4、整式的乘法
整式的乘除法

数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有第一讲 整式的乘法一、课标要求(学习本章节需要达到的目的)1、掌握同底数幂的乘法;2、幂的乘方;3、积的乘方;4、整式的乘法法则及运算规律.教学重点:同底数幂的乘法及幂的乘方、积的乘方运算. 教学难点:整式的乘法. 二、知识疏理知识点1:同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
nm n m a a a +=⋅(m, n 都是正整数)。
例1:计算。
(1)4322⨯ (2)251010⨯(3)54x x ⋅知识点2:幂的乘方幂的乘方,底数不变,指数相乘。
mnn m a a =)((m, n 都是正整数)注意:nm n m a a ≠)(例2:计算。
(1)(32)3(2)(a m )2(3)―(x m )5(4)(a 2)3·a 5知识点3:积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab )n =a n b n(n 为正整数)例3:计算。
(1)(ab )4(2)322)(y x -(3))()(2352xy x -⋅(4)322)(ab (5)22110⨯⎪⎭⎫ ⎝⎛10数学受到高度尊崇的另一个原因在于:恰恰是数学,给精密的自然科学提供了无可置疑的可靠保证,没有知识点4:单项式的乘法法则单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例4:计算:(1))(3223xy y x -⋅ (2))()(c b b a 23245-⋅- 知识点5:单项式与多项式相乘的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
ap an am p n m a ++=++)( 例5:计算。
(1))(b a a 53222-(2)))((322532ab ab a --知识点6:多项式相乘的乘法法则 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得后积相加。
上海七年级数学秋季 第4讲:整式的乘法

七年级数学04整式的乘法内容分析:本节课能够需要同学理解整式乘法的法则,能够熟练地进行单项式,多项式之间的乘法计算.通过与有理数乘法的分配律进行类比,加深对这些法则的理解.重点是熟练掌握单项式、多项式之间的乘法法则以及推导,并能够灵活应用.难点是分清单项式与单项式相乘中,幂的运算法则,单项式与多项式相乘时结果的符号的确定。
知识结构:模块一:单项式与单项式相乘知识精讲:1、单项式与单项式相乘的运算法则单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.2、单项式与单项式相乘的运算步骤(1)系数相乘的结果作为积的因数;(2)相同字母运用同底数幂的乘法法则计算;(3)把只在一个单项式里含有的字母连同它的指数作为积的一个因式.3、单项式与单项式相乘,积还是单项式.例题解析:【例1】计算:232(3)x x ⋅-的结果是().A .56x -B .56x C .62x -D .62x 【答案】【解析】【例2】()22123_________6xyz xy z xyz ⎛⎫-⋅-⋅= ⎪⎝⎭.【答案】【解析】【例3】计算:(1)()()523x xy x y -⋅⋅;(2)()2231(2)64p q pq pq ⎛⎫⋅-⋅ ⎪⎝⎭;(3)()()()3323222a b b a ab ⎡⎤-⋅-⋅-⋅⎣⎦.【答案】【解析】【例4】先化简,后求值:23332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =, 2.5y =-.【答案】【解析】【例5】若230x y <,化简:()75122xy x y -⋅--.【答案】【解析】模块二:单项式与多项式相乘知识精讲:1、单项式与多项式相乘法则用单项式乘以多项式的每一项,再把所得的积相乘.2、单项式与多项式相乘的注意事项:(1)单项式乘多项式的结果是多项式,积的项数与原多项式的项数相同(2)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定:同号相乘得正,异号相乘得负.例题解析:【例6】下列计算中,正确的是().A .()23236x x y x xy x-=-+B .232(283)4166m m m m m m-+-=-+-C .