《数学分析》第十四章幂级数1
幂级数判断收敛

幂级数判断收敛幂级数是数学中一类重要的级数,它由一系列幂函数的和组成。
判断幂级数的收敛性是数学分析中的重要问题。
在本文中,我们将讨论如何判断幂级数的收敛性,并给出一些常用的判断方法。
我们来回顾一下幂级数的定义。
一个幂级数可以写成以下形式:S(x) = a0 + a1x + a2x^2 + a3x^3 + ...其中,a0, a1, a2, a3, ...是系数,x是变量。
幂级数可以在某个收敛域内求和,也可以在该收敛域外发散。
因此,判断幂级数的收敛性就是要确定它的收敛域。
接下来,我们介绍一些常用的判断幂级数收敛的方法。
1. 比值判别法比值判别法是判断幂级数收敛的一种常用方法。
对于幂级数S(x),我们计算相邻两项的比值:lim(n->∞) |an+1 / an|如果这个极限存在,并且小于1,则幂级数收敛;如果大于1,则幂级数发散;如果等于1,则判定不出结论。
2. 根值判别法根值判别法是另一种常用的判断幂级数收敛的方法。
对于幂级数S(x),我们计算每一项的n次方根的极限:lim(n->∞) |an|^1/n如果这个极限存在,并且小于1,则幂级数收敛;如果大于1,则幂级数发散;如果等于1,则判定不出结论。
3. 达朗贝尔判别法达朗贝尔判别法是判断幂级数收敛的另一种方法。
对于幂级数S(x),我们计算相邻两项的比值的极限:lim(n->∞) |an+1 / an|如果这个极限存在,并且小于1,则幂级数收敛;如果大于1,则幂级数发散;如果等于1,则判定不出结论。
4. 积分判别法积分判别法是判断幂级数收敛的一种常用方法。
对于幂级数S(x),我们对其进行积分:∫[0, ∞] |S(x)| dx如果这个积分存在并且有限,则幂级数收敛;如果积分为无穷大,则幂级数发散。
除了上述方法外,还有一些其他的判断幂级数收敛的方法,比如比较法、绝对收敛法等。
不同的方法适用于不同的情况,我们需要根据具体问题选择合适的方法进行判断。
数学分析2课件:14-1 幂级数

n1 2
原级数的收敛域为 ( 2, 2).
定理3(Cauchy-Hadamard定理)
如果幂级数 an x n 的所有系数an 0 ,
n0
设
lim n
n
an
(1) 则当 0 时,R 1 ; (2) 当 0时,R ;
(3) 当 时,R 0 .
二、幂级数的一致收敛性
定理4 : 证
若 an xn收敛半径为R 0,则在( R, R)内的
n0
收敛,则 an xn在[0,R](或[ R,0])一致收敛。
n0
证 设 an xn在x R收敛,
n0
由 | an xn || an Rn |, 用优级数法,可否?
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
当 x R与x R时,幂级数可能收敛也可能发散.
定义: 正数R称为幂级数的收敛半径.
(-R, R)称为幂级数的收敛区间.
幂级数的收敛域为下列4种情况之一:
(R, R), [ R, R), (R, R], [ R, R].
收敛域(,).
(4) (1)n 2n ( x 1)n .
n1
n2
lim an1 lim 2 n 2 n an n n 1
R 1, 2
即 x 1 1 收敛, x (0,1)收敛,
22
当x 0时,
级数为
1,
n1 n
发散
当x 1时,
级数为
(1)n ,
n1 n
收敛
故收敛域为(0,1].
(3) 当 时,R 0 .
证明 对级数 an xn 应用达朗贝尔判别法
n0
幂级数的知识点总结

幂级数的知识点总结一、幂级数的定义与基本概念1. 幂级数定义幂级数是指形如 $\sum_{n=0}^{\infty} a_nx^n$ 的级数,其中 $a_n$ 是常数,$x$ 是变量。
我们将 $a_nx^n$ 称为幂级数的通项。
当 $x=0$ 时,幂级数收敛,此时幂级数的值为 $a_0$。
当 $x\neq0$ 时,幂级数可能发散,也可能收敛。
2. 幂级数的收敛半径幂级数的收敛半径是指所有幂级数都收敛的 $x$ 范围。
收敛半径 $R$ 的计算公式为\[R = \lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}\]当 $R=0$ 时,幂级数只在 $x=0$ 处收敛;当 $R=\infty$ 时,幂级数在整个实数范围都收敛;当 $0<R<\infty$ 时,幂级数在 $(-R,R)$ 范围内收敛。
3. 幂级数的收敛域幂级数的收敛域是指其收敛的 $x$ 区间范围。
我们可以通过比较 $|x|<R$ 和 $|x|=R$ 以及$|x|>R$ 的情况来判断幂级数的收敛域。
二、幂级数的性质1. 幂级数的加法性与乘法性若 $\sum_{n=0}^{\infty} a_nx^n$ 和 $\sum_{n=0}^{\infty} b_nx^n$ 是两个幂级数,由于级数的加法与乘法遵循线性性质,因此这两个幂级数的和与乘积仍然是幂级数,它们的收敛性与原幂级数相同。
2. 幂级数的导数与积分幂级数在其收敛域内可以进行导数与积分运算,这是因为这些运算不会改变收敛性质。
具体来说,对于 $\sum_{n=0}^{\infty} a_nx^n$,它的导数等于 $\sum_{n=1}^{\infty}na_nx^{n-1}$,它的不定积分等于 $\sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}+C$。
三、幂级数的收敛性与收敛域判断1. 幂级数的收敛性判定判断幂级数 $\sum_{n=0}^{\infty} a_nx^n$ 的收敛性时,我们可以使用比值判别法、根式定理、韦达定理等方法。
幂级数习题课

第十四章 幂级数习题课一 疑难解析与注意事项1.如何求缺项幂级数的收敛半径 答:如果一个幂级数有无限多个项的系数为零这样的幂级数称为缺项幂级数,对这种幂级数,不能直接用公式1lim n n n n aa ρρ+→∞⎛⎫= ⎪ ⎪⎝⎭.常用方法是: 1)进行变量替换.将原幂级数变为一个无缺项的幂级数.计算出后一幂级数的收敛半径,再根据两变量之间的关系得出原幂级数的收敛半径.例如幂级数2112n n n x ∞=∑,可令2y x =,化为幂级数112n n n y ∞=∑,而幂级数112n n n y ∞=∑的收敛半径为2R =,从而当22x <时,原幂级数收敛,当22x >时,原幂级数发散,由此推出原幂级数的收敛半径为R =2)对缺项幂级数需要按照类似于定理14.2来求.例如求幂级数2202nn n x ∞=∑(缺项幂级数)的收敛半径.对于幂级数2202nnn x ∞=∑,因为22222222lim42n n n n nx xx ++→∞=,当214x<时,即2x <,2202nn n x ∞=∑收敛,则原来级数绝对收敛;当214x >时,即2x >,2202nnn x ∞=∑发散,则原来级数发散,所以收敛半径2=R . 2.如何求幂级数的收敛域答:1)首先求幂级数的收敛半径R ;2)写收敛区间(),R R -; 3)讨论端点处的收敛性,即讨论nn n a R∞=∑,()nn n a R ∞=-∑的收敛性,如果两个都收敛,则幂级数的收敛域为[],R R -,如果两个都发散,则收敛域为(),R R -,如果其中一个收敛,一个发散,则收敛域为[),R R -(()nn n a R ∞=-∑收敛),(],R R -(nn n a R∞=∑收敛).3.幂级数在()R R ,-内每一点都绝对收敛,那么在端点处敛散性如何 答:1)幂级数在()R R ,-端点处可能收敛可能发散.例如幂级数n x n ∑的收敛区间是()1,1-,在端点1处,级数1n∑发散,在端点1-处级数()1nn-∑收敛,收敛域是[)1,1-.2)如果是收敛,可能是绝对收敛,可能是条件收敛.n x n ∑在端点1-处是条件收敛,2nx n ∑收敛域是[]1,1-,在端点1与1-处都是绝对收敛的.4.幂级数与逐项求导逐项积分后幂级数具有相同的收敛半径、收敛区间,但收敛域相同吗答:不一定,例如nx ∑收敛域为()1,1-,但逐项积分和幂级数为11n x n ++∑收敛域为[)1,1-.设幂级数0nn n a x ∞=∑,11n n n na x∞-=∑,11n n n x a n +∞=+∑收敛域分别是12,,D D D ,则有12D D D ⊂⊂ 如果一个幂级数经逐项求导或逐项求积后其收敛性发生了变化,则变化的只能是收敛区间两个端点处的收敛性.一般来说,逐项求导后,系数由n a 变为n na ,不会使收敛区间端点处的收敛性变好;而逐项求积后,系数由n a 变为1na n +,不会使收敛区间端点处的收敛性变坏.5.如何求幂级数的和函数答:首先求出幂级数的收敛半径与收敛域,然后可通过以下几种方法求 幂级数的和函数:(1)变量替换法——通过变量替换,化为一较简单的幂级数. (2)拆项法——将幂级数分拆成两个(或几个)简单幂级数的和.(3)逐项求导法——通过逐项求导得出另一幂级数,而此幂级数的和函数是不难求得的;然后再通过牛顿莱布尼兹公式,得到原幂级数的和函数.