可查询均匀设计表
均匀设计

1,3列பைடு நூலகம்
试验点划分越细,均匀性越好
1,4列
混合水平均匀设计表
均匀设计表适用于因素水平数较多的试验,但在具体的试 验中,往往很难保证不同因素的水平数相等,这样直接利 用等水平的均匀表来安排试验就有一定的困难。下面采用 拟水平法将等水平均匀表转化成混合水平均匀表。
采用拟水平法将等水平均匀表转化成混合水平均匀表
例: A,B,C三因素;A,B:3水平;C:2水平
均匀设计:可将U6*(64)改造成U6(32×21)
根据使用表,将A和B放在前两列,C放在第三列 ,并将前两列的水平进行合并:{1,2}→1, {3 ,4}→2, {5,6}→3。同时,将第三列的水平合 并为二水平:{1,2,3}→1,{4,5,6}→2,于 是就得到了下面的设计表。这是一个混合水平的 设计表 。
均匀设计
内容
均匀设计的定义及特点 等水平均匀设计表 混合水平均匀设计表 均匀设计与正交设计的对比
均匀设计 :
一种试验设计方法,只考虑试验点在试验范围内均匀 散布的试验设计方法。 它可以用较少的试验次数,安排多因素、多水平的析 因试验,是在均匀性的度量下最好的析因试验。 通过均匀表来安排试验 应用:试验因素变化范围较大,需要取较多水平时
均匀设计的基本步骤
1、明确试验目的,确定实验指标。 2、选因素。 3、确定因素的水平。 4、选择均匀设计表。 5、进行表头设计。 6、明确试验方案,进行试验。 7、实验结果统计分析。
均匀设计与正交设计的对比:
正交设计具有正交性。既可以估计出主效应,也
可估计出交互效应。均匀设计不可能估计出主效应和 交互效应,但是可以估计出回归模型中因素的主效应 和交互效应。 正交设计用于水平数不高的试验,因为它的试验数至 为水平数的平方。均匀设计的试验次数随水平数增加 连续增加。 正交设计的数据分析较简单,均匀设计的数据分析复 杂。
均匀设计与均匀设计表--方开泰.

目录序言 (2)前言 (4)第一章试验设计和均匀设计 (5)1.1试验设计 (5)1.2试验的因素和水平 (7)1.3因素的主效应和因素间的交互效应 (10)1.4全面试验和多次单因素试验 (15)1.5正交试验法(正交设计) (18)1.6均匀设计 (21)1.7均匀设计表的使用 (25)第二章回归分析简介及其在均匀设计中的应用 (28)2.1一元线性回归模型 (28)2.2多元线性回归模型 (33)2.3二次型回归模型与变量筛选 (36)2.4应用实例 (38)2.5寻求最优工艺条件 (40)第三章均匀设计表的构造和运用 (43)3.1 均匀设计表的构造 (43)3.2 均匀性准则和使用表的产生 (46)3.4 均匀设计和正交设计的比较 (54)第四章配方均匀设计 (59)4.1 配方试验设计 (59)4.2 配方均匀设计 (61)4.3 有约束的配方均匀设计 (64)4.4 均匀设计在系统工程中的应用 (67)序言在科学实验与工农业生产中,经常要做实验。
如何安排实验,使实验次数尽量少,而又能达到好的试验效果呢?这是经常会碰到的问题。
解决这个问题有一门专门的学问,叫做“试验设计”。
试验设计得好,会事半功倍,反之就会事倍功半了。
60年代,华罗庚教授在我国倡导与普及的“优选法”,即国外的斐波那契方法,与我国的数理统计学者在工业部门中普及的“正交设计”法都是试验设计方法。
这些方法经普及后,已为广大技术人员与科学工作者掌握,取得一系列成就,产生了巨大的社会效益和经济效益。
随着科学技术工作的深入发展,上述两种方法就显得不够了。
“优选法”是单变量的最优调试法,即假定我们处理的实际问题中只有一个因素起作用,这种情况几乎是没有的。
所以在使用时,只能抓“主要矛盾”,即突出一个因素,而将其他因素固定,这样来安排实验。
因此“优选法”还不是一个很精确的近似方法。
“正交设计”的基础是拉丁方理论与群论,可以用来安排多因素的试验,而且试验次数对各因素的各水平的所有组合数来说是大大地减少了,但对于某些工业试验与昂贵的科学实验来说,试验仍嫌太多,而无法安排。
8. 均匀试验设计表解析

2
2 4 6 8 10 1 3 5 7 9 11
4
4 8 1 5 9 2 6 10 3 7 11
5
5 10 4 9 3 8 2 7 1 6 11
6