()2276176y x x x y xy y-+-=--+D .22(1)n n n a a a a -=-【答案】【解析】【例7】解方程:2(1)(25)12x x x x ---=,x 的值是().A .2B .1C .4D .0【答案】【解析】【例8】计算:(1)212516362x x x ⎛⎫⎛⎫--+ ⎪⎝⎭⎝⎭;(2)321123123a a a a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.【答案】【解析】【例9】要使()()2356ax x x ++-的展开式中不含4x 项,则_____a =.【答案】【解析】【例10】设P 是一个多项式,且22453232P x y x y x ÷=-+,求P .【答案】【解析】【例11】已知单项式M N 、满足222(3)6x M x x y N +=+,求M N 、.【答案】【解析】【例12】已知210a a --=,求代数式322016a a -+的值.【答案】【解析】【例13】已知()()2()56m x x n x m x x -⋅-++=+-对于任意数x 都成立,求(1)(1)m n n m -++的值.【答案】【解析】【例14】已知20a b +=,求332()48a ab a b b +++-的值.【答案】【解析】模块三:多项式与多项式相乘知识精讲:1、多项式与多项式相乘法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.例题解析:【例15】关于x 的二次三项式()()7x m x -+中的常数项为14,则m 的值是().A .2B .2-C .7D .7-【答案】【解析】【例16】()()2345_______n n n n x y x y -+=.【答案】【解析】【例17】多项式321x x -+与2357x x +-的乘积中含3x 的系数是().A .13-B .13C .11-D .11【答案】【解析】【例18】若()()275x x x Ax B +-=++,则_____A =,_____B =.【答案】【解析】【例19】已知()()2283x px x x q ++-+的展开式中不含23x x 、项,则_____p =,_____q =.【答案】【解析】【例20】先化简,再求值:232(1)(2)3(2)(3)x x x x x -+--++-,其中2016x =.【答案】【解析】【例21】解方程:()()()()()()221111432x x x x x x x x +++---+=+-.【答案】【解析】【例22】已知a b m 、、均是整数,且()2(12x a x b x mx ++=++),求m 的所有可能值.【答案】【解析】【例23】如果p q a 、、均为整数,p q >且()()28x p x q x ax ++=--,求所有可能的a 值及对应的p q 、的值.【答案】【解析】【例24】阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若123456789123456786x =⨯,123456788123456787y =⨯,试比较x y 、的大小.设123456788a =,那么()21(2)2x a a a a =+-=--,2(1)y a a a a =-=-.因为()()22220x y a a a a -=----=-<,所以x y <.看完后,你学到了这种方法吗?再亲自试一试吧!若20072007200720112007200820072010x =⨯-⨯,2007200820072012y =⨯-2007200920072011⨯,试比较x y 、的大小.【答案】【解析】随堂检测:【习题1】下列式子计算结果是256x x --的是().A .()()61x x -+B .()()23x x -+C .()()61x x +-D .()()23x x +-【答案】【解析】【习题2】()222212________2x y xy ⎛⎫-= ⎪⎝⎭.【答案】【解析】【习题3】一个三项式与一个二项式相乘,在合并同类项之前,积的项数是().A .五项B .六项C .三项D .四项【答案】【解析】【习题4】若212n n ++=,则()()56_______n n -+=.【答案】【解析】【习题5】若()()2242y my y y n ++-+的乘积中不含2y 和3y 项,则____m =,____n =.【答案】【解析】【习题6】计算:(1)()222114323ab ab ab b ⎛⎫-⋅-⋅ ⎪⎝⎭;(2)()()2221121(36)3x x x x x x x --++-+;(3)()()()()3223334x y x y x y x y ++--+.【答案】【解析】【习题7】先化简,再求值:()()33242212312a ab a b a b ab ⎛⎫-⋅--+- ⎪⎝⎭,其中1a =-,2b =.【答案】【解析】【习题8】试证明代数式()()()233263516x x x x x ++-+++的值与x 的值无关.【答案】【解析】【习题9】计算:32003200220032004-⨯⨯.【答案】【解析】【习题10】已知()()2246x ay x by x xy y ++=--,求代数式()32a b ab +-的值.【答案】【解析】【习题11】一个长方形的长增加4厘米,宽减少1厘米。
