1.1分式的乘除(第1课时)学习目标 我的目标 我实现理解分式乘除法的法则,会进行分式乘除运算.学习过程 我的学习 我作主导学活动1知识回顾做一做:约分:1.2255x x 2.ba abc ab 22369+ 3.361222-+x x导学活动2知识引入填空: 1.=⨯21534 ; 2.=÷21534 。

类比归纳: 1.d c b a ⋅= ; 2.d c b a ÷= 。

类比分数的乘法法则得出分式的乘法法则:_________________________________________________________________。

分式的除法法则:_________________________________________________________________。

上述法则用式子表示为: 。

导学活动3:知识转化例1: 计算:⑴3234x y y x ⋅ ⑵ cd b a cab 4522223-÷总结步骤:⑴ ; ⑵ ; ⑶ 。

练习:计算(1) 291643a b b a ⋅ (2) ⎪⎪⎭⎫ ⎝⎛-÷x y xy 3232徐闻县和安中学 数学教研组 ◆八年级数学导学案 ◆◆我们的约定:我的课堂 我作主!例2:计算:⑴411244222--⋅+-+-a a a a a a ⑵m m m 7149122-÷-总结步骤:⑴ ;⑵ ;⑶ ;⑷ ;练习:计算:⑴2232251033b a b a ab b a -⋅- ⑵x xx x x 124422÷-+-学习评价 我的评价 我自信当堂检测(限时:5分钟 )我自信 我进取1、计算:(1) y x a xy 28512÷ (2) xyx y x y xy x y x 2222422222++÷++-2.化简求值: x xyx y xy x 12222÷+++ 其中2=x ,1-=y自我小结:1、分式的乘法法则和除法法则用式子表示为:2、分式的乘除运算的步骤:(1)除法转化为乘法;(2)因式分解;(3)运用乘法法则计算;(4)约分为最简分式自我评价:我完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差课后作业 我的作业 我承担课本(P22)习题16.2 第1(1)(3)、2(3)(4)题。

9.3分式的乘除法(1约分)

9.3分式的乘除法(1约分)

教学内容:9.3分式的乘除法(1约分)一、教学目标:(一)知识目标:1、能说出分式约分的意义、依据、关键;2、能说出最简分式的意义。

(二)水平目标:1、使学生掌握约分的方法,2、使学生会熟练地将一个分式实行约分。

(三)情感目标:1、创设情境,通过类比、猜想、归纳,培养数学的学习兴趣。

2、通过培养学生合作学习意识,培养学生互助精神,增强集体荣誉感。

(四)过程与思想:通过与分数的约分作比较,体会数、式通性,渗透"类比"的思想方法.二、教学重点、难点和关键重点:分式约分的方法.难点:分式约分时分式的分子或分母中的因式的符号变化.关键:准确找出分子、分母中的公因式。

三、教学方法:1、教法:引导分析、类比探索,讨论式2、学法:自主、合作、探究式学习四、教学准备:投影仪五、课时安排:1课时六、教学过程:(一)【创设情境,激发兴趣】(投影显示)数学小笑话:富家子弟大阿宝,父母出门远去了,交给厨师来看好。

三餐都把馒头做,“一天三餐各两个?”阿宝哭丧说“不够”。

“一天给你做六个”,阿宝一听就说“够”。

各位同学谁知道,阿宝为何是傻冒?(数学知识来回答,看谁能够解奥妙?请学生写出一个数学式子来说明,同学间可相互讨论。

学生发表观点,教师最后点评)给出等式1:问:什么是分数的约分?约分的依据是什么?约分的目的是什么?(答:把一个分数分子、分母中的公约数约去叫做约分.分数约分的依据是:分数的基本性质.约分的目的:把一个分数化为最简分数(或整数)).给出等式2:问:这个“约分”彻底吗?那你知道约分的关键是什么?(确定分子、分母的最大公约数)(二)【通过类比,引入新课】我们前面刚学习了分式,通过前面学习,同学们想一想,分式在很多方面与学过的什么概念类似?(让学生讨论回答,并指出哪些有类似地方?)(1.基本性质,2.变号法则,3、分母不能为零,……)既然分式和分数有那么多的地方类似,那分式能约分吗?如果能,又怎样约分呢?是不是和分数的约分也类似呢?下面我们共同来探讨这些问题。