6 1 7 2 8 3 9 4 10 5 11
7
7 3 10 6 2 9 5 1 8 4 11
8
8 5 2 10 7 4 1 9 6 3 11
9 10
9 7 5 3 1 10 8 6 4 2 11 10 9 8 7 6 5 4 3 2 1 11
8
8 5 2 10 7 4 1 9 6 3
9 10
9 7 5 3 1 10 8 6 4 2 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10
列号 试验号
U11(1110)均匀设计表
3
3 6 9 1 4 7 10 2 5 8 11
1
1 2 3 4 5 6 7 8 9 10 11
U9(96)均匀设计表
1
1 2 3 4 5 6 7 8 9
列号
试验号
2
2 4 6 8 1 3 5 7 9
3
4 8 3 7 2 6 1 5 9
4
5 1 6 2 7 3 8 4 9
5
7 5 3 1 8 6 4 2 9
6
8 7 6 5 4 3 2 1 9
1 2 3 4 5 6 7 8 9
列号 试验号
平
140.0 140.5
136.5 137.0 137.5 138.0 138.5 139.0 139.5
220
230
240
250
选择U9(96)均匀设计表 同时根据U9(96)设计使用表可将两因 素分别安排在第一列、第三列。试验方 案及结果见下表:
常用均匀设计表

常用(校园交达电脑最新版)均匀设计表表1)5(35U试验号 1 2 3 1 1 2 4 2 2 4 3 3 3 1 2 4 4 3 1 55 5 5表2)5(35U 的使用表因素个数列号 D2 1 2 0、3100 31230、4570表3 )6(4*6U 试验号 1 2 3 4 1 1 2 3 6 2 2 4 6 5 3 3 6 2 4 4 4 1 5 3 5 5 3 1 2 66 541表4)6(4*6U 的使用表因素个数列 号D 2 1 3 0、1875 3 1 2 3 0、2656 412340、2990表5 )7(47U试验号12341 123 6 2 24 65 3 36 2 4 4 4 1 5 3 5 5 3 1 2 6 6 5 4 1 77777表6 )7(47U 的使用表因素个数列号D 2 1 3 0、2398 3 1 2 3 0、3721 412340、4760表7 )7(4*7U 试验号 1 2 3 4 1 1 3 5 7 2 2 6 2 6 3 3 1 7 5 4 4 4 4 4 5 5 7 1 3 6 6 2 6 2 77531表8 )7(4*7U 的使用表 因素个数列号 D2 13 0、1582 32340、2132表9 )8(5*8U 试验号 1 2 3 4 5 1124782 2 4 8 5 73 3 6 3 3 64 4 8 7 15 5 5 1 2 8 46 6 3 6 6 37 7 5 1 4 2 887521表10 )8(5*8U 的使用表 因素个数列号D 2 1 3 0、1445 3 1 3 4 0、2000 412350、2709表11 )9(59U试验号 1 2 3 4 5 1 1 2 4 7 8 2 2 4 8 5 7 3 3 6 3 3 6 4 4 8 7 1 5 5 5 1 2 8 4 6 6 3 6 6 3 7 7 5 1 4 2 8 8 7 5 2 1 999999表12 )9(59U 的使用表因素个数列号D 2 1 3 0、1944 3 1 3 4 0、3102 412350、4066表13 )9(4*9U 试验号 1 2 3 4 1 1 3 7 9 2 2 6 4 8 3 3 9 1 7 4 4 2 8 6 5 5 5 5 5 6 6 8 2 4 7 7 1 9 3 8 8 4 6 2 99731表14 )9(4*9U 的使用表 因素个数列号 D2 1 2 0、1574 32340、1980表15 )10(8*10U 试验号 1 2 3 4 5 6 7 8 1 1 2 3 4 5 7 9 10 2 2 4 6 8 10 3 7 9 3 3 6 9 1 4 10 5 8 4 4 8 1 5 9 6 3 7 5 5 10 4 9 3 2 1 6 6 6 1 7 2 8 9 10 5 7 7 3 