北师大版数学七年级下册1.4《整式的乘法》说课稿1

北师大版数学七年级下册1.4《整式的乘法》说课稿1一. 教材分析《整式的乘法》是北师大版数学七年级下册第1.4节的内容,本节课的主要任务是让学生掌握整式乘法的基本运算方法。
整式乘法是代数学习的基础,也是后续学习多项式乘法、因式分解等知识的关键。
在本节课中,学生将通过具体的例子,学习如何进行整式的乘法运算,并理解其运算规律。
二. 学情分析面对七年级的学生,他们对整数四则运算已经有一定的基础,但对于代数式的运算还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,引导他们从具体到抽象,逐步理解整式乘法的运算规律。
此外,学生的学习动机、学习习惯和学习能力各有不同,我需要在教学中关注每一个学生的个体差异,充分调动他们的学习积极性。
三. 说教学目标本节课的教学目标有三:1.让学生掌握整式乘法的基本运算方法,能够正确进行整式的乘法运算。
2.让学生理解整式乘法的运算规律,能够灵活运用所学知识解决实际问题。
3.培养学生的逻辑思维能力,提高他们的数学素养。
四. 说教学重难点本节课的重难点是整式乘法的运算方法和运算规律。
对于这部分内容,学生需要通过大量的练习,才能熟练掌握。
因此,在教学过程中,我需要合理安排练习题,引导学生通过自主学习、合作学习等方式,克服困难,掌握重难点。
五. 说教学方法与手段在本节课的教学中,我将采用“引导发现法”和“实践操作法”相结合的教学方法。
通过引导学生观察、思考、讨论,发现整式乘法的运算规律;同时,通过让学生亲自动手进行实践操作,加深他们对整式乘法的理解。
此外,我还将利用多媒体教学手段,为学生提供丰富的学习资源,激发他们的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行整式的乘法运算。
2.新课讲解:通过具体的例子,讲解整式乘法的运算方法,引导学生发现运算规律。
3.练习巩固:安排一系列练习题,让学生亲自动手进行整式的乘法运算,巩固所学知识。
4.拓展延伸:引导学生思考如何将整式乘法应用到实际问题中,提高他们的应用能力。
整式的运算法则

整式的运算法则整式的加减法:〔1〕去括号;〔2〕合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m aa mnn m =)()(都是正整数n b a ab nn n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】〔1〕单项式乘单项式的结果仍然是单项式。
〔2〕单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
〔3〕计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
〔4〕多项式与多项式相乘的展开式中,有同类项的要合并同类项。
〔5〕公式中的字母可以表示数,也可以表示单项式或多项式。
〔6〕),0(1);0(10为正整数p a a a a a p p ≠=≠=-〔7〕多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。
一、选择〔每题2分,共24分〕1.以下计算正确的选项是〔〕.A.2x2·3x3=6x3B.2x2+3x3=5x5C.〔-3x2〕·〔-3x2〕=9x5D.54x n·25x m=12x m+n2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为〔〕.A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.以下运算正确的选项是〔〕.A.a2·a3=a5B.〔a2〕3=a5C.a6÷a2=a3D.a6-a2=a44.以下运算中正确的选项是〔〕.A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空〔每题2分,共28分〕6.