10.4分式的乘除(1)爱国精品个性2013年12月26日

10.4分式的乘除(1)爱国精品个性2013年12月26日

2
2
再提醒 1、分式的分子、分母都是几个 因式的积的形式,约去分子、分 母中相同因式的最低次幂,注意 系数也要约分. 2、当分式的分子、分母为多项 式时,先要进行因式分解,才能 够依据分式的基本性质进行约分.
课堂小结
这节课你有哪些收获?说 出来与大家分享.
这节课你还有什么疑问吗? 说出来我们一起解决.
初中数学八年级下册 (苏科版)
10.4分式的乘法(1)
聚焦导学案:
请你归纳: (一)分式把分 母相乘的积作为积的分母.
聚焦导学案:
你能用字母表示分式的乘 法运算法则吗?
(二)字母表示分式的乘 法运算法则:
b d bd a c ac
2 2
x 1 x 3x 2 (8) 2 ( x 1) x 4x 4 x 1
【拓展延伸】小组展示 ☆☆4.先化简,再求值:
2a 6 2 9 6a a (9) 2 4 4a a a 3 3 a 其中a 4
2
(10)变式题:化简求值:
ab 2题、 4c
2
典型例题
例2 :
y 1 1. 2 6 x 3x
2
2
a 6a 9 12 - 4a 2. 2 1 4a 4a 2a 1
例题讲解
y 1 1. 2 6 x 3x
2
2
y 2 解:原式 3x 6x 2 xy 2
聚焦导学案:
聚焦导学案:
请你归纳: (三)分式的除法法则:
▲分式除以分式,把除式的 分子、分母颠倒位置后,与 被除式相乘.
聚焦导学案:
思考:你能用字母表示上述 运算法则吗?
(四)用字母表示除法运算法则:

16.2.1分式的乘除(第1课时)

16.2.1分式的乘除(第1课时)

16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。

2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。

【教学重点难点】重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。

8.4分式的乘除(1)

