第七章 水轮机尾水管

合集下载

尾水管的作用和原理

尾水管的作用和原理

尾水管的作用和原理
1. 尾水管安装在水轮机的尾水道中,用于收集和利用水轮机尾水的能量。

2. 水轮机使用水流产生动力时,水流动能没有完全转换为机械能,还有部分残余动能。

3. 尾水管可以收集和利用这部分残余的水流动能,提高水能的利用效率。

4. 水从水轮机排出后速度较大,进入尾水管,对管壁产生动量冲击压力。

5. 这个压力会使管壁变形,通过机械传动装置带动发电机转动发电。

6. 尾水管的橫截面积会逐渐增加,减慢水流,维持压力来驱动管壁运动。

7. 也可以通过调节尾水管出口的断面来控制压力,改变发电量。

8. 尾水管发电方式简单可靠,没有额外水头要求,可以有效发挥残余水能。

9. 但输出功率较小,因此多用作水电站的辅助发电方式。

10. 合理设计尾水管的尺寸、材质、传动等参数,可以提高发电效果。

尾水管选型计算

尾水管选型计算

第三节尾水管选型计算尾水管是水轮机重要通流部件之一,尾水管的作用是将流过水轮机转轮的水引向下游,同时回收一部分水流能量,因此水电站都设有尾水管。

其型式和尺寸对水轮机的效率和运行的稳定性有很大的影响。

大型立式机组,由于土建投资占电厂总投资的比例很大,故一般选用弯肘形尾水管以降低水下开挖量和混凝土量。

弯肘形尾水管的几何形状及主要参数,如图1—2—1所示。

图1—2—1 弯肘形尾水管一、尾水管类型选择尾水管分为直锥形尾水管和弯肘形尾水管两类。

该电站总容量为58.7万KW,为大型水轮机组,如采用直锥形尾水管,将会带来巨大的挖深,因而是不经济的,所以尽管弯肘形尾水管的水里损失大些且水里性能不如直锥形尾水管,但由于挖深较小因而采用弯肘形尾水管。