-xy2的系数是______,次数是_______.8.x_______=x n+1;〔m+n〕〔______〕=n2-m2;〔a2〕3·〔a3〕2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 假设坐飞机飞行这么远的距离需_________.10.a2+b2+________=〔a+b〕2a2+b2+_______=〔a-b〕2〔a-b〕2+______=〔a+b〕211.假设x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算〔每题3分,共24分〕13.〔2x2y-3xy2〕-〔6x2y-3xy2〕14.〔-32ax4y3〕÷〔-65ax2y2〕·8a2y17.〔x-2〕〔x+2〕-〔x+1〕〔x-3〕18.〔1-3y〕〔1+3y〕〔1+9y2〕19.〔ab+1〕2-〔ab-1〕2四、运用乘法公式简便计算〔每题2分,共4分〕20.〔998〕221.197×203五、先化简,再求值〔每题4分,共8分〕22.〔x+4〕〔x-2〕〔x-4〕,其中x=-1.23.[〔xy+2〕〔xy-2〕-2x2y2+4],其中x=10,y=-1 25.六、解答题〔每题4分,共12分〕24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法〔重点〕1.运算法则:同底数幂相乘,底数不变,指数相加。
整式的乘法

整式的乘法整式是指由常数、变量及其乘积与积之和表示的代数式。
在代数学中,整式的乘法是一个基本而重要的运算。
基本概念在讨论整式的乘法之前,我们先来回顾一下整数乘法的概念。
在整数乘法中,当我们计算两个整数的乘积时,我们将第一个整数乘以第二个整数,并将乘积作为结果。
例如,$3\\times4=12$。
类似地,整式的乘法也遵循相同的原则。
当计算两个整式的乘积时,我们将第一个整式乘以第二个整式,并将乘积作为结果。
下面是一个例子:(2x+3)(4x−5)要计算上述整式的乘积,我们需要将每个项在第一个整式与第二个整式中进行乘法运算,并将结果相加。
具体计算步骤如下:1.将第一个整式中的每一项与第二个整式中的每一项进行乘法运算。
(2x)(4x)=8x2(2x)(−5)=−10x(3)(4x)=12x(3)(−5)=−152.将上述结果相加。
8x2−10x+12x−153.合并同类型的项。
8x2+2x−15因此,整式(2x+3)(4x−5)的乘积为8x2+2x−15。
这个过程称为「整式的乘法」。
乘法法则在整式的乘法中,存在一些乘法法则,用于简化计算过程。
下面是一些常用的乘法法则:1.分配律:x(x+x)=xx+xx分配律可以用于拆分整式乘法中的项。
它允许我们将一个整式与一个括号内的和进行分别相乘,并将结果相加。
例如:$2x(3x-4)=2x\\times3x-2x\\times4=6x^2-8x$2.幂运算法则:$a^m\\times a^n=a^{m+n}$幂运算法则允许我们将相同的底数的幂相乘,并将指数相加。
例如:$x^2\\times x^3=x^{2+3}=x^5$3.同底数相乘:$a^m\\times b^m=(ab)^m$同底数相乘的法则允许我们将相同底数的幂相乘,并保持底数不变。
例如:$x^2\\times y^2=(xy)^2$通过使用这些乘法法则,我们可以简化整式的乘法过程。
示例问题让我们通过一个示例问题来进一步理解整式的乘法。
人教版八上数学整式的乘法及因式分解单元培优

第1讲 整式的乘法知识点梳理:复习回顾:整式的加减:同类项,合并同类项 新课要点:(1)同底数幂的乘法:底数不变,指数相加。
nm n m a a a +=⋅(m 、n 都是正整数) 注意公式逆用。
(2)幂的乘方:底数不变,指数相乘。
mnnm a a =)((m 、n 都是正整数) 注意公式逆用。
(3)积的乘方:nnnb a ab =)((n 是正整数) 注意公式逆用。
(4)整式的乘法:①单项式和单项式相乘:把它们的系数、相同的字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式。
例如:)3(2322bc a ab -⋅=3336c b a -②单项式与多项式相乘,先用单项式去乘多项式的每一项,再把所得的积相加。
即mb ma b a m +=+)(③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积再相加。