(4)逐项积分法——通过逐项求积得出另一幂级数,而此幂级数的和函数是可以求得的;然后再通过求导数,得到原幂级数的和函数.一般通过逐项求导逐项积分向等比级数转化,系数含有!n ,向xe 的幂级数展开形式转化,系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化.注意:上述运算过程在幂级数的收敛区间内总是可行的(而在幂级数的收敛域上却不一定可行).因此,我们一般只限定在幂级数的收敛区间内进行上述运算,由此得到在收敛区间上的和函数,而求幂级数在其收敛域上的和,还需要讨论在端点的函数值,利用函数在端点的左(右)连续性来求.还需指出,这里所介绍的方法,仅仅是可供选择的几种途经.对具体问题,常常要综合利用上述方法,或寻求其他方法才能得到问题的解.6.如何利用幂级数求数项级数的和答:选择合适的幂级数,使该数项级数为幂级数在某收敛点0x 处的值.然后求出幂级数的和函数()S x ,则()0S x 便是原数项级数的和.7.如何求函数f 在0x 处的幂级数展开式 答:主要有以下两种方法:(1)直接法.计算函数f 在0x 处的各阶导数()()0n f x ,写出它的泰勒级数,然后证明()0lim =∞→x R n n .(2)间接法.借助某些基本函数的展开式,通过适当变换,四则运算,逐项求导或者逐项求积等方法,导出所求函数色幂级数展开式.这是常用的方法.注意求展开式时,一定要写展开式成立的范围. 三 典型例题1.求幂级数的收敛域:1)∑n x n n )!2()!(2; 2)∑---)!12()2(12n x n ; 3)∑+-+n n n x n )1()2(3; 4)∑+++n x n)1211(Λ; 5)∑∞=1221n nnx . 解:1)由于2212[(1)!](2)!(1)1lim lim lim [2(1)]!(!)(22)(21)4n n n n na n n n a n n n n ρ+→∞→∞→∞++==⋅==+++,因此收敛半径14R ρ==,当4±=x 时,这个级数为∑±n n n )4()!2()!(2,通项记为n u ,则有 n u =)!2(4)!(2n n n =)!2(2)!(22n n n =)12(5312642-⋅⋅⋅⋅n nΛΛ12+>n , 于是∞→n lim n u +∞=,所以当4±=x 时级数∑nx n n )!2()!(2发散,从而可知这个级数的收敛域为)4,4(-.2)令2t x =-,则级数∑---)!12()2(12n x n 转化为21(21)!n t n --∑(缺陷幂级数),下面先求21(21)!n tn --∑的收敛域,因为21221(21)!lim lim 01(21)2(21)!n n n n t t n t n nn +-→∞→∞+==<+-,即对任意(),t ∈-∞+∞,21(21)!n t n --∑都收敛,因此21(21)!n t n --∑的收敛域为(),-∞+∞,因此的收敛域为(),-∞+∞.3)令1t x =+,则级数∑+-+nn n x n)1()2(3转化为3(2)n n n t n +-∑,下面先求3(2)n n n tn +-∑的收敛域,由于n ρ==3n ,所以收敛半径31=R ,因而级数3(2)n n nt n +-∑的收敛区间为11(,)33-, 当13x =-时,级数为∑⎪⎭⎫⎝⎛--+nn n n 31)2(3=∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-n nn n 3211)1(收敛, 当13x =时,级数为3(2)13n n n n +-⎛⎫ ⎪⎝⎭∑=1123n n n ⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑,123nn ⎛⎫- ⎪⎝⎭∑收敛(123n n ⎛⎫- ⎪⎝⎭∑收敛,因为213n =<),∑n 1发散,故3(2)13nn n n +-⎛⎫ ⎪⎝⎭∑发散,因此3(2)n n nt n +-∑的收敛域为11,33⎡⎫-⎪⎢⎣⎭,级数∑+-+nn n x n )1()2(3的收敛域为11133x -≤+<的解集,即⎪⎭⎫⎢⎣⎡--31,34. 4)因为nn n 1⋅n n1211+++≤Λn n 1⋅≤,又∞→n lim11=⋅nn ,所以∞→n lim11211=+++nnΛ, 从而收敛半径1=R ,又当1±=x 时,n n n)1)(1211(lim ±+++∞→Λ0≠, 可见级数∑+++nx n)1211(Λ在1±=x 时发散,故这个级数的收敛域为)1,1(-. 5)法1: (将其看成不缺项的幂级数 Λ++⋅++⋅4232210210x x x x )设 ⎪⎩⎪⎨⎧=-==k n k n a kn 2,2112,0∑∑∞=∞==11221n n nn n nx a x , 2121lim lim 2==∞→∞→nnn n n n a 2=∴R .法2: 令t x =2,∑∞=121n nnt 收敛半径为2,故R = 法3: (将其视为以x 为参数的数项级数或视为一般的函数项级数)22lim )()(lim 221x x x u x u n nn n ==∞→+∞→, 当122<x 即 2<x 时幂级数收敛, 当2>x 时发散,故R =. 即收敛半径为R =,收敛区间是(,当x =时,∑∞=1221n nnx 为111212n n n n ∞∞===∑∑发散,因此收敛域为(. 2.应用逐项求导或逐项求积分方法求下列幂级数的和函数(应同时指出它们的收敛域): (1)求幂级数1nn x n∞=∑的和函数;(2)求幂级数11nn x n ∞=+∑的和函数;(3)求幂级数11n n nx ∞-=∑的和函数;(4)求幂级数1n n nx ∞=∑的和函数;(5)求幂级数ΛΛ+++++++12531253n x x x x n 的和函数; (6)求幂级数∑∞=+1)1(n nn n x 的和函数;(7)求幂级数1!nn x n ∞=∑的和函数.注:应用:求幂级数的和函数.思想:一般是通过逐项求导,逐项积分向等比级数转化.(假如系数含有!n ,向xe 的展开形式转化,假如系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化).必须的知识点:1)等比级数011nn ∞==-∑W W ,11nn ∞==-∑W W W---------; 2)牛顿莱布尼兹公式()()()xaf t dt f x f a '=-⎰;3)()()()xaf t dt f x '=⎰.注意点:1)求和函数时必须先要求收敛域;2)求()0f 时必须要看级数展开式中第一项;例 设()0n n n f x a x ∞==∑,先看展开式中第一项是0a ,因此()00f a =.常见错误,有些人把0直接代通项,()0000n f ∞===∑.设()1n n n f x a x ∞==∑,先看展开式中第一项是1a x ,因此()00f =.3)涉及到除以x 时,要讨论x 为0不为0. 幂级数求和函数步骤:求其收敛半径R 和收敛域D .在收敛区间内求和函数.(利用变量替换, 逐项求积, 逐项求导等方法) ,(假如系数含有!n ,向xe 的展开形式转化,假如系数含有()()2!,21!n n -向sin ,cos x x 展开形式转化);收敛域若不是开区间, 还须讨论在收敛域端点处的和,若左端点收敛,则在左端点右连续,若右端点收敛,则在右端点左连续.写出和函数, 注明定义域D . 解(1)1)求收敛域;1lim lim lim 1n nn n n n n a n n ρ→∞→∞→∞====(或111lim lim 11n n n na n a nρ+→∞→∞+===); 收敛半径11R ρ==;收敛区间()1,1-;当1x =-时,()11nn n∞=-∑收敛;当1x =时,11n n∞=∑发散.因此收敛域为[)1,1-. 2)向等比级数转化;分析:因为等比级数系数为1或()1n-,而1n n x n∞=∑的系数为1n ,要向等比级数转化必须要把n 抵消,此题可以通过逐项求导就可以把n 抵消.令()1nn x f x n∞==∑,在收敛区间()1,1-上逐项求导(注意幂级数在收敛区间内可逐项求导与逐项求积). ()1111n n f x x x∞-='==-∑, ()()()()0010ln 11xxf x f t dt f dt x t'=+==---⎰⎰,()1,1x ∈-. 当1x =-时,(若幂级数0n n n a x ∞=∑在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.)()()()111lim lim ln 1ln 2x x f f x x ++→-→--==--=-⎡⎤⎣⎦. (2)1)求收敛域; 收敛域为[)1,1-. 2)向等比级数转化;分析:要向等比级数转化,必须要把系数中的1n +抵消,但是只有1n x +的求导才能出现1n +,必须要乘一个x ,除以一个x ,111111n n n n x x n x n +∞∞===++∑∑,而要除以x ,就必须讨论x 为0不为0.