该电站最高水头为95m,肘管宜设金属里衬。

二、尾水管各部尺寸的选择1.尾水管的高度h尾水管的高度h是指水轮机底环平面到尾水管底板的高度,它对尾水管的恢复系数、水轮机运行稳定性及电站开挖量有直接影响。

高度h越大,锥管段的高度可取大一些,因而降低了锥管段出口即肘管段进口及其后部流道的流速,这对降低肘管中的水力损失有利。

一般情况下,通过尾水管的流量愈大,h应采用较大的值,但h增大受到水下挖方量的限制。

h的确定,与水轮机型式有关。

由于混流式和定桨式水轮机在偏离最优工况运行时,尾水管中会出现涡带,引起机组振动,如果h太小,则机组振动加剧,故h选择时应综合考虑能量指标和运行稳定性。

根据经验,h一般可作如下选择:H<120 m的混流式及定桨式水轮机,取h≥(2.3~2.7)D,取1 =2.5 4.5=11.25m。

h=2.5D12.肘管的选择肘管段的形状十分复杂,因为水流要在肘管内拐弯90 ,同时要由进口圆形断面逐渐过渡到出口为矩形断面。

它对尾水管的恢复系数影响很大,且肘管中的水力损失最大。

肘管难以用理论公式计算,通常采用推荐的标准肘管,图1—2—2所示为4号系列肘管。

图中各部分的尺寸参数列于表1—2—4中。

水轮机 尾水管安装说明书

水轮机 尾水管安装说明书
1.2.3.2 所有设备验收后,应立即分类入库存放(见下表)。零部件 上的各种标号应保持完整,小部件应有标签。 1.2.3.3 表:零部件入库分类表
库类别 适 用 范 围
基础环、座环、转轮室、预埋管道及附件、裸装件、枷装件及 1
庞大沉重的非精加工部件
转轮、转轮体、叶片、顶盖、底环、导叶、控制环、上机架支
1.2.2.4 零部件加工表面所涂的防锈材料,直到该部件安装时才能 除去。如果在货物验收时,发现这些表面有伤痕或防锈材料脱落,应 先用溶剂将防锈层除去,并重新涂上防锈材料。不允许用刮刀、砂纸 等可能损伤加工表面的工具去除防锈层。对高精度加工面,在采取任 何行动前,都必须同卖方的技术指导商定。
1.2.2.5 装配发货的部件在验收时,如发现零件漏装等原因造成缺
东方电气集团东方电机有限公司
第 1 页 共 59 页
鲁地拉 HLD267c–LJ–710 水轮机安装说明书
1. 总 则
1.1 适用范围与要求
1.1.1 本说明书是东方电机有限公司生产的鲁地拉电站水轮机在现 场安装、调试和实验的技术指导文件。
1.1.2 本说明书阐述了机组安装的顺序、调整工艺和基本要求,其与 我公司提供的图纸及其他随机文件互为补充。该说明书可以帮助安装 单位熟悉该产品安装的基本步骤、部分部件的具体安装方法以及调整 和验收的标准,但并非所有部件的安装细节。
1.3.7 埋设部件安装后应加固牢靠,以避免埋入部件在混凝土浇注过 程中位移和变形。基础螺栓、千斤顶、拉紧器、楔子板、基础板等均 应点焊固定。圆钢埋设时,应与混凝土内的钢筋搭焊;拉锚埋设时, 应尽可能与混凝土内的钢筋搭焊。埋设部件与混泥土结合面,应无油 污和严重锈蚀。
1.3.8 混凝土浇筑时应保证混凝土在埋件周围均匀沉积,不得从高处 投掷或单向浇捣,合理确定浇筑速度和每层浇高以避免埋件产生位移 和变形,浇筑速度应不大于 300mm/h,每层浇筑高度不超过 3m,混 凝土的高程差不大于 300mm;在混凝土浇筑过程中应监视埋件的变 形,并按实际情况随时调整混凝土浇筑顺序;封闭位置浇筑时应在浇 筑前预埋排气管或者在适当位置开设混凝土浇注孔、排气孔;混凝土 与埋件结合面应密实,不得有空洞、疏松等缺陷,必要时应进行压力 灌浆处理。压力灌浆的压力建议为 0.2Mpa,脱空面积建议为 0.2m2, 压力灌浆部位根据脱空的实际情况开设相应的灌浆孔、排气孔并加工 出相应的螺纹孔;灌浆完成后,分别用相应的的丝堵(或堵头)将灌 浆孔、排气孔封堵并进行必要的焊接。

高清图文+尾水管的作用、型式及其主要尺寸确定

高清图文+尾水管的作用、型式及其主要尺寸确定

弯肘型尾水管
减小厂房开挖深度,水力性能好,大中型号 水轮机均采用弯肘型尾水管。 组成:直锥段、肘管、出口扩散段。
1. 进口直锥段: 进口直锥段是一个垂直的圆锥形扩散管,D3为
直锥管进口直径,θ为锥管单边扩散角。
混流式:直锥管与基础环相接,(转轮出口直
径), θ=7°~ 9°
轴流式:与转轮室里衬相连接,D3=0.937D1,
尾水管的作用、型式及其主要尺寸确定 一、尾水管的作用
转轮所获得能量等于转轮进出口之间的能量差:
E

E1

E

E2
1.无尾水管时:E 1 ( H 1
pa )

E2 A

H2

pa

2V22
2g
转轮获得能量:
EA

E1

E2 A

H1
(H2

2V22
2g
)
2
.
θ=8°~ 10°。
h3——直锥段高度,其长度增加将会导致开挖 量增加。一般在直锥段加钢板衬。
2. 肘管:
90°变断面的弯管,进口为圆形断面,出口 为矩形断面。F进/F出=1.3 曲率半径R小——离心力大——压力、流速 分布不均匀—hw大。R=(0.6~1.0)D4 为减小转弯处的脱流及涡流损失,肘管出口 收缩断面(hc): 高/宽=0.25 3、出口扩散段: 矩形扩散管,出口宽度B5,
E1