即nb na mb ma b a n m +++=++))((经典例题例1.(1)-x 3·x 5 (2)x m ·x 3m+1 (3)2×24×23(4)31++••m m ma a a (5)n m m m m a a a a 321⋅⋅例2.计算: ①()()()()2452232222x x x x -⋅-⋅ ②()()()32212mn m a a a a -⋅-⋅例3.计算:⑴()33x - ⑵()25ab - ⑶()22xy ⑷()4322xy z-(5)()()4234242a a a a a ⋅⋅++- (6)()()()2323337235xx xx x ⋅-+⋅例4.计算:⑴()()2353a b a -⋅- ⑵()()3225x x y ⋅-(3)()()152n a b a +-- (4)()()()232236ab a cab c --⋅(5)()()24231x x x -⋅+- (6)221232ab ab ab ⎛⎫-⋅ ⎪⎝⎭(7)()22221252a ab b a a b ab ⎛⎫-⋅+-- ⎪⎝⎭(8)()()32x y x y +-(9)()()22m n m n +- (10)2)2(b a +例5.若20x y +=,则代数式3342()x xy x y y +++的值为 。
整式的乘法与除法

整式的乘法与除法整式是指由常数、变量及它们的乘积和积的和差组成的代数式。
整式的乘法与除法是代数学中重要的运算,本文将从定义、性质及计算方法等方面进行探讨。
一、整式的定义整式是由常数、变量及它们的乘积和积的和差组成的代数式。
常数称为零次整式,单个变量称为一次整式,以此类推。
整式可以表示为:f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀其中,a₀、a₁、...、aₙ为系数,n为自然数,x为变量。
二、整式的乘法整式的乘法是将两个或多个整式相乘得到一个新的整式。
要进行整式的乘法,需要遵循以下规则:1. 同类项相乘:将相同指数的项的系数相乘,并将指数保持不变。
例如:(3x²)(4x³) = 12x⁵。
2. 多项式相乘:将一个整式中的每一项都与另一个整式的每一项相乘,然后将结果相加。
例如:(3x + 2)(4x + 5) = 12x² + 22x + 10。
3. 分配律:整式的乘法满足分配律。
例如:a(b + c) = ab + ac。
三、整式的除法整式的除法是将一个整式除以另一个整式,得到商式和余式。
要进行整式的除法,需要注意以下几点:1. 除数不为零:除数不为零,否则除法无意义。
2. 长除法:使用长除法的步骤进行计算,以下以一个例子作说明:例如:(2x³ + 3x² - 4x + 1) ÷ (x - 1)首先将被除式按降幂排列:2x³ + 3x² - 4x + 1然后进行第一步的除法,将2x³ ÷ x进行计算,得到2x²,并将结果写在商式上。
然后将2x²与(x - 1)相乘,并进行减法得到2x³ + 2x²。
依次进行下一步的除法计算,直到无法再继续进行为止。
四、整式乘法与除法的性质1. 乘法的交换律与结合律:整式的乘法满足交换律与结合律,即a ·b = b · a,(a · b) ·c = a · (b · c)。
4整式的乘法(单项式乘以单项式、单项式乘以多项式)

课题名称 整式的乘法(单项式乘以单项式、单项式乘以多项式)学习目标 1、掌握以上两个乘法法则2、熟练运用法则准确计算教学过程 第一部分单项式乘以单项式一、导入新课。
我们刚才已经复习了幂的运算性质。
从本节开始,我们学习整式的乘法。
我们知道,整式包括什么?(包括单项式和多项式。
)因此整式的乘法可分为单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
这节课我们就来学习最简单的一种:单项式与单项式相乘。
二、达标导学。
1.探索目标一。
单项式与单项式相乘,怎样计算呢?我们先看这样一个问题:一个长方体底面积是4xy ,高是3x ,那么这个长方体的体积是多少?探讨4xy ·3x 如何计算?3x =3·x ,4xy =4·xy ,因此4xy ·3x =4·xy ·3·x =(4·3)·(x ·y)·y =12x 2y 。
2.探索目标二。
仿照刚才的作法,你能解出下面的题目吗?(1)3x 2y ·(-2xy 3)=(2)(-5a 2b 3)·(-4b 2c)=(3)总结单项式乘以单项式法则:单项式和单项式相乘,系数与系数相乘,相同字母的幂分别相乘; 对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
3.探索目标三。
我们已经掌握了两个单项式相乘的情况,那么三个或三个以上的单项式相乘,你会不会计算呢?计算:3a 3b ·2ab 2·(-5a 2b 2)。