当0x =时,()00f =当0x ≠时,()111111n n n n x x f x n x n +∞∞====++∑∑,(只需要求出111n n x n +∞=+∑就会求出()f x ,下面求111n n x n +∞=+∑) 令()111n n x g x n +∞==+∑,收敛域[)1,1-在收敛区间()1,1-上逐项求导.()11n n xg x x x∞='==-∑, ()()()()000ln 11xxtg x g t dt g dt x x t'=+==----⎰⎰,()1,1x ∈-. 当1x =-时,()()()111lim lim ln 11ln 2x x g g x x x ++→-→--==---=-⎡⎤⎣⎦. 于是()()()() 0 0ln 11 1,00,1 ln2 1 1x x f x x x x =⎧⎪-⎪=--∈-⎨⎪-=-⎪⎩U(3) 收敛域为()1,1- 令()11n n f x nx ∞-==∑,对()11n n f x nx ∞-==∑在()1,1-上逐项积分;()1111xx n n n n xf t dt ntdt x x∞∞-=====-∑∑⎰⎰, ()()2111x f x x x '⎛⎫== ⎪-⎝⎭-. (4)解1:收敛域为()1,1-()()-1211=1nn n n xf x nx x nx x ∞∞====-∑∑.解2 由于∞→n limnn a =∞→n lim11=⋅nn ,且当1±=x 时,这个幂级数发散,所以幂级数的收敛域为)1,1(-,设111()nn n n f x nx x nx∞∞-====⋅∑∑,令∑∞=-=11)(n n nxx g在)1,1(-上对()g x 逐项积分得,dt t g x ⎰)(dt ntx n n ⎰∑∞=-=011=xx x n n -=∑∞=11所以=)(x g ()1xx '-=2)1(1x -,从而)(x f 2)1(x x -= (1<x ).(5)讨论级数2121n n x n +∞=+∑,因为2322123lim21n n n x n x x n ++→∞+=+,当21x <,即1x <,21021n n x n +∞=+∑收敛,2121n n x n +∞=+∑收敛; 当21x >,即1x >,21021n n x n +∞=+∑发散,2121n n x n +∞=+∑发散, 因此收敛半径1R =,收敛区间为()1,1-,且1±=x 时,∑∞=+0121n n 与2100(1)12121n n n n n +∞∞==-=-++∑∑都是发散级数,所以幂级数的收敛域为)1,1(-,设210()21n n x f x n +∞==+∑,在)1,1(-逐项求导可得221()1n n f x x x ∞='==-∑, 所以)(x f dt t x⎰-=0211x x-+=11ln 21 (1<x ), (6)由1)1(1lim =+∞→nn n n 知幂级数的收敛半径为1=R . 又1±=x 时, 级数均收敛,故幂级数的收敛域为]1,1[-.令]1,1[,)1()(1-∈+=∑∞=x n n x x S n n则 ]1,1[,)1()(11-∈+=∑∞=+x n n x x xS n n 由于)1,1(-∈∀x , 有,))1(())((111∑∑∞=∞=+='+='n nn n nx n n x x xS,11)())((111∑∑∞=-∞=-=='=''n n n n x xn x x xS从而)1,1(-∈∀x , 有),1ln(1d d ))(())((00x ttt t tS x xS xx--=-=''='⎰⎰),1ln()1(d )1ln(d ))(()(0x x x t t t t tS x xS xx--+=--='=⎰⎰于是}.0{\)1,1(),1ln(11)(-∈∀--+=x x xxx S 而由)(x S 的定义, 0)0(=S .此外, 当1±=x 时, )(x S 在1-=x 处右连续, 在1=x 处左连续. 故,2ln 21)]1ln(11[lim )(lim )1(11-=--+==-++-→-→x xxx S S x x.1)]1ln(11[lim )(lim )1(11=--+==---→→x xxx S S x x综上知⎪⎪⎩⎪⎪⎨⎧=-∈--+==.1,1};0{\)1,1[),1ln(11;0,0)(x x x x x x x S(7)易求收敛域为(),-∞∞,()1011,,!!n nx n n x x e x n n ∞∞===-=-∈-∞+∞∑∑. 3.利用幂级数求数项级数的和. 1)求级数∑∞=122n nnx的和函数,并求数项级数∑∞=19n n n的和; 2) 求级数∑∞=-1212n nn 的和; 方法:先选择适当的幂级数, 使该数项级数是所选幂级数在某收敛点0x 处的值, 然后求出和函数)(x S , 则)(0x S 便为所求之和.解(1)法1:级数∑∞=122n nnx的收敛域为()11-,,∑∑∞=-∞==1121222n n n nnx x nx,令∑∞=-=1122)(n n nx x s ,逐项积分⎰∑∑⎰∞=∞=--===x n n nxn x x xdx nxdx x s 01122201212)(, 两边求导,得22221)1(2)'1()(x xx x x s -=-=, 所以222112)1(2)(2x x x xs nxn n-==∑∞=,()11x ∈-,,从而649)911(91221)31(22192121=-⋅==∑∑∞=∞=n nn nn n . 通过如下代数运算,使其求和过程非常简便. 法2 令ΛΛ+++++=nnxx x x x s 26422642)( ,ΛΛ------=-+)1(286422642)(n nxx x x x s x ,222642212)(2)()1(xx xx x x x s x n-=+++++=-ΛΛ , 所以222)1(2)(x x x s -= ,()11x ∈-,. (2)作幂级数221212-∞=∑-n n n x n ,并设和函数为()S x , 则⎰∑⎰∑∞=∞=--=-=xn xn n n n nx dx x n dx x s 0101122221212)(2121)2(12212xx x x x n n -⋅==∑∞=)0(≠x , 两边求导,得2222)2(2)'2()(x x x x x S -+=-= )2(<x , 因为1x =在收敛区间内,故用1x =带入上式得∑∞==-=13212)1(n nn S . 4.求函数的幂级数展开式1)将函数()2x e x f =,x a ,2sin x 展开成x 的幂级数;2)将函数()x x f ln =展开成(x -1)的幂级数;3)将函数()2sin f x x =展开成x 的幂级数; 4)21)(2--=x x x f 在1=x 处的泰勒级数展开式; 5)求0x =处的泰勒级数展开式; 6)求()ln(f x x =在0x =处的泰勒级数展开式.注意: 看清要在哪点展开; 确保得到的是幂级数; 注出定义域. 解:1)将2x 视为一个整体,由xe 的展开式可知n n n n x x n x n e 2020!1)(!12∑∑∞=∞=== ,)(+∞<<-∞x . 类似地n n n nn ax x x n a a x n ea ∑∑∞=∞====00ln !)(ln )ln (!1 ,)1,0(≠>a a )(+∞<<-∞x .∑∞=++-=01222)()!12()1(sin n n n x n x ∑∞=++-=024)!12()1(n n n x n )(+∞<<-∞x .2)∑∞==-011n nx x (11<<-x )⇒()011n n x x ∞==-+∑,()11x -<<. ⇒()()1ln 111n nn x x n +∞=+=-+∑,()11x -<≤. 10(1)ln ln[1(1)](1)1nn n x x x n ∞+=-=+-=-+∑ )20111(≤<≤-<-x x ,即.3)222221011cos 21212sin (1(1))(1),()22(2)!2(2)!n n n n n n n n x x x x x n n ∞∞+==-==--=--∞<<+∞∑∑. 4)]1121[31212+--=--x x x x11(1),0221(1)n n x x x x ∞=-==--<<---∑∑∞=<<---=-+=-+=+031,)21()1(21211121)1(2111n nn x x x x x100101(1)()[(1)(1)]321(1)[1](1),0 2.32n nn n n n nn n n f x x x x x ∞∞+==∞+=-∴=--+--=--<<∑∑∑5)[]1lnln(1)ln(1)2x x =+-- 11111(1)(1)()2n n n n n n x x n n ++∞∞==⎡⎤--=--⎢⎥⎣⎦∑∑1111(1)2n n n n n x x n n +∞∞==⎡⎤-=+⎢⎥⎣⎦∑∑211,(1,1)21n n x x n -∞==∈--∑. 6)()ln(f x x =,()f x '==,12221111()(1)(1)222(1)1!n n n x x n ∞-=-----+=+=+∑L211321()()()2221!n n n x n ∞=----=+∑L 21(1)(21)!!1,(1,1)!2n nnn n x x n ∞=--=+∈-∑. 而(0)0f =,于是[]211(1)(21)!!(),1,1!2(21)n xn n n n f x x x x n n ∞+=--==+∈-+∑⎰.。