8.4分式的乘除(1)
8.4 分式的乘除(1)
你还记得分数的乘除法法则吗? 你能用类似于分数的乘除法法 则计算下面两题吗?
• 。
4 ac 3b
4ac 3b
9b 2 ac 3
2
2
9b 3 2 ac
探究学习
• (1)你能说出前面两道题的计算结果吗? • (2)你能验证分式乘、除运算法则是合 理的正确的吗? • (3)类比分数的乘除法则,你能从计算 中总结出怎样进行分式的乘除法运算吗?
反馈练习
2z z 1. 2 4 x y 5 xy
2 3
a-b a b 2. 2 2 2a 2b a b
2 2 2
2
16 - a (x 1) (1 x) ( x 1) 3. (a - 4) 2 4. 2 2 2 a 8a 16 ( x 1) x 1
ቤተ መጻሕፍቲ ባይዱ
2
例题讲解
y 2 ( a 3) 2 2a 1 解:原式 1. 3 x 2. 原式 2 6x ( 2a 1) 4(3 a ) xy 2 (a - 3)2 ( 2a 1) 4(3 - a)(2a 1)2 2
3-a 4(2a 1)
2
归纳小结:
• 分式的乘法运算,先把分子、分母分别 相乘,然后再进行约分;进行分式除法 运算,需转化为乘法运算;根据乘法法 则,应先把分子、分母分别相乘,化成 一个分式后再进行约分,但在实际演算 时,这样做显得较繁琐,因此,可根据 情况先约分,再相乘,这样做有时简单 易行,又不易出错.
归纳小结
• (1)分式的乘法法则:分式乘以分式, 用分子的积做积的分子,分母的积做积 的分母。 • (2)分式的除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被 除式相乘。 • (3)分式的乘方法则:分式乘方,把分 子、分母各自乘方。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4ac 3b
9b 3 2 ac
a 2 ( ) b
2
你能说说分式乘除法法则吗?
分数与分式的乘除法法则类似
b d bd (1) ; a c ac b d b c bc (2) . a c a d ad
• 分数的乘除法法则: • 分式的乘除法法则: • 两个分数相乘,把分 • 两个分式相乘,把分子 子相乘的积作为积 相乘的积作为积的分 的分子,把分母相乘 子,把分母相乘的积作 的积作为积的分母; 为积的分母; • 两个分数相除,把除 • 两个分式相除,把除式 数的分子分母颠倒 的分子分母颠倒位置 位置后,再与被除式 后,再与被除式相乘. 相乘.
积也越大.
因此,买大西瓜更合算.
课堂小结
这节课你有哪些收获?说出来与大家 分享。 这节课你还有什么疑问吗?说出来我 们一起解决。
作业布置:
内:P49 EX 1
外:课课练
2
探究交流
• 在夏季大家都吃过西瓜,但你买过西瓜 吗?你认为买大西瓜合算还是买小西瓜 合算?你知道衡量的标准是什么?
你会挑西瓜吗?
通常购买同一品种的西瓜时, 西瓜的质量越大,花费的钱越多. 因此人们希望西瓜瓤占整个西瓜 的比例越大越好.假如我们把西瓜 都看成球形,并把西瓜瓤的密度看 成是均匀的,西瓜的皮厚都是d .
归纳小结
(1)分式的乘法法则:分式乘以分式, 用分子的积做积的分子,分母的积做积 的分母。 (2)分式的除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被 除式相乘。 (3)分式的乘方法则:分式乘方,把分 子、分母各自乘方。
例1.计算:
a 4 12ab ; 1 2 8a b 3a 6
已知球的体积公式为 4 3 V R (其中R为球的半径), 3 那么 :
(1)西瓜瓤与西瓜的体积各是多少?
4 3 解:西瓜瓤的体积V1 R d 3 4 3 整个西瓜的体积V R 3
(2)西瓜瓤与西瓜的体积的比是多少?
解: 西瓜瓤与整西瓜的体积比是 V1 d 1 V R
2
(a 2)(a 2) 12ab 解 : 原式 2 8a b 3(a 2)
a2 2a
a2 1 你是否悟到 (2) 2 a 2 a 2a 了怎么去做分 式的乘法运算? (a+2) 1 解 : 原式 2 (a 2)(a 2a)
a 2 1 a 2 a a 2
反馈练习
2z z 1. 2 4 x y 5 xy
2 3
a-b a b 2. 2 2 2a 2b a b
2 2 2
2
16 - a (ቤተ መጻሕፍቲ ባይዱ 1) (1 x) ( x 1) 3. (a - 4) 2 4. 2 2 2 a 8a 16 ( x 1) x 1
8.4 分式的乘除(1)
自学提纲
回味练习 知识回顾 知识迁移 (1)
2 2 2 4 2 4 ( ) 3 5 3 5 3
你能叙述分数乘除法法则吗? 你能用类似分数乘除法法则计算下列各题吗?
4 ac ( 4) 3b
a c b d
a c (3) (2) b d
( 5)
9b 2 3 2 ac
2 a b 2 4c
a 2ab b 2 16c
2
2
归纳小结:分式 的乘法运算,先 把分子、分母分 别相乘,然后再 进行约分;
典型例题
例 2:
y 1 1. 2 6 x 3x
a 6a 9 12 - 4a 2. 2 2a 1 1 4a 4a
2
2
3
(3)你认为买大西瓜合算还是买小西 瓜合算? 我认为买大西瓜合算.
V1 d 由 1 可知,R越大,即西瓜越大, V R
3 d d d 的值越小, 1 也越大, 1 的值越大, R R R
3
V1 则 的值也越大, 即西瓜瓤占整个西瓜的体 V
例题讲解
2 y 2 ( a 3 ) 2a 1 解: 1.原式 3 x 2. 原式 2 6x ( 2a 1) 4(3 a ) xy 2 (a - 3)2 ( 2a 1) 4(3 - a)(2a 1)2 2
2
3-a 4(2a 1)
归纳小结:
• 分式的乘法运算,先把分子、分母分别 相乘,然后再进行约分;进行分式除法 运算,需转化为乘法运算;根据乘法法 则,应先把分子、分母分别相乘,化成 一个分式后再进行约分,但在实际演算 时,这样做显得较繁琐,因此,可根据 情况先约分,再相乘,这样做有时简单 易行,又不易出错.
1 2 a 2a
分式乘法运算, 就是运用分式 的运算法则和 分式的基本性 质,进行约分 化简,其结果 通常要化成最 简分式或整式.
(3).
ab 2 ( ) 4c
2
ab 2.解:原式 4c
a b a b 4c 4c
相关文档
最新文档