三、例题计算:(1)13a 2·(6ab ); (2)(2x )3·(-3xy 2) (3)[(-a 3b 3)3]3·(-ab 2)2(4) (-2a 2b ) · (-a 2) · 14bc (5)[3(x -y )2] · [-2(x -y )3] · [45(x -y )]四课堂反馈:1、判断正误:(1)3x 3·(-2x 2)=5x 5 (2)3a 2·4a 2=12 a 2 (3)3b 3·8b 3=24b 9(4) —3x ·2xy =6x 2y (5) 3a b +3a b =9a 2b 22. 计算以下各题: (1)4n 2·5n 3; (2) 4a 2x 2·(-3a 3bx ); (3) (-5a 2b 3)·(-3a );(4)23x 2y 2·(-34x 2y 3) (5)(2x )3·(-5x 2y ) (6) 23 x 3y 2·(-32xy 2)2(7) (a 2c )2.6ab (c 2)3 (8)4(xy )2·xy 2+(-35xy 3) · 53x 2y五课外延伸一.填空:1._;__________))((22=x a ax ;)_)((_________3522y x y x -= 2. ___;__________)21(622=⋅-abc b a ._____________)(4)3(523232=-⋅-b a b a 3.____;__________21511=⋅⋅--n n n y x y x ._____________)21()2(23=-⋅-⋅mn mn m 4. ._______________)104)(105.2)(102.1(9113=⨯⨯⨯ .__________)()()3(343=-⋅-⋅-y x y x二.计算下列各题①(-5ab 2x )·(-310a 2bx 3y ) ②(-3a 3bc )3·(-2ab 2)2③(-13x 2)·(yz )3·(x 3y 2z 2)+43x 3y 2·(xyz )2·(yz 3) ④(-2×103)3×(-4×108)2三思考:1、若n 为正整数,且x 3n =2,求2x 2n ·x 4n +x 4n ·x 5n 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式与单项式相乘,把它们的 ( 系数 ),( 相同字母)分别相(乘 ), 对于( 只在一个单项式里含有的 字母 ),则连同它的(指数)作为积 的( 一个因式 ).
解: (1) (-4x2) •(3x+1)
=(-4x2) •(3x)+(-4x2) • 1
=(-4×3)(x2 • x)+(-4x2)
=-12x3-4x2.
练习
1.计算:
(1) 3a(5a-2b); (2) (x-3y)• (-6x).
x 2x 2x y 2y
卫 生 间
2.化简 x(x-1)+2x(x+1)-3x(2x-5). 3.仔细做一做:
例4 计算: (1) (-5a2b)(-3a);
解:(1) (-5a2b)(-3a)
(2) (2x)3(-5xy2). (2) (2x)3(-5xy2) =8x3(-5xy2) =[8×(-5)](x3•x)y2
=
=
[(-5)×(-3)](a2•a)b
15a3b
=-40x4y2
练习
1.计算:
(1)3x25x3;
-3x2y3(x2-1)-(x2+1)•5x2y3
卧 室
厨房
客厅 4y 第4题图
Hale Waihona Puke 4.创新应用小李家的住房的结构如图所示(单位:米),小李打 算把卧室和客厅铺上木地板,请你根据图示的数 据算一算,小李至少要买多少平方米的木地板?
15.2.4
整式的乘法
问题 光的速度约为3×105千米/秒,太阳 光照射到地球上需要的时间大约是5 ×102秒, 你知道地球与太阳的距离约是多少千米吗?
地球与太阳的距离约是 (3×105) ×(5×102)千米.
讨论
(1)怎样计算(3×105)×(5×102)? 计算过程中用到哪些运算律及运算性质? (2)如果将上式中的数字改为字母, 比如ac5•bc2怎样计算这个式子?
m(a+b+c). ①
另一种方法是先分别求三家连锁店的收入,再求它们的和, 即总收入(单位:元)为:
ma+mb +mc
由于①, ②表示同一个量,所以 m(a+b+c) =ma+mb +mc
②
单项式与多项式相乘,就是用单项 式去乘多项式的每一项,再把所得 的积相加.
例5
计算: (1) (-4x2) •(3x+1);
(3) (3x2y)3•(-4x) ;
(2) 4y(-2xy2) ;
(4) (-2a)3(-3a)2
2.下面计算的对不对?如果不对,应当 怎样改正?
(1)3a3•2a2=6a6;
(3) 3x2 • 4x2=12x2;
(2) 2x2 • 3x2=6x4 ;
(4) 5y3 • y5 = 15y15
问题 三家连锁店以相同的价格m(单位:元/瓶)销售 某种商品,它们在一个月内的销售量(单位:瓶)分别是 a,b,c. 你能用不同的方法计算它们在这个月内销售这种商 品的总收入吗? 一种方法是先求三家连锁店的总销量,再求总收入,即总 收入(单位:元)为: