2013年高考真题文科数学试题分类汇编6:不等式
2013年高考真题解析分类汇编(理科数学)6:不等式

2013高考试题解析分类汇编(理数)6:不等式一、选择题1 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为( )9B 由23x xy -,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是 ( )2C .53D .52C本题考查线性规划的应用。
设2y ,则122zy x =-+。
作出可行域如图。
平移直线122z y x =-+,由图象可知当直线122zy x =-+经过点B时,直线122z y x =-+的截距最大,此时z 最大。
由21y x x y =⎧⎨+=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即12(,)33B ,代入2z x y =+得1252333z =+⨯=,选C. 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦,则实数a 的取值范围是 ( )A.⎫⎪⎪⎝⎭B.⎝C.⎛⋃ ⎝⎫⎪⎝⎭⎪⎭A4 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2B先根据约束条件画出可行域,设z=2x+y ,将最大值转化为y 轴上的截距, 当直线z=2x+y 经过点B 时,z最小,由得:,代入直线y=a (x ﹣3)得,a=。
故选B.5 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y -2x 的最小值为( )A .-7B .-4C .1D .2A由2z y x =-得2y x z =+。
2013年全国各地高考文科数学试题分类汇编6:不等式

2013 年全国各地高考文科数学试题分类汇编6:不等式一、选择题x y8,1 .( 2013 年高考四川卷(文))2 y x4, 且z 5 y x 的最大值为 a ,最小值为b,若变量 x, y 知足拘束条件x 0,y0,则 a b 的值是()A.48B.30C.24D.16【答案】 Cx y22 .( 2013 年高考福建卷(文))若变量x, y知足拘束条件x1, 则z 2 x y 的最大值和最小值分别为y0()A.4和3B.4和 2C.3和 2D.2和0【答案】 B3 .( 2013 年高考课标Ⅱ卷(文))设x,y知足拘束条件, 则 z=2x-3y的最小值是()A .B. -6C.D. -3【答案】 B4 .( 201 3 年高考福建卷(文))若2x2y1,则 x y 的取值范围是()A.[0,2]B.[ 2,0]C.[2,)D.(,2]【答案】 D5 .( 2013 年高考江西卷(文))以下选项中,使不等式x<1<x2建立的 x 的取值范围是()xA . (,-1)B. (-1,0)C. 0,1)D. (1,+)【答案】 A6 (. 2013 年高考山东卷(文))设正实数x, y, z知足340 ,则当2 y z x2xy y2z z获得最大值时 , xxy的最大值为()A . 0B .9C. 2D.984[ 根源 : 学+科+]【答案】 C7 .( 2013 年高考课标Ⅱ卷(文))若存在正数x使2x(x-a)<1建立 , 则 a 的取值范围是()A.(- ∞ ,+ ∞)B.(- 2, + ∞)C. (0, +∞)D. (- 1,+ ∞)[ 根源 :ZXXK]【答案】 D3 x y60,8 .( 2013 年高考天津卷(文))设变量x,y 知足拘束条件x y20,则目标函数 z y2x 的最小值为y30,()A.-7B.-4C. 1 D .2[ 根源 :Z 。
xx 。
k.]【答案】 A9 .( 2013 年高考湖北卷(文))某旅游社租用 A 、 B 两种型的客车安排900 名客人旅游 , A 、 B 两种车辆的载客量分别为 36 人和 60 人 , 租金分别为1600 元 / 辆和 2400 元/ 辆 , 旅游社要求租车总数不超出21辆,且B型车不多于 A 型车7辆.则租金最少为()A . 31200 元B. 36000 元C. 36800 元D. 38400 元【答案】 C10.( 2013 年高考陕西卷(文))若点(x,y)位于曲线y= |x|与 y =2所围成的关闭地区 ,则 2x- y的最小值为()A.-6B. -2C. 0D. 2【答案】 A11.( 2013 年高考重庆卷(文))x 22ax8a20 (a0 )的解集为( x1, x2),且:x2x1 15 ,对于 x 的不等式则 a()A .5B.7C.15D.15 2242【答案】 A12.( 2013 年高考课标Ⅱ卷(文))352,c=log2则()设 a=log 2,b=log3,A . a>c>b B. b>c>a C. c>b>a D. c>a>b【答案】 D13.( 2013 年高考北京卷(文))设a,b,c R ,且a b ,则()A.ac bc B.1 1C.a2b2D.a3b3[根源:学_科_Z_X_X_K] a b【答案】 D[ 根源 :ZXXK]二、填空题x0,14.( 2013 年高考纲领卷(文))若x、y知足拘束条件x 3 y4, 则 zx y的最小值为____________.3x y4,【答案】 015.( 2013 年高考浙江卷(文))设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2, 则ab等于 ______________.【答案】 1 [根源 :ZXXK]x 2 y8,16.( 2013 年高考湖南(文))若变量x,y知足拘束条件0 x4,0 y3,则 x+y 的最大值为 ______【答案】 617.( 2013 年高考重庆卷(文))设0, 不等式8x2(8sin ) x cos 20 对x R 恒建立,则a的取值范围为 ____________.【答案】 [0,][5,]662x 3y6 018.( 2013 年高考山东卷(文) )在平面直角坐标系xOy 中 , M 为不等式组 xy 2 0 所表示的地区上一y 0动点 , 则直线 OM 的最小值为 _______【答案】219 .( 2013 年 高 考 四 川 卷 ( 文 )) 已 知 函 数f ( x ) 4x a(x 0,a 0在) x 3 时 取 得 最 小 值 ,则xa __________.[ 根源 : 学 . 科 .]【答案】 361 x 3, 20.( 2013 年高考课标 Ⅰ卷(文))设 x, y 知足拘束条件, 则 z 2x y 的最大值为 ______.1 x y 0【答案】 3x 221.( 2013 年高考浙江卷(文) )设 zkx y , 此中实数 x, y 知足 x 2 y 4 0 , 若 z 的最大值为 12, 则 实2x y 4数 k ________ .【答案】 222.( 2013 年上海高考数学试题(文科))不等式x0 的解为 _________.2x 1【答案】 (0,1)2x 023.( 2013 年高考北京卷(文) )设 D 为不等式组2xy0 , 表示的平面区 域 , 地区 D 上的点与点 (1,0) 之xy 3 0间的距离的最小值为 ___________.【答案】2 5 [ 根源 :ZXXK]524.( 2013 年高考陕西卷(文) )在如下图的锐角三角形空地中 , 欲建一个面积最大的内接矩形花园( 暗影部分 ), 则其边长 x 为 ___( m ).[根源 :]【答案】 2025.( 2013 年高考天津卷(文) ) 设 a + b = 2,b >0, 则1| a |的最小值为 ______.2 | a |b【答案】 3426.( 2013 年上海高考数学试题(文科)) 设常数 a0 , 若 9x a 2 a 1对全部正实数 x 建立 , 则 a 的取值范x围为 ________.【答案】 [1,)5x y 3 027.( 2013 年高考广东卷(文) ) 已知变量 x, y 知足拘束条件1 x 1 , 则 z xy 的最大值是 ___.y 1【答案】 528.( 2013 年高考安徽(文) ) 若非负数变量 x, y 知足拘束条件 x y 1 y 的最大值为 __________.x 2y, 则 x4【答案】 4三、解答题29.( 2013 年上海高考数学试题(文科)) 此题共有 2 个小题 . 第 1 小题满分 6分,第 2小题满分 8分.甲厂以 x 千米 / 小时的速度匀速生产某种产品( 生产条件要求1 x 10 ), 每小时可获取的收益是100(5x 1 3)元.x1 3 (1) 求证 : 生产 a 千克该产品所获取的收益为100a(5 xx2 ) ;(2) 要使生产 900 千克该产品获取的收益最大, 问: 甲厂应当怎样选用何种生产速度 ?并求此最大收益 .【答案】 解 :(1) 每小时生产 x 克产品 , 赢利100 5x 1 3 , [ 根源 :]x生产 a 千克该产品用时间为a , 所获收益为 100 5x 1 3 a 100a 5 13 .xxxx x 2(2) 生产 900 千克该产品 , 所获收益为 90000 51 3900003 1 161x x 2x 612因此x 6 , 最大收益为61 元 .9000045750012。
2013年全国各地高考文科数学试题分类汇编13:常用逻辑用语

2013年全国各地高考文科数学试题分类汇编13:常用逻辑用语一、选择题1 .(2013年高考重庆卷(文))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <【答案】A2 .(2013年高考四川卷(文))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈C .:,2p x A x B ⌝∃∈∉D .:,2p x A x B ⌝∀∉∉【答案】C3 .(2013年高考湖南(文))“1<x<2”是“x<2”成立的______( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 4 .(2013年高考天津卷(文))设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A5 .(2013年高考山东卷(文))给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A6 .(2013年高考安徽(文))“(21)0x x -=”是“0x =”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 7 .(2013年高考陕西卷(文))设z 是复数, 则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <【答案】C8 .(2013年高考福建卷(文))设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 9 .(2013年上海高考数学试题(文科))钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的 ( ) A .充分条件 B .必要条件 C .充分必要条件 D .既非充分又非必要条件 【答案】A 10.(2013年高考课标Ⅰ卷(文))已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】B 11.(2013年高考湖北卷(文))在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( ) A .()p ⌝∨()q ⌝ B .p ∨()q ⌝ C .()p ⌝∧()q ⌝ D .p ∨q【答案】A12.(2013年高考浙江卷(文))设a,b ∈R,定义运算“∧”和“∨”如下:若正数a.b.c.d 满足ab≥4,c+d≤4,则 ( )A .a∧b≥2,c∧d≤2B .a∧b≥2,c∨d≥2C .a∨b≥2,c∧d≤2D .a∨b≥2,c∨d≥2 【答案】C 13.(2013年高考浙江卷(文))若α∈R,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 二、填空题14.(2013年高考山东卷(文))定义“正对数”:0(01)ln ln (1)x x x x +<<⎧=⎨≥⎩,,,现有四个命题:①若0,0>>b a ,则a b a b++=ln )(ln ;②若0,0>>b a ,则b a ab ++++=ln ln )(ln ;③若0,0>>b a ,则b a ba +++-=ln ln )(ln ;④若0,0>>b a ,则2ln ln ln )(ln ++≤++++b a b a 其中的真命题有____________(写出所有真命题的序号)【答案】①③④。
2013年高考数学文科试题分类汇编导数 2

2013年全国各地高考文科数学试题分类汇编:导数一、选择题1 .(2013年高考课标Ⅱ卷(文))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B.函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x = 【答案】C2 .(2013年高考大纲卷(文))已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-6 【答案】D3 .(2013年高考湖北卷(文))已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞ 【答案】B4 .(2013年高考福建卷(文))设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【答案】D5 .(2013年高考安徽(文))已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为 ( )A .3B .4C .5D .6 【答案】A6 .(2013年高考浙江卷(文))已知函数y=f(x)的图像是下列四个图像之一,且其导函数y =f’(x)的图像如右图所示,则该函数的图像是【答案】B 7.(2013年高考广东卷(文))若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =___________【答案】12 8 .(2013年高考江西卷(文))若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_____【答案】2(2013年高考浙江卷(文))已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【答案】解:(Ⅰ)46(2)680y x x y -=-⇒--=; (Ⅱ)当1a>时,函数()y f x =最小值是233a a -;当1a <-时,函数()y f x =最小值是31a -;(2013年高考大纲卷(文))已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围【答案】(Ⅰ)当(1)x ∈-∞时,'()0f x >,()f x 在(1)-∞是增函数;当11)x ∈时,'()0f x <,()f x 在11)是减函数;当1,)x ∈+∞时,'()0f x >,()f x 在1,)+∞是增函数; (Ⅱ)a 的取值范围是5[,)4-+∞.(2013年高考课标Ⅱ卷(文))己知函数f(X) = x 2e -x(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2013年高考北京卷(文))已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a )处与直线y b =相切,求a 与b 的值.