《数学分析》第十四章幂级数

第十四章幂级数( 1 0 时)§1幂级数( 4 时)幂级数的一般概念.型如和的幂级数.幂级数由系数数列唯一确定.幂级数至少有一个收敛点.以下只讨论型如的幂级数.幂级数是最简单的函数项级数之一.一. 幂级数的收敛域:Th 1(Abel定理)若幂级数在点收敛, 则对满足不等式的任何,幂级数收敛而且绝对收敛;若在点发散,则对满足不等式的任何,幂级数发散.证收敛, {}有界.设||, 有|,其中..定理的第二部分系第一部分的逆否命题.幂级数和的收敛域的结构.定义幂级数的收敛半径R.收敛半径 R的求法.Th 2 对于幂级数, 若, 则ⅰ>时,; ⅱ>时; ⅲ>时.证, (强调开方次数与的次数是一致的).……由于, 因此亦可用比值法求收敛半径.幂级数的收敛区间:.幂级数的收敛域: 一般来说, 收敛区间收敛域. 幂级数的收敛域是区间、、或之一.例1 求幂级数的收敛域 . ()例2 求幂级数的收敛域 . ()例3 求下列幂级数的收敛域:⑴; ⑵.例4 求级数的收敛域 .Ex [1]P50—51 1.二.幂级数的一致收敛性:Th 3 若幂级数的收敛半径为,则该幂级数在区间内闭一致收敛.证, 设, 则对, 有, 级数绝对收敛, 由优级数判别法幂级数在上一致收敛.因此,幂级数在区间内闭一致收敛.Th 4 设幂级数的收敛半径为,且在点( 或)收敛,则幂级数在区间( 或)上一致收敛 .证.收敛, 函数列在区间上递减且一致有界,由Abel判别法,幂级数在区间上一致收敛.易见,当幂级数的收敛域为(时,该幂级数即在区间上一致收敛 .三. 幂级数的性质:1. 逐项求导和积分后的级数:设,*) 和 **)仍为幂级数. 我们有Th 5 *) 和 **)与有相同的收敛半径 . ( 简证 ) 注: *) 和 **)与虽有相同的收敛半径(因而有相同的收敛区间),但未必有相同的收敛域, 例如级数.2. 幂级数的运算性质:定义两个幂级数和在点的某邻域内相等是指:它们在该邻域内收敛且有相同的和函数.Th 6.Th 7 设幂级数和的收敛半径分别为和,, 则ⅰ>,—常数,.ⅱ>+,.ⅲ> ()(),,.3. 和函数的性质:Th 8 设在(内. 则ⅰ>在内连续;ⅱ> 若级数或收敛, 则在点( 或)是左( 或右 )连续的;ⅲ> 对,在点可微且有;ⅳ> 对,在区间上可积,且.注:当级数收敛时,无论级数在点收敛与否,均有.这是因为:由级数收敛,得函数在点左连续, 因此有.推论1 和函数在区间内任意次可导, 且有, …….注: 由系1可见,是幂级数的和函数的必要条件是任意次可导.推论2 若, 则有例5 验证函数满足微分方程.验证所给幂级数的收敛域为.., 代入,.例6 由于,.所以,..,Ex [1]P50—51 4 , 5, 6 .§2 函数的幂级数展开( 4 时)一. 函数的幂级数展开:1. Taylor级数: 设函数在点有任意阶导数.Taylor公式和Maclaurin公式.Taylor公式:.余项的形式:Peano型余项:,(只要求在点的某邻域内有阶导数,存在)Lagrange型余项:在与之间.或.积分型余项: 当函数在点的某邻域内有阶连续导数时, 有.Cauchy余项: 在上述积分型余项的条件下, 有Cauchy余项.特别地,时,Cauchy余项为在与之间.Taylor级数: Taylor公式仅有有限项, 是用多项式逼近函数. 项数无限增多时, 得,称此级数为函数在点的Taylor级数. 只要函数在点无限次可导, 就可写出其Taylor级数. 称=时的Taylor级数为Maclaurin级数, 即级数.自然会有以下问题: 对于在点无限次可导的函数, 在的定义域内或在点的某邻域内, 函数和其Taylor级数是否相等呢 ?2.函数与其Taylor级数的关系:例1 函数在点无限次可微. 求得,. 其Taylor级数为.该幂级数的收敛域为.仅在区间内有=.而在其他点并不相等,因为级数发散.那么,在Taylor级数的收敛点,是否必有和其Taylor级数相等呢?回答也是否定的.例2 函数在点无限次可导且有因此Taylor级数,在内处处收敛.但除了点外,函数和其Taylor级数并不相等.另一方面,由本章§1 Th 8推论2(和函数的性质)知:在点的某邻域内倘有, 则在点无限次可导且级数必为函数在点的Taylor级数.综上, 我们有如下结论:⑴ 对于在点无限次可导的函数, 其Taylor级数可能除点外均发散, 即便在点的某邻域内其Taylor级数收敛, 和函数也未必就是.由此可见,不同的函数可能会有完全相同的Taylor级数.⑵ 若幂级数在点的某邻域内收敛于函数, 则该幂级数就是函数在点的Taylor级数.于是, 为把函数在点的某邻域内表示为关于的幂级数,我们只能考虑其Taylor级数.3.函数的Taylor展开式:若在点的某邻域内函数的Taylor级数收敛且和恰为,则称函数在点可展开成Taylor级数(自然要附带展开区间.称此时的Taylor级数为函数在点的Taylor展开式或幂级数展开式.简称函数在点可展为幂级数.当= 0 时, 称Taylor展开式为Maclaurin展开式.通常多考虑的是Maclaurin展开式.4. 可展条件:Th 1 (必要条件) 函数在点可展在点有任意阶导数.Th 2 (充要条件) 设函数在点有任意阶导数.则在区间内等于其Taylor级数(即可展)的充要条件是:对, 有.其中是Taylor公式中的余项.证把函数展开为阶Taylor公式, 有.Th 3 (充分条件) 设函数在点有任意阶导数, 且导函数所成函数列一致有界, 则函数可展.证利用Lagrange型余项, 设, 则有.例3 展开函数ⅰ> 按幂; ⅱ> 按幂.解,,.所以,ⅰ>.可见,的多项式的Maclaurin展开式就是其本身.ⅱ>.Ex [1]P58 1,3⑴.二. 初等函数的幂级数展开式:初等函数的幂级数展开式才是其本质上的解析表达式.为得到初等函数的幂级数展开式,或直接展开,或间接展开.1.. ( 验证对R ,在区间( 或)上有界, 得一致有界. 因此可展 )..2.,.,.可展是因为在内一致有界.3. 二项式的展开式:为正整数时,为多项式, 展开式为其自身;为不是正整数时, 可在区间内展开为对余项的讨论可利用Cauchy余项. 具体讨论参阅[1]P56.进一步地讨论可知(参阅Г.М.菲赫金哥尔茨《微积分学教程》第二卷第二分册.):当时, 收敛域为;当时, 收敛域为;当时, 收敛域为.利用二项式的展开式, 可得到很多函数的展开式. 例如取, 得,.取时, 得,.间接展开: 利用已知展开式, 进行变量代换、四则运算以及微积运算, 可得到一些函数的展开式.利用微积运算时, 要求一致收敛.幂级数在其收敛区间内闭一致收敛,总可保证这些运算畅通无阻.4...事实上, 利用上述的展开式, 两端积分, 就有,.验证知展开式在点收敛, 因此, 在区间上该展开式成立.5..由. 两端积分,有验证知上述展开式在点收敛, 因此该展开式在区间上成立.例4 展开函数.解.例5 展开函数.解.Ex [1]P58 2 ⑴―⑼,3⑵(提示) .。
大一高数幂级数知识点

大一高数幂级数知识点幂级数是数学分析中的一个重要概念,它在函数的分析和近似表示中扮演着重要的角色。
本文将介绍大一高数中与幂级数相关的知识点,包括幂级数的定义、收敛性判定、常见的幂级数函数以及求和方法等内容。
一、幂级数的定义和性质幂级数是一种形如∑(an*(x-a)^n)的级数,其中an为常数系数,x是变量,a是常数。
幂级数通常以x为自变量,可以展开为无穷项的多项式。
幂级数的定义如下:【数学公式】其中,an为幂级数的系数,x-a为幂级数的变量项,n为幂级数的指数。
幂级数的收敛区间是使得幂级数收敛的所有x值所构成的区间。
根据幂级数的性质,收敛区间的长度可以是0到正无穷大,也可以是无穷小到无穷大。
当x位于收敛区间时,幂级数才会收敛于一个确定的值。
二、收敛性判定对于给定的幂级数,我们需要判断其在某个特定点或区间是否收敛。
常用的收敛性判定方法有以下几种:1. 比值判别法:根据幂级数绝对值的比值是否小于1来判断其收敛性。
2. 根值判别法:根据幂级数绝对值的n次根是否小于1来判断其收敛性。
3. 阿贝尔定理:对于幂级数∑(anx^n),当x=a时,如果∑(an*a^n)收敛,则对任意|x-a|<|a|,幂级数都收敛。
三、常见的幂级数函数1. 指数函数:幂级数形如∑(x^n/n!),其收敛区间为(-∞, +∞),用以近似表示自然指数函数。
2. 正弦函数和余弦函数:幂级数形如∑((-1)^n*(x^(2n)/((2n)!)))和∑((-1)^n*(x^(2n+1)/((2n+1)!))),分别用以近似表示正弦函数和余弦函数。
3. 自然对数函数:幂级数形如∑((-1)^(n+1)*(x^n/n)),其收敛区间为(-1, 1],用以近似表示自然对数函数。
四、求和方法1. 逐项求和:对于给定的幂级数,可以按照幂级数的定义逐项求和,得到幂级数的和函数。
2. 求导和积分:对于已知的函数,可以通过求导和积分的方式得到其对应的幂级数表示。
第十四章 幂级数

∞
∞
(14.2)
∫
x
0
f (t )dt = ∫
x ∞
0
∑ ant n dt = ∑
n =0
an n +1 x 。 n=0 n + 1
∞
(14.3)
证明: ∀x ∈ (− R, R ) ,取实数 r ,使 x < r < R ,由于式(14.1) , (14.2) , (14.3)右 边的幂级数都以 ( − R, R ) 为收敛区间,故都在 [ − r , r ] 一致收敛,据函数级数逐项求导和逐项 积分定理立证式(14.2) , (14.3)成立。 推论 设幂级数
∑ax
1
收敛, 当 ρ x > 1 时,
∑ax
n
n
发散,
∑ax
n
n
的收敛半径是
ρ
,从而幂级数
∑a x
n
n
的收敛半径是
1
ρ
。
注 3.若幂级数的奇项或偶项系数全为 0,即形如
∑ a2 n x 2 n ,或 ∑ a2n−1 x 2 n−1 ,
n=0 n =1
∞
∞
那么收敛半径 R 的确定,应该象定理 14.2 那样用正项级数的根式判别法和比式判别法来判 定;也可用下面的方法求 ρ :
评注:由于和函数在收敛域连续.故 S ( ±1) 的值可利用 lim S ( x ) 求出。
x →±1
补例 2(P24 题 5(1) )求乘积级数
(∑ nx n −1 )[∑ ( −1) n −1 ⋅ nx n −1 ] 。
n =1 n =1
∞
∞
解:
∑ nx n−1 = (∑ ∫ nt n−1dt ) '
数学分析14.1幂级数

第十四章 幂级数1幂级数概念:由幂函数序列{a n (x-x 0)n }所产生的函数项级数∑∞=0n nn )x -(x a=a 0+a 1(x-x 0)+a 2(x-x 0)2+…+a n (x-x 0)n+…称为幂级数. 特别地,当x 0=0时,有∑∞=0n n n x a =a 0+a 1x+a 2x 2+…+a n x n +…一、幂级数的收敛区间定理14.1:(阿贝尔定理)若幂级数∑∞=0n n n x a 在x=x ≠0处收敛,则对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 收敛且绝对收敛;若幂级数∑∞=0n n n x a 在x=x 处发散,则对满足不等式|x|>|x |的任何x ,幂级数∑∞=0n n nx a发散.证:设级数∑∞=0n n n x a 收敛,从而数列{nn x a }收敛于0且有界,即存在某正数M ,使得|nn x a |<M (n=0,1,2,…). 又对任一个满足不等式|x|<|x |的x ,可设r=xx<1, 都有 |a n x n|=x x x a nn ⋅=|n n x a |x x <Mr n. 又级数∑∞=0n n Mr 收敛,∴对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 绝对收敛.设级数∑∞=0n nn x a 发散,若存在某一x 0,满足|x 0|>|x |且使∑∞=0n n 0n x a 收敛,则∑∞=0nnnxa绝对收敛,矛盾!∴对满足不等式|x|>|x|的任何x,幂级数∑∞=0nnnxa发散.注:由定理14.1可知,幂级数∑∞=0nnnxa的收敛域是以原点为中心的区间. 若以2R表示区间的长度,则称R为幂级数的收敛半径. R就是使得幂级数∑∞=0nnnxa收敛的收敛点绝对值的上确界. 所以幂级数∑∞=0nnnxa当R=0时,仅在x=0处收敛;当R=+∞时,在(-∞,+ ∞)上收敛;当0<R<+∞时,在(-R,R)上收敛;对一切满足不等式|x|>R的x,发散;在x=±R处,不确定. (-R,R)称为幂级数∑∞=0nnnxa的收敛区间.定理14.2:对于幂级数∑∞=0nnnxa,若n n∞n|a|lim→=ρ,则当(1)0<ρ<+∞时,幂级数∑∞=0nnnxa的收敛半径R=ρ1;(2)ρ=0时,幂级数∑∞=0nnnxa的收敛半径R=+∞;(3)ρ=+∞时,幂级数∑∞=0nnnxa的收敛半径R=0.证:对于幂级数∑∞=0nnnxa,∵n nn∞n|xa|lim→=nn∞n|a|lim→|x|=ρ|x|,根据级数的根式判别法,当ρ|x|<1时,∑∞=0nnnxa收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.注:也可由比式判别法|a ||a |lim n1n ∞n +→=n n ∞n |a |lim →=ρ,来求出幂级数∑∞=0n n n x a 的收敛半径.例1:求级数∑2nnx 的收敛半径R 及收敛域.解:记a n =2n 1, 则|a ||a |lim n1n ∞n +→=22∞n )1(n n lim +→=1,∴R=1. 又当x=±1时,2nn)1(±=2n 1,由级数∑2n 1收敛,知∑2n n x 在x=±1收敛.∴级数∑2nnx 的收敛域为[-1,1].例2:求级数∑nx n的收敛半径R 及收敛域.证:记a n =n1, 则|a ||a |lim n 1n ∞n+→=1n nlim ∞n +→=1,∴R=1. 又当x=1时,级数∑n 1发散;当x=-1时,级数∑n (-1)n 收敛.∴级数∑nx n的收敛域为[-1,1).注:级数∑∞=0n nn!x 与∑∞=0n n x n!的收敛半径分别为R=+∞与R=0.定理14.3:(柯西—阿达马定理)对幂级数∑∞=0n n n x a ,设ρ=n n ∞n|a |lim →,则 (1)当0<ρ<+∞时,R=ρ1;(2)当ρ=0时,R=+∞;(3)当ρ=+∞时,R=0.证:对于任意x,∵n n n ∞n|x a |lim →=n n ∞n |a |lim →|x|=ρ|x|, 根据级数的根式判别法,当ρ|x|<1时,∑∞=0n n n x a 收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.例3:求级数1+3x +222x +333x +442x +…+12n 1-2n 3x -+2n 2n 2x +…的收敛域.解:∵n n ∞n|a |lim →=21,∴R=2. 又当x=±2时,原级数都发散,∴原级数的收敛域为(-2,2).例4:求级数∑∞=1n 2n2n3-n x 的收敛域. 解:方法一:∵2n n ∞n|a |lim →=2n 2n ∞n 3-n 1lim →=2n 2n∞n 3n11lim 31-→=31,∴R=3.方法二:∵当n2n2n ∞n 3-n x lim →=n2n2n∞n 3n -1x lim 91→=9x 2<1,即|x|<3时,收敛.∴原级数的收敛半径为R=3.又当x=±3时,原级数=∑∞=1n 2n2n3-n 3=-1≠0,发散.∴原级数的收敛域为(-3,3).定理14.4:若幂级数∑∞=0n nn x a 的收敛半径为R(>0),则∑∞=0n n n x a 在它的收敛区间(-R,R)内任一闭区间[a,b]上都一致收敛.证:设x =max{|a|,|b|}∈(-R,R),则任一x ∈[a,b],都有|a n x n |≤|a n x n |. ∵∑∞=0n nn x a 在x 绝对收敛,由优级数判别法知∑∞=0n n n x a 在[a,b]上一致收敛.定理14.5:若幂级数∑∞=0n n n x a 的收敛半径为R(>0),且在x=R(或x=-R)收敛,则∑∞=0n n n x a 在[0,R](或[-R,0])上一致收敛.证:设幂级数∑∞=0n n n x a 在x=R 收敛,对于x ∈[0,R]有∑∞=0n n n x a =nn n n R x R a ⎪⎭⎫ ⎝⎛∑∞=.已知级数∑∞=0n nn R a 收敛,函数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛nR x 在[0,R]上递减且一致有界,即1≥R x ≥2R x ⎪⎭⎫ ⎝⎛≥…≥nR x ⎪⎭⎫⎝⎛≥…≥0. 由阿贝尔判别法知∑∞=0n n nx a在[0,R]上一致收敛. 同理可证:∑∞=0n n nx a在x=-R 收敛时,在[-R,0]上一致收敛.例5:考察级数∑n21)-(x n n的收敛域.解:∵|a ||a |lim n1n ∞n +→=|1)(n 2||n 2|lim 1n n ∞n ++→=1)2(n n lim ∞n +→=21,∴R=2.又当x-1=2时,原级数=∑n 1发散;当x-1=-2时,∑-n22)(n n =∑n (-1)n 收敛.∴x-1∈[-2,2),原级数的收敛域为[-1,3).二、幂级数的性质定理14.6:(1)幂级数∑∞=0n n n x a 的和函数是(-R,R)上的连续函数;(2)若幂级数∑∞=0n n n x a 在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.定理14.7:幂级数∑∞=0n n n x a 在收敛区间(-R,R)上逐项求导与逐项求积后分别得到幂级数:∑∞=1n 1-n n x na 与∑∞=++0n 1n n x 1n a ,它们的收敛区间都是(-R,R). 证法一:设x 0为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上任一不为零的点,由阿贝尔定理(定理14.1)的证明过程知,存在正数M 与r(<1), 对一切正整数n ,都有|a n x 0n |<Mr n . 于是|na n x 0n-1|=x n|a n x 0n |<0x M nr n .由级数比式判别法知级数∑n nr 收敛,根据级数的比较原则知,∑∞=1n 1-n nxna收敛. 由x 0为(-R,R)上任一点,知∑∞=1n 1-n n x na 在(-R,R)上收敛.若存在一点x ’,使|x ’|>R ,且幂级数∑∞=1n 1-n n x na 在x ’收敛,则必有一数x ,使得|x ’|>|x |>R ,由阿贝尔定理,∑∞=1n 1-n n x na 在x 处绝对收敛.但,取n ≥|x |时,就有|na n x n-1|=xn |a n x n |≥|a n x n |,由比较原则得幂级数∑∞=0n n n x a 在x 处绝对收敛,矛盾!∴幂级数∑∞=1n 1-n n x na 在一切满足不等式|x|>R 的x 都不收敛,即幂级数∑∞=0n n n x a 与其在收敛区间(-R,R)上逐项求导所得幂级数∑∞=1n 1-n nx na有相同的收敛区间(-R,R).又幂级数∑∞=0n nn x a 在收敛区间(-R,R)上逐项求积可得幂级数∑∞=++0n 1n n x 1n a , 即∑∞=0n nn x a 是由幂级数∑∞=++0n 1n n x 1n a 在其收敛区间上逐项求导所得, ∴它们也有相同的收敛区间(-R,R). 证法二:对于幂级数∑∞=0n n n x a ,R=1n n∞n a a lim+→. 对幂级数∑∞=1n 1-n n x na ,1n n ∞n1)a (n na lim +→+=1n n ∞na a 1n nlim +→⋅+=R. 对幂级数∑∞=++0n 1n n x 1n a,2n a 1n a lim 1n n∞n +++→=1n n ∞n a a 1n 2n lim +→⋅++=R. 得证!定理14.8:设∑∞=0n n n x a 在收敛区间(-R,R)上的和函数为f ,x ∈(-R,R),则:(1)f 在点x 可导,且f ’(x)=∑∞=1n 1-n n x na ;(2)f 在0与x 之间的这个区间上可积,且⎰x0f(t)dt=∑∞=++0n 1n n x 1n a .证法:由定理14.7知,∑∞=0n nn x a ,∑∞=1n 1-n n xna 和∑∞=++0n 1n n x 1n a 有相同的R. ∴总存在r ,使|x|<r<R ,根据定理14.4,它们在[-r,r]上都一致收敛. 根据逐项求导与逐项求积定理得证!推论1:记f 为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上的和函数,则在(-R,R)上f 具有任何阶导数,且可逐项求导任何次,即: f ’(x)=∑∞=1k 1-k k x ka ;f ”(x)=∑∞=2k 2-k k x1)a -k(k ;…;f (n)(x)=∑∞=n k n -k k x a n)!-(k k!;….推论2:记f 为幂级数∑∞=0n n n x a 在点x=0某邻域上的和函数,则{a n }与f在x=0处的各阶导数有如下关系:a 0=f(0), a n =n!(0)f (n),(n=1,2,…).三、幂级数的运算定义:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内有相同的和函数,则称这两个幂级数在该邻域内相等.定理14.9:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内相等,则它们同次幂项的系数相等,即a n =b n (n=1,2,…).定理14.10:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 的收敛半径分别为R a 和R b ,则λ∑∞=0n nn x a =∑∞=0n nn x λa , |x|<R a , λ为常数;记R=min{R a ,R b }, c n =∑=nk k -n k b a , 有∑∑∞=∞=±0n 0n nn nn x b x a =∑∞=±0n nn n )x b (a ;⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n n 0n n n x b x a =∑∞=0n n n x c . |x|<R.例6:几何级数∑∞=0n n x 在收敛域(-1,1)上有f(x)=x-11. 在(-1,1)上 逐项求导可得:f ’(x)=2x )-(11=∑∞=1n 1-n nx ; f ”(x)=3x )-(1!2=∑∞=2n 2-n 1)x -n(n . 在[0,x](x<1)上逐项求积可得:⎰xt -1dt=∑⎰∞=0n x 0n t dt ,从而可得: ln x -11=∑∞=++0n 1n 1n x (|x|<1), 其对x=-1也成立.注:可通过的逐项求导或逐项求积间接地求出级数的和函数.例7:求级数∑∞=1n n 21-n x n (-1)的和函数.解:由R=1n n ∞n a a lim +→=2n 21-n ∞n 1)(n (-1)n (-1)lim +→=2∞n 1n n lim ⎪⎭⎫⎝⎛+→=1, 且x=±1时,级数发散,知其收敛域为(-1,1). 记S(x)=∑∞=1n n21-n x n (-1)=x ∑∞=1n 1-n 21-n x n (-1)=xg(x), x ∈(-1,1),则⎰x)t (g dt=∑⎰∞=1n x1-n 21-n tn (-1)dt=∑∞=1n n1-n nx (-1)=x ∑∞=1n 1-n 1-n nx (-1)=xh(x),则⎰x)t (h dt=∑⎰∞=1n x1-n 1-n tn (-1)dt=∑∞=1n n1-n x (-1)=x ∑∞=1n 1-n 1-n nx (-1)=x1x+, x ∈(-1,1). ∴h(x)='⎪⎭⎫⎝⎛+x 1x =2x )(11+;g(x)=(xh(x))’='⎥⎦⎤⎢⎣⎡+2x)(1x =3x )(1x -1+; ∴原级数的和函数S(x)=xg(x)=32x)(1x -x +, x ∈(-1,1).习题1、求下列幂级数的收敛半径与收敛区域:(1)∑nnx ;(2)∑⋅n 2n2n x ;(3)∑n 2x (2n)!)(n!;(4)∑n n x r 2(0<r<1); (5)∑1)!-(2n )2-(x 1-2n ;(6)nn n )1x (n )2(3+-+∑;(7)∑+⋯++n x )n1211(;(8)∑n n 2x 2. 解:(1)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散,∴原级数的收敛域为(-1,1).(2)R=1n n ∞n a a lim +→=n 21n 2∞n 2n 21)(n lim ⋅⋅++→=2. 又当x=±2时,原级数收敛, ∴原级数的收敛域为[-2,2].(3)R=1n n∞n a a lim+→=2)]![(2n ]1)![(n (2n)!)(n!lim 22∞n ++→=2∞n 1)(n 1)2)(2n (2n lim +++→=4. 又当x=±4时,|u n |=n 24(2n)!)(n!=(2n)!)2(n!2n ⋅=(2n)!]![(2n)!2=!1)!-(2n !(2n)!>12n +→∞ (n →∞), ∴原级数发散. ∴收敛域为(-4,4).(4)∵n n ∞n |a |lim →=nn ∞n2r lim →=0,∴R=+∞,收敛域为(-∞, +∞).(5)R=1n n ∞na a lim +→=1)!-(2n 1)!(2n lim ∞n +→=1)2n(2n lim ∞n +→=+∞,收敛域为(-∞, +∞).(6)R=1n n ∞n a a lim +→=1n 1n nn ∞n )2(3)2(3n 1n lim ++→-+-+⋅+=1n n∞n 3233321n 1n lim +→⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⋅+=31. 又当x=31时,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=4,原级数发散. 