10 6 2 5 8 4 8 8 5 2 10 7 1 6 3 9 9 7 5 3 1 8 4 2 10109876421表16 )10(8*10U 的使用表因素个数列号D 2 1 6 0、1125 3 1 5 6 0、1681 4 1 3 4 5 0、2236 5 1 3 4 5 7 0、2414 6123 5680、2994表17 )11(611U试验号 1 2 3 4 5 8 1 1 2 3 5 7 10 2 2 4 6 10 3 9 3 3 6 9 4 10 8 4 4 8 1 9 6 7 5 5 10 4 3 2 6 6 6 1 7 8 9 5 7 7 3 10 2 5 4 8 8 5 2 7 1 3 9 9 7 5 1 8 2 10 10 9 8 6 4 1 11111111111111表18 )11(611U 的使用表因素个数列号D 2 1 5 0、1632 3 1 4 5 0、2649 4 1 3 4 5 0、3528 5 1 2 3 4 5 0、4286 6123 4560、4942表19 )11(4*11U 试验号 1 2 3 41 1 5 7 112 2 10 2 103 3 3 9 94 4 8 4 85 5 1 11 76 6 6 6 67 7 11 1 58 8 4 8 49 9 9 3 3 10 10 2 10 2 1111751表20 )11(4*11U 的使用表 因素个数列号 D 2 1 2 0、1136 32340、2307表21 )12(10*12U 试验号 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 8 9 10 12 2 2 4 6 8 10 12 3 5 7 11 3 3 6 9 12 2 5 11 1 4 10 4 4 8 12 3 7 11 6 10 1 9 5 5 1 6 6 12 5 11 4 10 9 2 8 7 7 7 1 8 2 9 3 4 11 5 6 8 8 3 11 6 1 9 12 7 2 5 9 9 5 1 10 6 2 7 3 12 4 1 2 9 3 11 11 9 7 5 3 1 10 8 6 2 121211109875431表22 )12(10*12U 的使用表 因素个数列号 D 2 1 5 0、1163 3 1 6 9 0、1838 4 1 6 7 9 0、2233 5 1 3 4 8 10 0、2272 6 1 2 6 7 8 9 0、2670 7126789100、2768表23 )13(813U试验号 1 2 3 4 5 6 7 8 1 1 2 5 6 8 9 10 12 2 2 4 10 12 3 5 7 11 3 3 6 2 5 11 1 4 10 4 4 8 7 11 6 10 1 9 5 5 10 12 4 1 6 11 8 6 6 12 4 10 9 2 8 7 7 7 1 9 3 4 11 5 6 8 8 3 1 9 12 7 2 5 9 9 5 6 2 7 3 12 4 1 3 11 11 9 3 1 10 8 6 2 12 12 11 8 7 5 4 3 13131313表24 )13(813U 的使用表因素个数列号 D 2 1 3 0、1405 3 1 4 7 0、2308 414570、31075 1 4 567 0、38146 1 2 4 5 67 0、44397 1 2 4 5 6 7 8 0、4992 Uniform Design tables 网站地址Uniform Design tables:均匀设计表factor:因素level:水平run:试验次数。
均匀设计

Regression Residual Total
a. Predic tors: (Con stant), X 3 方 , X1X2, X4, X1, X2, X3 b. Dependent Variable: Y
Coefficientsa Standardi zed Coefficien ts Beta -2.146 -2.715 -4.106 .329 4.695 3.658
在淀粉接枝丙烯制备高吸水性树脂的试验中,为了提高树脂吸盐水的能力,考察 了丙烯酸用量X1,引发剂用量X2,丙烯酸中和度X3和甲醛用量X4四个因素,每个因素取 9个水平,如下表所示:
根据因素和水平,我们选取均匀设计表U9﹡(94)或U9﹡(95)。但由于它们的使 用表可以发现,均匀表U9﹡(94)最多只能安排3个因素,所以选用U9﹡(95)来安排 该实验。根据U9﹡(95)的使用表,将x1,x2,x3,x4,x5分别放在U9﹡(95)表的1, 2,3,4,5列,试验方案和试验结果如下表所示:
即丙烯酸用量>引发剂用量>丙烯酸中和度>甲醛用量。
例7-2 利用废弃塑料制备清漆的研究中,以提高警惕清漆漆膜的附着 力作为试验目的。结合专业知识,选定了以下四个因素,并确定了每 个因素的考察范围。 因素及水平见下表U10﹡(108):
Coefficientsa Standardi zed Coefficien ts Beta .368 .798 -.315 .333
t 5.896 -7.115 -6.483 -8.120 7.344 8.430 7.456
Sig. .010 .006 .007 .004 .005 .004 .005
a. Dependent Variable: Y
混合水平的均匀设计表

• 2.水平数相同时偏差的比较
• 两种设计水平数相同,但试验数不同的比较。其中当均匀设计的试验数为6时,相应正 交设计的试验数为62,例如 的偏差0.1875,而L36(62)的偏差为0.1597,两者差别 并不很大。所以用均匀设计安排的试验其效果虽然比不上正交设计,但其效果并不太差 ,而试验次数少了6倍。
“方开泰,均匀设计与均匀设计表,科学出版社(1994).”
正交试验可以进行部分试验而得到基本上反映全面情况的试验结果,但是,当试验中因 素数或水平数比较大时,正交试验的次数很多。如5因素5水平,用正交表需要安排52=25次试 验。这时,可以选用均匀设计法,仅用5次试验就可能得到能满足需要的结果。
▪1978年,七机部由于导弹设计的要求,提出了一个五因素的试验,希望每个因素的水平数要多 于10,而试验总数又不超过50,显然优选法和正交设计都不能用,方开泰与王元经过几个月的 共同研究,提出了一个新的试验设计,即所谓“均匀设计”,将这一方法用于导弹设计,取得了成 效。
11 10
9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11
11 10
9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11
▪如U6(64)表示要做次6试验,每个因素有6个水平,该表有4列。
U6(64)
列号
1
2
3
4
试验号
1
1
2
3
6
2
2
4
6
5
y在 第 k次 试 验 的 结 果 。
L ij
n k 1
xik
_
x
i
xik
_
x
8. 均匀试验设计表

二、均匀设计试验结果的分析
1、直观分析 2、回归分析
实例:某酒厂在生产啤酒过程中,选择 底水(X1)和吸氨时间(X2)进行一比 较试验,两因素均选9个水平,试验考核 的指标为吸氨量(Y)。
试验因素水平为:
因素
水平
底水(X1) 136.5 (g)
吸氨时间(X2) 170
(min)
137.0
说明:王元、方开泰的研究表明,由于均匀 设计表列间的相关性,用Un(mk)最多可 以安排(k/2)+1个因素。这里(k/2)取 整,如(5.8)则取5。
U5(54)最多可安排3个因素,最大4个因素。 U6(66)最多可安排4个因素,最大6个因素。 U7(76)最多可安排4个因素,最大6个因素。 U8(86)最多可安排4个因素,最大6个因素。 U9(96)最多可安排4个因素,最大6个因素。 U10(1010)最多可安排6个因素,最大10个因素。
180
137.5
190
138.0
200
138.5
210
139.0
220
139.5
230
140.0
240
140.5
250
选择U9(96)均匀设计表 同时根据U9(96)设计使用表可将两因
素分别安排在第一列、第三列。试验方 案及结果见下表:
因素 列号 试验号
1 2 3 4 5 6 7 8 9
X1(底水)
3
3 6 9 1 4 7 10 2 5 8
4
4 8 1 5 9 2 6 10 3 7
5
5 10 4 9 3 8 2 7 1 6
6
6 1 7 2 8 3 9 4 10 5
7
7 3 10 6 2 9 5 1 8 4
均匀设计表

、第七章均匀设计表均匀设计表U n(q p)说明:n均匀设计表的试验方案数q列的水平数p均匀设计表的因子数均匀设计表根据水平数q和试验方案数n的关系分为两类,一类为水平数等于试验方案数的U n(n p)型均匀设计表,另一类为水平数小于试验方案数的U n(q p)型均匀设计表。
本附录的均匀设计表均来源于方开泰教授的均匀设计网站:在这里向方开泰教授对于均匀设计做出的卓越贡献表示崇高的敬意!本附录从中摘录了部分常用的基于中心化偏差的均匀设计表供供大家使用,主要包含以下内容:】U n(n p)型表:仅列出因子数不超过7,试验方案数不超过30的部分设计方案。
U n(q p)型表:仅列出水平数不超过6,试验方案数不超过30的部分设计方案。
均匀设计表在使用时,按照相应的因子数p、水平数q和试验方案数n选定之后,加上相应均匀设计表U n(q p)的第一列即可。
(一)U n(n p)型均匀设计表U5(5p)~U6(6p)·{U8(8p)U9(9p)U10(10p)U12(12p)U15(15p)U16(16p)*U18(18p)U20(20p)U24(24p)U25(25p)U27(27p)—U30(30p)(二)U n(q p)型均匀设计表·U9(3p)U12(3p)》U15(3p)U18(3p)"U21(3p)U24(3p)¥U8(4p)!U12(4p)U16(4p)U20(4p)U24(4p)U10(5p)U15(5p)U20(5p)U25(5p)U12(6p)U18(6p)U24(6p)U30(6p)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可查询均匀设计表、均匀设计表概况表、各因素水平排列表(或配方均匀设计的配方表)、相关系数临界值表、检验临界值表、检验临界值表(变量引入/剔除临界值参考用表)及检验临界值表。
一、均匀设计表
1、均等水平的均匀设计表: 所有因素的水平数都是相等的, 均等于运行次数的均匀设计表。
可供查询的表共有41个, 每个均匀设计表都有与之配套的使用表, 用这些表可以进行2~7个因素、每个因素为5~31、37个水平的试验设计。
图1是均等水平均匀设计表的一个例子。
图1均等水平的均匀设计表及其使用表
2、混合水平的均匀设计表: 将部分因素的临近水平进行水平合并处理后得到混合水平的均匀设计表(混合水平的均匀设计表没有与之配套的使用表)。
可供查询的表共有243个, 用这些表可进行2因素6~30混合水平、3因素6~30混合水平及4因素6~12混合水平的试验设计(运行次数均为双数)。
图2是混合水平均匀设计表的一个例子。
图2混合水平的均匀设计表
二、均匀设计表概况表
反映41个均等水平均匀设计表的运行次数、水平数、列数、类型(*类型还是非*类型)以及它们可安排试验因素数的总体情况的一个表, 见图3。
图3均匀设计表概况表
三、各因素水平排列表
反映各因素水平数值代号排列方式的表。
图4是各因素水平排列表的一个例子。
图4各因素水平排列表
四、配方均匀设计的配方表
反映各原料组成百分比数值排列方式的表。
图5是配方表的一个例子。
图5有约束配方均匀设计的原始配方表
五、相关系数临界值表
显著性水平为0.01、0.05、0.10、0.15、0.20和0.25六个水平值的相关系数临界值的表(自由度1~100)。
图6相关系数临界值表(显著性水平α=0.01)
六、检验临界值表
显著性水平为0.01、0.05、0.10、0.15、0.20和0.25六个水平值的检验临界值的表(第一、第二自由度范围均为1~100)。
图7检验临界值表
七、检验临界值表(变量引入/剔除临界值参考用表)
显著性水平为0.01、0.05、0.10、0.15、0.20和0.25六个水平值的供参考设定引入和剔除变量临界值的检验临界值表(第一自由度=1, 第二自由度为1~100)。
图8检验临界值表(变量引入/剔除临界值参考用表)
八、检验临界值表
显著性水平为0.01、0.05、0.10、0.15、0.20和0.25六个水平值的检验临界值的表(单侧检验用表, 自由度为1~100)。
图9检验临界值表。