E2B

H1
( 2V22
2g

h25 )
水轮机多获得的能量:
E

EB

EA

H2
(2V22 5V52

计水轮机尾水管回收能量的认识与尾水管简单设计

计水轮机尾水管回收能量的认识与尾水管简单设计

对水轮机尾水管回收动能机理的认识一、水轮机的尾水管的作用1、将转轮出口的水流平顺地引向下游。

2、利用下游水平面至转轮出口处的高程差,形成转轮出口处的静力真空,从而利用转轮的吸出高度 。

3、回收转轮出口的水流动能,将其转换为转轮出口处的动力真空,减少了转轮出口的动能损失,从而提高水轮机效率。

二、水轮机尾水管的工作原理由能量平衡方程:设转轮所利用的水流能量为ΔE△E=取2-2断面为基准面,则△E=() (1)(1)转轮出口没有装置尾水管水轮机没有装置尾水管,转轮出口直接与大气相通,则代入(1)式可得转轮所利用的能量为a p p =2())2(20221-∆+-=∆E h gH d υ(2)转轮出口装置圆柱形尾水管(如图所示)取5—5断面为基准面,对2—2,5—5断面列能量平衡方程式,则:由于圆柱形尾水管出口断面面积相等,代入上式化简得:代入(1)式可得转轮所利用的能量为:(3)转轮出口装置扩散形尾水管同转轮出口装置园柱形尾水管一样列能量平衡方程式,则式中 由于扩散形尾水管,则: =代入(1)式可得转轮所利用的能量为:由以上可以看出:结论: ())2(20221-∆+-=∆E h gH d υ 52255222202-∆+++=+++h g p g p h H s υγυγ())2(50222-∆+-+=∆E h g H H s d υ52255222202-'∆+++=+++h g p g p h H s υγυγ ())2(50253-'∆+-+=∆E h g H H s d υ())2(50222-∆+-+=∆E h gH H s d υ(1)没有装置尾水管时,转轮只利用了电站总水头的部分,同时损失掉转轮出口水流的全部动能(2)装置圆柱形尾水管时,与没有装置尾水管相比,此时转轮多利用了的能量.这一多出部分称之为静力真空,它是在圆柱形尾水管作用下,转轮出口处不再是大气压而是相应的负压,由于负压存在相当于增加了作用在转轮两端的压力差。

水轮机尾水管课程设计

水轮机尾水管课程设计

水轮机尾水管课程设计一、课程目标知识目标:1. 学生能理解水轮机尾水管的基本结构及其在水力发电过程中的作用;2. 学生能够掌握水轮机尾水管的设计原理和计算方法;3. 学生能够了解水轮机尾水管对水轮机性能的影响。

技能目标:1. 学生能够运用相关知识对水轮机尾水管进行简单的设计计算;2. 学生能够通过实例分析,评估不同尾水管设计对水轮机效率的影响;3. 学生能够运用绘图软件绘制水轮机尾水管的结构图。

情感态度价值观目标:1. 学生通过学习水轮机尾水管的设计,培养对水利工程建设的兴趣和热情;2. 学生在学习过程中,增强团队协作意识,提高沟通与交流能力;3. 学生能够认识到水轮机尾水管设计的重要性,增强对能源利用和环境保护的意识。

课程性质:本课程为应用实践型课程,以理论教学为基础,注重培养学生的实际操作能力和创新能力。

学生特点:初三学生,具有一定的物理基础和数学计算能力,对水利工程有一定的了解,好奇心强,喜欢动手实践。

教学要求:结合学生特点,采用讲授、实例分析、小组讨论等多种教学方法,引导学生掌握水轮机尾水管的设计原理和方法,提高学生的实际应用能力。

在教学过程中,注重学生的主体地位,激发学生的兴趣和积极性,培养学生的创新思维和团队协作精神。

通过课程学习,使学生能够达到上述课程目标,为后续相关课程打下坚实基础。

二、教学内容1. 水轮机尾水管的结构与功能:介绍水轮机尾水管的基本结构,包括尾水管、弯头、扩散段等组成部分,分析其功能在水力发电过程中的作用。

2. 水轮机尾水管设计原理:讲解水轮机尾水管的设计原理,涉及流体力学的相关知识,如流速、流量、压力等,以及尾水管尺寸、形状与水轮机性能的关系。

3. 水轮机尾水管设计计算:依据教材相关章节,引导学生学习尾水管设计计算方法,包括流量计算、压力损失计算等,并通过实例进行讲解。

4. 水轮机尾水管对性能影响:分析不同尾水管设计对水轮机效率、稳定性等性能的影响,结合实际工程案例,让学生了解优化设计的重要性。

水轮机尾水管内部水压力脉动论文

水轮机尾水管内部水压力脉动论文

水轮机尾水管内部水压力脉动论文【摘要】水轮机尾水管内部的水压力脉动是造成水轮机机组发电效益和稳定运行的重要因素之一,通过本文的研究发现,尾水管涡带的主要涡量来源于水轮机泄水锥和转轮上冠,这对尾水管内部的水压力脉动的预测和控制起着很重要的作用。

【关键词】水轮机;尾水管;压力脉动;涡带1.引言2013年柘林水电厂二号机组出现异常振动,经检查发现机组振动主要由水力干扰引起,而水力干扰一般有机组过流部件的流道不均匀造成的水力随机振动,上下止漏环间隙不对称产生的自激振动、高水头低负荷尾水涡带引起的低频振动。

通过停机与带负荷试验,检查主轴密封,并对尾水压力、机组振动频率、顶盖压力测量结果进行分析,上游水位60.72m,下游水位24.80m,在尾水管内出现中心压力低,四周压力高的偏心涡带,引起尾水管内水流的低频压力脉动,它传递到尾水管臂、转轮、顶盖、导水机构、蜗壳,引起有关部件(管)的振动或摆动,为此产生涡带振动。

2.尾水管内部水压力脉动研究2.1部分负荷2.1.1涡带的表现起源于泄水锥的水轮机尾水管涡带呈现螺旋状,而且轮转转向和旋转方向,此时,尾水管涡带导致水轮机的其他部位产生较大的脉动,还会产生水轮机的出力波动和巨大的轴向推力。

尾水管内螺旋状涡带如图1所示。

2.1.2尾水管内的压力分布尾水管内按照时间平均的压力是向中心不断减小的,由于不对称涡带的存在,水流也是不对称的,尾水管内同一半径上的压力分布趋势只能通过瞬时测得的压力反应,涡核内部空腔外的区域压力沿半径减小的方向快速降低,涡核外部压力沿半径减小的方向缓速减小。

而且空蚀工况下的压力比非空蚀工况下的压力降低的小,沿着尾水管的中心,大半径段压力的最大值出现在弯肘段处,小半径压力的最大值出现在直锥段处。

2.1.3压力脉动的频率在部分负荷下,f转总是大于f涡,自由水面、吸出高度、水头对频率的影响可以忽略不计,这两个频率的实际测量比值一般在0.26-0.39之间。

尾水管资料

尾水管资料
在直线关闭规律下,无论一相还是末相水击,尾水管真空 度均随有效关闭时间丁s增大而减小;但当了Ts的变化导致 下游调压室水位变化较大时,真空度值将发生突变。
二、压力脉动引起的机组振动
1.尾水管中的压力脉动 尾水管内产生压力脉动的原因,是由于在尾水管
内产生螺旋状空腔涡带,此涡带在尾水管内处在偏心 位置,由于尾水管内压力分布不均匀,所以涡带旋转 时,在尾水管壁的固定点上就形成了周期性的压力脉 动。 尾水管压力脉动的研究, 主要有4种方法: 理论分析; 模型实验; 数值模拟(全流道进行非定常三维湍流数 值模拟); 真机试验。
2、尾水管补气 其目的在于破坏尾水管的真空,方法有两种:
一是自然补气;二是强迫补气。补气的位置通常是 在直锥段。
应该指出,补气也会引起某些不良现象。例如
,在正常运行工况下,水轮机出力会降低,有时转 轮后面的压力脉动反会增大,此外,已发现补气可 以引起飞逸转速增大。
3、改进结构 改进止漏装置、转轮叶片出水边的形状和厚度
等等的结构。 4、合理安排机组的运行范围 5、对尾水管改型优化设计
三、消除和减轻振动的措施
1、尾水管加导流隔板 因产生偏心涡带的根本原因是转轮出口水流有环
量存在。因此用加隔导流板的办法来消除环流,其 目的在于消除或减弱偏心涡带。导流隔板大概有以 下几种:一是在尾水管直锥段进口部位加置十字形 隔板;二是在直锥段进口管壁加置导流隔板;三是 在弯肘段前后加置导流隔板。
H d
pa
p2
2 2
2g
h0 2 (1)
下面分三种情况来讨论:
(1)转轮出口没有装置尾水管
水轮机没有装置尾水管,转轮出口直接与大气
相通,则
p2 pa
p2 pa 代入(1)式可得转轮所利用的能量为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能源动力工程学院 何宝海
第一节 概述
直锥形尾水管
弯管形尾水管
能源动力工程学院 何宝海
第一节 概述
弯肘形尾水管
直锥段
肘管段
水平扩散段
能源动力工程学院 何宝海
第二节 尾水管的作用原理
一、尾水管作用原理
转轮进口的水流能量 转轮出口的水流能量 水轮机利用的能量
E1 H
1

pa
g
v2
2
E2
第七章 水轮机尾水管



第一节 概述 第二节 尾水管的作用原理 第三节 尾水管的选择
能源动力工程学院 何宝海
第一节 概述
一、尾水管的作用
1.将转轮出口水流平顺地引向下游 2.利用转轮出口动能,减少出口动能损失 3.当转轮装在下游水面以上时,利用转轮出口至下游水 面的高程差
二、尾水管的类型
1.直锥形尾水管: 结构简单,制造容易,性能好。 2.弯管形尾水管: 卧式机组。 3.弯肘型尾水管: 减少开挖工作量。性能较直锥形差。
第三节 尾水管的选择
弯肘型尾水管的选择
尾水管的高度、肘管形 式、水平段长度是影响 其性能的主要参数。
尾水管单线图的绘制
能源动力工程学院 何宝海
三、尾水管内的损失
hw v5
2
相对损失
hw v5 hw 2g
2
v5
2
2g
hw v2
2
H
h w 1 w v2
2
由于
2g
hw
2g
1 w 所以,有

2 gH
不同比速水轮机(水头不同),相对损失不同!何宝海 能源动力工程学院
g


v2
H v5
2
2g
s
pa
g
2g
hw
p2
g

pa
g

v5 v2
2
2
H
2g
s
hw
代入能量差计算公式得到
E H 1 H
s

v5
2
2g
hw
能源动力工程学院 何宝海
第二节 尾水管的作用原理
比较有、无尾水管时,水轮机转换能量的差别
通常用尾水管的恢复系数反映尾水管回收动能的能力。 能源动力工程学院 何宝海
第二节 尾水管的作用原理
二、尾水管的恢复系数
v2 v5
2 2
w
2g v2
2
hw 1
v5
2
2g
hw v2
2
1d
2g
2g
由此可见,尾水管内的水力损失和出口动能损失越小,尾 水管的恢复系数越大,回收动能的能力越强。
E H
1 2

v2
E H 1 H
s

v5
2
2g
v v5 2 hw 2g
2 2
2g Βιβλιοθήκη w E E Hs

由此看出,此能量差包括两部分:
H
2
s
:位能。
2
v2 v5 2g
hw
:动能、尾水管中的水力损失。
E H
p2
g
2g
2
1
p2 pa v2 g 2g g

1.无尾水管水轮机利用的能量
p2 pa
所以
E H
1

v2
2
2g
能源动力工程学院 何宝海
第二节 尾水管的作用原理
2.装尾水管水轮机利用的能量
2
p2
相关文档
最新文档