当x=-31,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=2,原级数发散. ∴x+1∈(-31,31),原级数的收敛域为(-34,-32). (7)∵1=n n 1n ⋅≤n n1211+⋯++≤n n →1 (n →∞),∴R=1. 又当x=±1时,n ∞n)1()n1211(lim ±+⋯++→≠0,∴原级数发散. ∴原级数的收敛域为(-1,1).(8)∵n1n ∞nu u lim +→=22n n1n 1)(n ∞n x 22xlim ⋅++→=2x lim 12n ∞n +→=⎪⎩⎪⎨⎧>∞+=<1|x |1|x | ,211|x | 0,,,∴R=1, 且当x=±1时,原级数收敛. ∴原级数的收敛域为[-1,1].2、应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):(1)∑∞=++0n 12n 12n x ;(2)∑∞=1n n nx ;(3)∑∞=+1n nx )1n (n ;(4)∑∞=1n n 2x n . 解:(1)∵R=1n n ∞n a a lim +→=12n 32n lim ∞n ++→=1,又当x=±1时,级数∑∞=+±0n 12n 1发散; ∴幂级数的和函数S(x)定义在(-1,1),且S ’(x)=∑∞=+'⎪⎪⎭⎫ ⎝⎛+0n 12n 12n x =∑∞=0n 2nx =2x 11-, ∴S(x)=⎰x 02t -1dt =21ln x -1x 1+, x ∈(-1,1). (2)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n nnx =x ∑∞=1n 1-n nx =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n nt dt=∑∞=1n n x =x 11-,∴f(x)='⎪⎭⎫ ⎝⎛-x 11=2x )1(1-. ∴S(x)=2x )1(x-, x ∈(-1,1). (3)∵R=1n n ∞na a lim +→=2)1)(n (n 1)n(n lim ∞n +++→=1,又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且⎰xS(t)dt=∑⎰∞=+1n xn1)t n(n dt=∑∞=+1n 1n nx=x ∑∞=1n nnx =22x)1(x -. ∴S(x)='⎥⎦⎤⎢⎣⎡-22x)1(x =3x )1(2x-, x ∈(-1,1). (4)∵n n ∞n|a |lim →=n 2∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n n2x n =x ∑∞=1n 1-n 2x n =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n 2t n dt=∑∞=1n n nx =2x )1(x -,∴f(x)='⎥⎦⎤⎢⎣⎡-2x)1(x=3x )1(x 1-+. ∴S(x)=32x)1(x x -+, x ∈(-1,1).3、证明:设f(x)=∑∞=0n nn x a 当|x|<R 时收敛,若∑∞=++0n 1n nR 1n a 也收敛,则 ⎰Rf(x )dx=∑∞=++0n 1n n R 1n a . 应用这个结论证明:⎰+10x 11dx=ln2=∑∞=+1n 1n n 1(-1).证:∵∑∞=++0n 1n n R 1n a 收敛,补充定义f(x)=∑∞=++0n 1n n R 1n a , x=R.则f(x)=∑∞=0n nn x a , x ∈(-R,R]. ∴⎰R0f(x )dx=∑⎰∞=0n R0nn x a dx=∑∞=++0n 1n nR 1n a . 对幂级数∑∞=1n 1-n 1-n x(-1)=x 11+, 又当x=1时,∑∞=+1n 1n n 1(-1)收敛,∴⎰+10x 11dx= ln2=∑∞=+1n 1n n 1(-1).4、证明:(1)y=∑∞=0n 4n (4n)!x 满足方程y (4)=y ;(2)y=∑∞=0n 2n )(n!x 满足方程xy ”+y ’-y=0. 证:(1)∵n n ∞n|a |lim →=n ∞n (4n)!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡1n 4n (4n)!x =∑∞=1n 1-4n 1)!-(4n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡1n 1-4n 1)!-(4n x =∑∞=1n 2-4n 2)!-(4n x ;y ”’='⎥⎦⎤⎢⎣⎡∑∞=1n 2-4n 2)!-(4n x =∑∞=1n 3-4n 3)!-(4n x ;y (4)=∑∞='⎥⎦⎤⎢⎣⎡1n 3-4n 3)!-(4n x =∑∞=1n 1)-4(n 1)]!-[4(n x =∑∞=0n 4n (4n)!x =y. (2)∵n n ∞n|a |lim →=n 2∞n )(n!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡0n 2n )(n!x =∑∞=0n 1-n n!1)!-(n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡0n 1-n n!1)!-(n x =∑∞=0n 2-n n!2)!-(n x . 则 xy ”+y ’=x ∑∞=1n 2-n n!2)!-(n x +∑∞=1n 1-n n!1)!-(n x =∑∞=1n 21-n ]1)!-[(n x =∑∞=0n 2n )(n!x =y. ∴xy ”+y ’-y=0.5、证明:设f 为∑∞=0n n n x a 在(-R,R)上的和函数,若f 为奇函数,则原级数仅出现奇次幂的项,若f 为偶函数,则原级数仅出现偶次幂的项. 证:∵f(x)=∑∞=0n nn x a , x ∈(-R,R);∴f(-x)=∑∞=0n n n n x a (-1).若f 为奇函数,即f(-x)=-f(x),则∑∞=0n nn nx a (-1)=-∑∞=0n n n x a 得(-1)n a n =-a n ,当n=2k-1时,成立;当n=2k 时,a 2k =0. 即f(x)=∑∞=1k 1-2k 1-2k x a .若f 为偶函数,即f(-x)=f(x),则∑∞=0n nn nx a (-1)=∑∞=0n n n x a 得(-1)n a n =a n ,当n=2k 时,成立;当n=2k-1时,a 2k-1=0. 即f(x)=∑∞=0k 2k 2k x a .6、求下列幂级数的收敛域:(1)∑+n n n b a x (a>0,b>0);(2)nn x n 112∑⎪⎭⎫ ⎝⎛+.解:(1)∵R=1n n ∞n a a lim +→=n n 1n 1n ∞n b a b a lim ++++→=max{a,b},又当|x|=R 时, nn n∞n b a R lim +→=1≠0,∴原级数的x=±R 发散,收敛域为(-R,R). (2)∵n n ∞n|a |lim →=n n ∞n 2n 11lim ⎪⎭⎫⎝⎛+→=n∞n n 11lim ⎪⎭⎫⎝⎛+→=e ,∴R=e 1, 又当x=±e 1时,nn ∞n e 1n 11lim 2⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛+→≠0,∴原级数在x=±e 1发散, 收敛域为(-e 1,e1).7、求下列幂级数的收敛半径:(1)n n n x n](-1)[3∑+;(2)a+bx+ax 2+bx 3+… (0<a<b).解:(1)∵n n ∞n|a |lim →=n n∞n n 4lim →=n ∞nn4lim →=4,∴R=41. (2)∵n n ∞n|a |lim →=n ∞n b lim →=1,∴R=1.8、求下列幂级数的收敛半径及其和函数:(1)∑∞=+1n n 1)n(n x ;(2)∑∞=++1n n 2)1)(n n(n x ;(3)∑∞=+2n n2x 1n )1-n (. 解:(1)R=1n n ∞na a lim +→=1)n(n )2n )(1n (lim ∞n +++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=+1n n 1)n(n x =∑∞=++1n 1n 1)n(n x x 1=x 1f(x).∵f ”(x)='⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎥⎦⎤⎢⎣⎡+∑∞=+1n 1n 1)n(n x =∑∞='⎪⎪⎭⎫ ⎝⎛1n nn x =∑∞=0n n x =x -11. ∴f ’(x)=⎰xt-11dt=-ln(1-x);f(x)=⎰--x 0)t 1ln(dt=(1-x)ln(1-x)+x. 