高频实验指导书精简版
高频实验指导书正文

a. 频标方式选择外标或10/1MHZ,扫频方式选择窄扫,
图4-3频率特性仪调回路谐振曲线方框图
b. dB衰置X1、dB衰减键全弹出.
c.将RF输出、Y输入端与被测电路输入、输出端连,出现双平行线,调Y增益旋钮,并读0dB校正线高度:H=5格。完成0dB校正后,Y增益旋钮在以后的实验步骤里不要再调动.
AV=
Q=
(2) R=2KΩ,VOP-P=0.21V,BW2=2Δf0.7=
AV=
Q=
(3) R=470Ω,VOP-P=0.12V,BW3=2Δf0.7=
b.接通被测电路电源,以波峰高度满5大格为1计算读出其幅频曲线0.707高的频带宽度T0.7=______小格,则0.707通频带宽度Δf0.7=Δf×T0.7=______MHz。同理,可测0.1高的频带宽度T0.1=_____小格, 则0.1通频带宽度Δf0.1=Δf×T0.1=______MHz。计算出此电路的矩形系数Kr0.1=Δf0.1/Δf0.7=______.
(4)通频带测量
a.用外接频标法:
断开电源,频标外接,SIZE旋钮旋至最右,“MARKER OUT/IN”与“YM8177A”相连,输出电平99dBμV ,调频率从9MHz到8MHz,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.接通被测电路电源, 扫频仪波峰高度H=___5___大格, 中心频率9MHz.
表4-1三极管静态工作点
实测
实测
实测
据Vce判断V是否工作在放大区
原因
Re(R54)
Vb
Ve
Ic
Vce
高频电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
4)、比较LC 与晶体振荡器的频率稳定度。
二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。
三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。
2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。
L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。
(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。
高频实验指导书

目录高频电子线路D1型实验箱总体介绍 ····························错误!未定义书签。
实验一高频小信号调谐放大器··································错误!未定义书签。
实验二高频谐振功率放大器·····································错误!未定义书签。
实验三LC电容反馈三点式振荡器·····························错误!未定义书签。
《高频》(本科)实验指导书(精简版本)

高频电子线路电子信息与电气工程系通信教研室二00八年十月(蔡志明修订)目录实验一高频小信号谐振放大器(甲类) (3)实验二高频功率谐振放大电路(丙类) (8)实验三综合设计(调幅波调制与解调) (21)实验四集成电路频率调制器 (16)实验五集成电路频率解调器 (19)适用专业:通信、电子、信息类专业本科学生一、实验与实践课程的性质、目的与任务1.加深对高频电路课中各单元电路工作原理的理解,做到从实践中来,到实践中去,加深对理性知识的认识。
2.熟悉高频实验仪器的原理和使用。
3.熟悉各单元电路的组成,元件及参数的选择,掌握单元电路的基本设计方法。
4.熟练使用实验仪器,进行电路参数的测试。
5.正确分析实验数据,从而总结出符合实际的正确结论,全面掌握所学知识。
6.能自已设计制作一般电路。
二、实验与实践课程教学的基本要求加强实验与实践教学,理论联系实际,加深对知识的理解与掌握。
提高学生实践操作水平,进行创新性的培养;加强综合性和设计性实验以提高学生解决实际问题的能力。
为了达到以上目的,要求:1. 实验要求:(1)学生实验课前要认真阅读实验与实践指导书,写出预习实验报告。
(2)实验课上认真听老师讲解,回答老师提出的有关实验内容的相关问题。
(3)按要求正确开启实验仪器和设备。
(4)认真进行数据测量和记录。
(5)实验结束,请指导老师检查实验记录,做到实验数据正确,方可终止实验。
(6)关闭实验仪器,整理实验现场。
(7)填写实验记录,教师签字后方可离开。
(8)认真处理实验数据,写出实验报告。
(9)教师应仔细批改实验报告,并把有关情况以不同方式反馈学生。
2. 实践要求:(1)认真选择实践内容。
(2)若现场参观,要服从管理人员指导,认真观察,认真记录。
(3)若进行电子制作,要根据老师要求选择制作项目,研究制作原理,绘制电路原理图,进行印刷电路板制作,安装调试。
(4)上述各项结束后都要认真地写出实践报告。
三、考核办法1.基本要求实验课目的是为了提高学生的动手操作以及创新能力。
高频实验指导书.

实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图32.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
其基本部分与图1-1相同。
图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。
1Q02为射极跟随器,主要用于提高带负载能力。
高频实验实用简易指导书

高频C4电子实验箱总体介绍1、低频信号源的使用方法本实验箱提供的低频信号源是基于本实验箱实验的需要而设计的。
它包括两部分:第一部分:输出500Hz~2KHz信号(实际输出信号范围较宽);此信号可以以方波的形式输出,也可以以正弦波的形式输出。
它用于变容二极管调频单元,集成模拟乘法应用中的平衡调幅单元,集电极调幅单元和高频信号源调频输出。
第二部分:输出20KHz~100KHz信号(实际输出信号范围较宽);此信号以正弦波的形式输出。
它用于锁相频率合成单元。
低频信号源在整机中的位置见整机分布图,电路原理图见附图G8。
低频信号源的使用方法如下:电路原理图中的可调电阻WD5用于调节输出方波信号的占空比;WD3、WD4的作用是:在输出正弦波信号时,通过调节WD3、WD4使输出信号失真最小。
这三个电位器在实验箱出厂时均已调到最佳位置且此三个电位器在PCB板的另一面。
电路原理图中的可调电阻WD6用来调节输出频率的大小; WD2用于调节输出正弦波信号大小。
在使用时,首先要按下开关KD1。
当需输出500Hz~2KHz的信号时,参照电路原理图G8连接好JD1、JD4(此时JD2、JD3应断开),则从TTD1处输出500Hz~2KHz的正弦波;2、高频信号源的使用方法本实验箱提供的高频信号源是基于本实验箱实验的需要而设计的。
它只提供10.7MHz 的载波信号和约10.7MHz的调频信号(调频信号的调制频偏可以调节)。
载波主要用于小信号调谐放大单元、高频谐振功率放大器单元、集电极调幅单元、模拟乘法器部分的平衡调幅及混频单元和二极管开关混频单元。
调频信号主要用于模拟乘法器部分的鉴频单元和FM锁相解调单元。
参看附原理图G10和整机分布图。
晶体振荡输出载波峰峰值不低于1.5V。
LC振荡输出载波峰峰值不低于1V。
高频信号源的使用方法如下:使用时,首先要按下开关KF1。
当需要输出载波信号时,连接JF1(此时JF2、JF3、JF4断开),则10.7MHz的信号由TTF1处输出,WF1用于调节输出信号的大小。
高频实验指导书

目录实验一高频小信号调谐放大器 1 实验二三点式正弦波振荡器 8 实验三非线性丙类功率放大器实验 11实验四模拟乘法器混频 18 实验五模拟乘法器调幅(AM、DSB、SSB) 23附录:仪器的操作使用 28实验一 高频小信号调谐放大器一、实验目的1、 掌握小信号调谐放大器的基本工作原理;2、 掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3、 了解高频小信号放大器动态范围的测试方法;二、实验内容1、 测量单调谐、双调谐小信号放大器的静态工作电2、 测量单调谐、双调谐小信号放大器的增益3、 测量单调谐、双调谐小信号放大器的通频带三、实验仪器1、 高频信号源 1台2、 2 号板 1块3、 双踪示波器 1台4、 扫频仪 1台(选用)四、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q 1、选频回路T 1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率f S =10.7MHz 。
基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。
调节可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。
放大器各项性能指标及测量方法如下: 1、谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,表达式为ie oe C P C P C C 2221++=∑V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) dB 3、通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为BW = 2△f 0.7 = f 0/Q L式中,Q L 为谐振回路的有载品质因数。
高频电子技术实验指导书(简本)

目录实验一:扩展通频带 (1)实验二:小信号谐振放大器 (5)实验三:LC振荡电路 (8)实验四:高频谐振功率放大器 (12)实验五:调幅与检波 (17)实验六:三极管混频器 (24)实验一:扩展通频带实验目的1.掌握共射-共基组合电路法扩展通频带的原理和特性。
2.掌握负反馈法展宽通频带的方法与原理。
实验原理及说明在实际宽频带放大电路中,要展宽通频带,也就是要提高上限工作频率,主要使用组合电路法和反馈法。
组合电路法组合电路法广泛采用共射-共基组合电路,如图1.1所示。
共射电路的电流增益和电压增益都多比较大,但是,由于受到密勒效应的影响,它的上限截止频率比较低,从而带宽受到限制。
共基极电路没有密勒效应存在,所以其上限工作频率远高于共射电路。
在共射-共基组合电路中,上限截止频率由共射极的上限截止频率决定。
利用共基电路输入阻抗小的特点,将它作为共射电路的负载,使共射电路输出总阻抗大大减小,进而使密勒电容大大减小。
这样,共射-共基组合电路的综合高频性能有所改善,从而有效地扩展了共射电路的通频带,亦即拓展了整个组合电路的上限工作频率。
由于共射电路负载减小,所以共射电路的电压增益也会减小,但是,共基电路可以提供足够大的电压增益,以弥补电压增益的损失。
因此,组合电路的整体电流增益和电压增益都比较大。
负反馈法调节负反馈电路中的某些参数,可以改变反馈深度,从而调节负反馈放大器的增益和频带宽度。
如果以牺牲增益为代价,可以扩展放大器的通频带。
图1.2所示电路是由运算放大器构成的电压并联型负反馈放大电路。
将电路中的A 1、A 2点分别与A 点连接,可以得到不同负反馈电阻的反馈通路,构成“电压并联”型的负反馈放大器。
由于运算放大器内部电路由多级放大电路组成,它的电压放大倍数很高,一般可以达到105以上。
为了在深度负反馈时不产生自激振荡,在运算放大器内电路中通常都加有补偿电容。
SR 124.7kR 3R 4CC 图1.1 共射-共基通频带扩展电路对于内接补偿电容的运算放大器,它的开环上截止频率很低(一般只有几赫兹)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一高频小信号调谐放大器实验一、实验目的1、进一步掌握高频小信号调谐放大器的工作原理。
2、学会小信号调谐放大器的设计方法。
二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。
2、测量谐振放大器的电压增益。
3、测量谐振放大器的通频带。
4、判断谐振放大器选择性的优劣。
三、实验仪器1、BT-3(G)型频率特性测试仪(选项)一台2、20MHz模拟示波器一台3、数字万用表一块4、调试工具一套四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。
晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。
图1-1 小信号调谐放大器五、实验步骤本实验中,用到BT-3频率特性测试仪和频谱仪的地方可选做。
参考所附电路原理图G2。
先调静态工作点,然后再调谐振回路。
1、按下开关KA1,则LEDA1亮。
2、调整晶体管QA1的静态工作点:不加输入信号(u i =0),即将TTA1接地,用万用表直流电压档(20V 档)测量三极管QA1发射极对地的电压u EQ (即测P6与G 两焊点之间的电压),调节WA1使u EQ =3V 左右,根据实验参考电路计算此时的u BQ ,u CEQ ,u EQ 及I EQ 。
3、使放大器的谐振回路谐振在10.7MHz方法是:BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。
如果没有频率特性测试仪,可用示波器来观察调谐过程,方法是:在TTA1处输入由高频信号源提供的频率为10.7MHz ,峰峰值Vp-p-=20~100mV 的信号,用示波器在TTA2处观察输出波形,调节TA1使TTA2处信号幅度最大。
4、电压增益A V0使用BT-3频率特性测试仪测0v A 的方法如下:在测量前,先要对测试仪的y 轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y 轴增益”旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N 1dB ,然后接入被测放大器,在保持y 轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。
记下此时的“输出衰减”的值N 2dB ,则电压增益为A V0=(N1-N2)dB若用示波器测量,则为输出信号幅度大小与输入信号幅度大小之比。
方法如下:用示波器测输入信号的峰峰值,记为U i 。
测输出信号的峰峰值记为U 0。
则小信号放大的电压放大倍数A V0=U 0/U i 。
如果A V0较小,可以通过调节静态工作点来改善。
5、测量通频带BW用BT-3频率特性测试仪测量BW :先调节“频率偏移”(扫频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y 轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB 处两对称点在横轴上占有的宽度(记为BW1),根据内频标就可以近似算出放大器的通频带BW= BW1=B 0.7。
6、放大器的选择性放大器选择性的优劣可用放大器谐振曲线的矩形系数K r0.1表示用步骤5中同样的方法测出B 0.1即可得: 7.01.07.01.01.022f f B B K r ∆∆== 由于处于高频区,存在分布参数的影响,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。
在测试要保证接地良好。
六、实验报告1、整理好实验数据,用方格纸画出幅频特性曲线。
2、思考:引起小信号谐振放大器不稳的原因是什么?如果实验中出现自激现象,应该怎样消除?实验二二极管开关混频器实验一、实验目的1、进一步掌握变频原理及开关混频原理。
2、掌握环形开关混频器组合频率的测试方法。
3、了解环形开关混频器的优点。
二、实验内容1、观察环形混频器输出和陶瓷滤波器输出各点的波形。
2、测量输出回路。
3、观察混频器的镜像干扰。
三、实验仪器1、频谱分析仪(选项)一台2、20MHz双踪模拟示波器一台3、万用表一块4、调试工具一套四、实验原理1、环形混频器的工作原理变频器的原理方框图如图2-1所示。
图2—1 变频原理方框图图中u i 为信号电压,u L 为本地振荡电压。
当这两个不同频率的正弦电压,同时作用到一个非线性元件上时,就会在它的输出电流中,产生许多组合频率分量,选用适当的滤波器取出所需的频率分量ωo ,此时就完成了频率变换,这就是变频原理。
五、实验步骤混频器是非线性器件,输出的组合频率较多,为了能更好地观察输出信号,建议使用频谱分析仪对混频器输出端的信号进行测试。
1、熟悉频谱分析仪的使用。
2、调整静态工作点:按下开关K41,则LED41亮。
调节电位器W41使三极管Q41发射极对地的电压U EQ=3.36V(即测P1与G两焊点之间的电压)。
3、 接通射频信号:从IN42输入10.245MHz 的正弦波信号,此信号由正弦波振荡部分产生(产生方法:按下开关K51,连接跳线J54、J53,此时J52、J55、J56断开,调节CC52使TT51处输出信号的频率为10.245MHz ,调节W51使TT51输出信号峰峰值约400mV 左右)。
4、 输入本振信号:从IN41输入10.7MHz 的本振信号, 本振信号由高频信号源提供,产生方法参考高频信号源的使用,本振信号的峰峰值Vp-p 不小于300mV 。
5、 验证环形混频器输出组合频率的一般通式(选做)用频谱仪在TT41处观察混频器的输出信号,验证环形开关混频器输出组合频率的一般通式为()s f f P ±+112 (p=0、1、2……)同时用示波器在TT41处观察波形。
6、 测量输出回路(选做)用频谱仪在TT43处观察各频率分量,计算选频回路对除中频455KHz 之外的信号的抑制度,同时用示波器在TT42处观察输出波形,比较TT41与TT42处波形形状。
7、观察混频器镜像干扰IN41处信号频率不变,由正弦振荡单元的LC 振荡部分产生11.155MHz 的信号作为IN42处的输入信号。
11.155MHz 信号的产生方法是:按下开关K51,连接跳线J52、J55,此时J53、J54、J56断开,调节CC51使TT51处输出信号的频率为11.155MHz ,调节W51使TT51输出信号峰峰值约300mV 左右)。
观察TT42处的信号是否也为455KHz 。
此即为镜像干扰现象。
六、实验报告内容1、整理本实验步骤5、6中所测得的各频率分量的大小,并计算选频回路对中频以外分量的抑制度。
2、绘制步骤5、6中分别从TT41、TT42处用示波器测出的波形。
3、说明镜像干扰引起的后果,如何减小镜像干扰?实验三高频谐振功率放大器实验一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。
2、掌握谐振功率放大器的调谐特性、放大特性和负载特性。
二、实验内容1、调试谐振功放电路特性,观察各点输出波形。
2、改变输入信号大小,观察谐振功率放大器的放大特性。
3、改变负载电阻值,观察谐振功率放大器的负载特性。
三、实验仪器1、BT-3频率特性测试仪(选项)一台2、高频电压表(选项)一台3、20MHz双踪模拟示波器一台4、万用表一块5、调试工具一套四、实验原理根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q1组成甲类功率放大器,晶体管Q2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛,下面介绍它们的工作原理及基本关系式。
图3-1 高频功率放大器五、实验步骤1、按下开关KE1,则LED1亮。
调节WE1使三极管QE1发射极对地的电压V E=2.2V,即测量P5与G两焊点之间的电压。
2、连接JE2、JE3、JE4、JE5。
3、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供),峰峰值V P-P=250mV 左右。
用示波器在TTE1处观察输出波形,调节TE1、TE2,使输出波形最大不失真。
4、从INE1处输入10.7MHz载波信号,信号幅度大小从V P-P=0mV开始增加,用示波器探头在TTE2上观察波形,直至观察到有下凹的波形为止(此时如果下凹的波形左右不对称,则微调TE1即可)。
如果再继续增加输入信号的大小,则可以观测到波形的下凹深度增加。
20MHz 示波器如果用×1档看下凹不明显,则用×10档看(由于高频情况下电阻也存在着电感量和电容量,因此下凹不能左右完全对称)。
5、观察放大器的三种工作状态输入Vp-p=250mV左右,频率为10.7MHz的信号(由高频信号源提供)。
调节TE1、TE2使电路谐振在10.7MHz上(此时JE3、JE4、JE5均连上,负载为51Ω)。
微调输入信号大小,在TTE2处观察,使放大器处于临界工作状态。
改变负载(组合连接JE3、JE4、JE5,其中RE8=75Ω,RE9=240Ω,RE10=560Ω)使负载电阻依次变化为:51Ω—75Ω—168Ω—240Ω—560Ω。
用示波器在TTE2处能观察到不同负载时的波形(由临界至过压)。
在改变负载时,应保证输入信号大小不变(即在最小负载51Ω时处于临界状态)。
同时在不同负载下,电路应处于最佳谐振(即在TTE1处观察到的波形应最大且不失真)。
6、改变激励电压幅度,观察对放大器工作状态的影响。
使R L=51Ω(连JE5、JE4、JE3),用示波器观察QE2发射极的波形(测试点为TTE2),改变输入信号大小,观察放大器三种状态的波形。
六、实验报告内容1、画出三种工作状态时的发射极波形。
2、计算当R L=51Ω和560Ω时,放大器的输出功率和效率。
3、绘出负载特性曲线。
实验四正弦波振荡器实验一、实验目的1、掌握晶体管(振荡管)工作状态、反馈大小对振荡幅度与波形的影响。
2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。