又当x=1时,S(1)=∑∞=+1n 1)n(n 1=⎪⎭⎫ ⎝⎛+-→1n 11lim ∞n =1;当x=0时,S(0)=0. ∴S(x)=⎪⎪⎩⎪⎪⎨⎧==≠<≤-+ 0x ,0 1x ,10x 1x 1,1x)-ln(1x x-1且. (2)R=1n n ∞na a lim +→=2)1)(n n(n )3n )(2n )(1n (lim ∞n +++++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=++1n n 2)1)(n n(n x =∑∞=+++1n 2n 22)1)(x n(n x x 1=2x 1f(x). ∵f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡++1n 2n 2)1)(x n(n x=∑∞=++1n 1n 1)n(n x =x ∑∞=+1n n 1)n(n x =(1-x)ln(1-x)+x.∴f(x)=t]t)-t)ln(1-[(1x 0+⎰dt=-21(1-x)2ln(1-x)+43x 2-21x.又当x=0时,S(0)=0;当x=1时,S(1)=f(1)=41.∴S(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠<≤-+- 0x ,0 1x ,410x 1x 1,432x 1-x)-ln(12xx)-(122且 . (3)R=1n n ∞n a a lim +→=1)(n n 2)(n )1-n (lim 22∞n ++→=1. 又当x=±1时,原级数发散. ∴收敛域为(-1,1). 记S(x)=∑∞=+2n n 2x 1n )1-n (=∑∞=++2n 1n 21n x 1)-(n x 1=x 1f(x). f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡+2n 1n 21n x 1)-(n =∑∞=2n n 2x )1-n (=x 2∑∞=2n 2-n 2x )1-n (=x 2g(x). ⎰xg(t)dt=∑⎰∞=2n x2-n 2t)1-n (dt=∑∞=2n 1-n x )1-n (=x ∑∞=2n 2-n x )1-n (=xh(x).⎰xh(t)dt=∑⎰∞=2n x2-n t)1-n (dt=∑∞=2n 1-n x =∑∞=1n n x =x-1x. ∴h(x)='⎪⎭⎫⎝⎛x -1x =2x )-(11;g(x)='⎥⎦⎤⎢⎣⎡2x)-(1x =3x )-(1x 1+;f(x)='⎥⎦⎤⎢⎣⎡+332x)-(1x x =42x)-(1x 42x +; 又当x=0时,S(0)=0;∴S(x)=⎪⎩⎪⎨⎧=<+0x 0,1|x |,x )-(1x424.9、设a 0, a 1, a 2,…为等差数列(a 0≠0). 试求: (1)幂级数∑∞=0n nn x a 的收敛半径;(2)数项级数∑∞=0n nn2a 的和数. 解:记等差数列a 0, a 1, a 2,…的公差为d ,则a n =a 0+nd ,a n =a 0+(n+1)d ,R=1n n∞n a a lim +→=1)d n (a nd a lim 00∞n +++→=1. ∴幂级数∑∞=0n n n x a 有收敛区间(-1,1). 记S(x)=∑∞=0n nn x a =∑∞=+0n n0nd)x (a = a 0∑∞=0n nx +d ∑∞=0n n nx =x 1a 0-+2x )1(dx-,当x=21∈(-1,1)时,S(21)=∑∞=0n nn 2a =2a 0+2d=2a 1. ∴(1)幂级数∑∞=0n nn x a 的收敛半径R=1; (2)数项级数∑∞=0n n n2a 的和数S=2a 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s( x) u1( x) u2( x) un( x) (定义域是?)
函数项级数的部分和 sn ( x), 余项 rn ( x) s( x) sn ( x)
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
n0
(否则由定理1知将有点x 0使| an xn | 收敛)
n0
收敛半径 R 0.
定理证毕.
例2 求下列幂级数的收敛区间:
(1) (1)n xn ;
n1
n
(2) (nx)n;
n1
(3) xn ;
n1 n!
(4) (1)n 2n ( x 1)n .
a n n
由比值审敛法,
当|
x
|
1 时,
级数 | an xn
n0
| 收敛,
从而级数 an xn绝对收敛.
n0
当 | xБайду номын сангаас| 1 时,
级数 | an xn | 发散,
n0
并且从某个 n开始 | an1 xn1 || an xn |, | an xn | 0
n0
n0
(2) 假设当x x0时发散,
而有一点x1 适合 x1 x0 使级数收敛, 由(1)结论 则级数当 x x0 时应收敛,
这与所设矛盾.
几何说明
收敛区域
o
发散区域 R
R 发散区域 x
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
证明 (1)
an x0n收敛,
lim
n
an
x0n
0,
n0
M , 使得 an x0n M (n 0,1,2,)
an xn
an x0n
xn x0n
an x0n
x x0
n
M
x x0
n
当 x
1时,
等比级数 M
n
x 收敛,
x0
n0 x0
an xn 收敛, 即级数 an xn收敛;
收敛域(1,1); 发散域(,1][1,);
定理 1 (Abel 定理)
如果级数 an x n 在x x0 ( x0 0) 处收敛,则
n0
它在满足不等式 x x0 的一切x 处绝对收敛;
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
例 1 求级数 (1)n ( 1 )n的收敛域. n1 n 1 x 解 由达朗贝尔判别法
un1( x) n 1 1 (n ) un ( x) n 1 1 x 1 x
(1) 当 1 1, 1 x
1 x 1,
即 x 0或x 2时, 原级数绝对收敛.
n1
n2
解 (1) lim an1 lim n 1 R 1 n an n n 1
第十四章幂级数
§1 幂级数
一、函数项级数的一般概念
1.定义:
设u1( x), u2 ( x),, un ( x),是定义在I R 上的
函数,则 un( x) u1( x) u2 ( x) un( x)
n1
称为定义在区间I 上的(函数项)无穷级数.
例如级数 xn 1 x x2 ,
lim n
n
an
)
(1) 则当 0 时,R 1 ; (2) 当 0时,R ;
(3) 当 时,R 0 .
证明 对级数 an xn 应用达朗贝尔判别法
n0
lim
n
an1 an
x n1 xn
lim an1 n an
x
x,
(1) 如果lim an1 ( 0)存在,
二、幂级数及其收敛性
1.定义: 形如 an ( x x0 )n的级数称为幂级数.
n0
当x0 0时, an xn , 其中an 为幂级数系数.
n0
2.收敛性:
例如级数 xn 1 x x2 ,
n0
当 x 1时, 收敛; 当 x 1时, 发散;
规定 (1) 幂级数只在x 0处收敛, R 0, 收敛区间x 0;
(2) 幂级数对一切x 都收敛, R , 收敛区间(,).
问题 如何求幂级数的收敛半径?
定理 2 如果幂级数 an x n 的所有系数an 0,
设
lim an1 n an
n0
(或
从而级数 an xn发散.
n0
收敛半径 R 1 ;
(2) 如果 0, x 0,
有 an1 xn1
an xn
0 (n ),
级数 | an xn | 收敛,
n0
从而级数 an xn绝对收敛. 收敛半径 R ;
n0
(3) 如果 ,
x 0, 级数 an xn必发散.
n0
2.收敛点与收敛域:
如果 x0 I ,数项级数 un ( x0 )收敛,
n1
则称x0 为级数 un ( x)的收敛点, 否则称为发散点.
n1
函数项级数 un( x)的所有收敛点的全体称为收敛域, n1
所有发散点的全体称为发散域.
3.和函数:
在收敛域上,函数项级数的和是x 的函数s(x) ,
(2) 当 1 1, 1 x 1, 1 x
即 2 x 0时, 原级数发散.
(3) 当| 1 x | 1, x 0或x 2,
当 x 0时, 当 x 2时,
级数 (1)n 收敛;
n1 n
级数 1 发散;
n1 n
故级数的收敛域为(,2) [0,).
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
当 x R与x R时,幂级数可能收敛也可能发散.
定义: 正数R称为幂级数的收敛半径. 幂级数的收敛域称为幂级数的收敛区间.
(R, R), [ R, R), (R, R], [ R, R].