(Ⅱ)若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围.【答案】解:解得0a =,(0)1b f ==.(II)()y f x =与直线y b =有且只有两个不同交点,那么b 的取值范围是(1,)+∞.(2013年高考课标Ⅰ卷(文))已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.【答案】121()()2 4.(0)4,(0)4,4,8,4;f x e ax a b x f f b a b a b =++--===+===(I )由已知得故从而 (II) 当2=-2-2=41-)x f x f e -时,函数()取得极大值,极大值为()(.(2013年高考福建卷(文))已知函数()1x a f x x e=-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【答案】解:(Ⅰ)解得a e =.(Ⅱ)综上,当0a ≤时,函数()f x 无极小值; 当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (Ⅲ)综上,得k 的最大值为1.(2013年高考湖南(文))已知函数f(x)=x e x21x 1+-. (Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x 1)=f(x 2)(x 1≠x 2)时,x 1+x 2<0.【答案】解: (Ⅰ) 所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y .(Ⅱ).0)()(212121<+≠=x x x x x f x f 时,且所以,当(2013年高考广东卷(文))设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M ,()'2321f x x kx =-+【答案】(1)()f x 在R 上单调递增.(2)综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--(2013年高考山东卷(文))已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小解答:当0a >时函数()f x 的单调递减区间是。
2013年全国高考理科数学试题分类汇编6:不等式Word版含答案

2013 年全国高考理科数学试题分类汇编6:不等式一、选择题1 .( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数x, y, z满足x23xy 4 y2xy 21 2z, 则当 z取得最大值时 ,xyz的最大值为()9A . 0B . 1C .4D . 3【答案】 B2 .( 2013 年高考陕西卷(理) ) 设[ x ] 表示不大于 x 的最大整数 , 则对任意实数 x , y , 有 ()A . [- x ] = -[ x ]B . [2 x ] = 2[x ]C . [ x +y ] ≤[x ]+[y ] D . [ x - y ] ≤[x ]-[ y ]【答案】 Dy 2x3 .( 2013 年高考湖南卷(理) ) 若变量 x, y 满足约束条件xy 1, 则x 2y 的最大值是y1A . -5B . 0C .5D .5232【答案】 C4 .( 2013 年 普 通 高 等 学 校 招 生 统 一 考 试 天 津 数 学 ( 理 ) 试 题 ( 含 答 案 )) 已知 函数( )f ( x) x(1 a | x |) . 设关于 x 的不等式 则实数 a 的取值范围是A .1 5,0 B .1 3,022【答案】 A5 .( 2013 年普通高等学校招生统一考试新课标f ( x a) f ( x) 的解集为A , 若1 , 1 A ,2 2C .1 5,0 0,1 322Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 已知()D .,1 52x 1a 0 , x, y 满足约束条件 xy3, 若 z 2x y 的最小值为 1, 则 a()y a( x3)A .1B .1C . 1D . 242【答案】 B6 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设变量 x , y 满足约3xy 60,束条件x y 2 0,则目标函数z =-2 x 的最小值为()yy 3 0,第 1 页 共 5 页A . -7B . -4C . 1D . 2【答案】 A7 .( 2013 年高考湖北卷(理) ) 一辆汽车在高速公路上行驶, 由于遇到紧急情况而刹车 , 以速度 v t7 3t25( t 的单位 : s , v 的单位 : m / s ) 行驶至停止 . 在此期间汽车继续1 t行驶的距离 ( 单位 ; m ) 是()A . 1 25ln5B .811 C . 4 25ln5D . 4 50ln 225ln【答案】 C38 .( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版)) 已知一元二次不等式 f (x)<0 的解集为 x |x<-1或 x>1, 则 f (10x )>0 的解集为()2A . x|x<-1或 x>lg2B . x|-1<x<lg2C . x |x>-lg2D . x|x<-lg2【答案】 D9 .( 2013 年上海市春季高考数学试卷( 含答案 ) ) 如果 a b 0 , 那么下列不等式成立的是()A .1 1B . ab b 2C . aba 2D . 11 ab ab【答案】 D10.( 2013 年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy2x y 2 0,x2y1 0,中 , M为不等式组3x y80,所表示的区域上一动点 , 则直线OM斜率的最小值为()11A . 2B . 1C .3D .2【答案】 C11 .( 2013 年普通高等学校招生统一考试新课标Ⅱ 卷数学(理) (纯 WORD 版含答案) ) 设a log 3 6,b log 5 10, clog 7 14 , 则()A . c b aB . b c aC . a c bD . a b c【答案】2x y 1 0,12.( 2013 年高考北京卷(理) )设关于 x , y 的不等式组x m 0, 表示的平面区域内存y m 0在点 P ( x 0, y 0), 满足 x 0-2 y 0=2, 求得 m 的取值范围是( )第 2 页 共 5 页A . 4B .1C . 2D . 5,,,,3333【答案】 C二、填空题13.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 记不等式x 0,组 x 3y4, 所表示的平面区域为 D , 若直线 yax 1 与 D 公共点 , 则 a 的取值3x y4,范围是 ______.【答案】 [1, 4]214.( 2013 年高考陕西卷(理) ) 若点 ( x , y ) 位于曲线 y | x 1| 与 y =2 所围成的封闭区域 , 则2x - y 的最小值为 ___-4_____.【答案】 - 415 .( 2013 年 高 考 四 川 卷 ( 理 )) 已 知 f ( x) 是 定 义 域 为 R 的 偶 函 数 , 当 x ≥ 0时, f ( x)x 2 4x , 那么 , 不等式 f ( x 2) 5 的解集是 ____________.【答案】 (7,3)16 .( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 给定区域x 4 y 4x y4D : x 0, 令点集T{ x 0 , y 0 D | x 0 , y 0Z, x 0, y0 ,是 zx y在 D 上取得最大值或最小值的点}, 则 T中的点共确定 ______条不同的直线 .【答案】617.( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设zkx y , 其xy 2 0中实数 x, y 满足 x2y4 0 , 若 z 的最大值为 12, 则实数 k ________.2x y 4 0【答案】 218.( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案)) 设 a + b = 2, b >0, 则当 a = ______ 时 ,1| a | 2 | a |b 取得最小值 .【答案】 219.( 2013 年普通高等学校招生统一考试广东省数学(理)卷(纯 WORD 版))不等式 x 2x 2 0第 3 页 共 5 页的解集为 ___________.【答案】2,120.(2013年 高考 湖南 卷(理 ) )已知a,b,c ,23c 229ca 2则 b6的最,小值a 为4b .【答案】 12三、解答题21.( 2013 年上海市春季高考数学试卷( 含答案 ) )如图 , 某校有一块形如直角三角形ABC 的空地 , 其中B 为直角 , AB 长 40 米 , BC 长 50 米 , 现欲在此空地上建造一间健身房, 其占地形状为矩形 , 且 B 为矩形的一个顶点, 求该健身房的最大占地面积 .ABC【答案】 [ 解 ] 如图 , 设矩形为 EBFP , FP 长为 x 米, 其中 0x40 ,AEPBFC健身房占地面积为 y 平方米 . 因为 CFP ∽ CBA ,以 FPCF , x 50BF , 求得 BF505x ,BACB 40 504从而 yBF FP(505x) x5 x 2 50x5( x 20) 2500500 ,444当且仅当 x20 时 , 等号成立 .答 : 该健身房的最大占地面积为 500 平方米 .22.( 2013 年高考上海卷(理) ) (6 分 +8 分 ) 甲厂以 x 千克 / 小时的速度运输生产某种产品( 生产条件要求 1x 10 ), 每小时可获得利润是 100(5 x 13) 元.x(1) 要使生产该产品 2 小时获得的利润不低于 3000 元, 求 x 的取值范围 ;(2) 要使生产 900 千克该产品获得的利润最大 , 问: 甲厂应该选取何种生产速度?并求最大利润 .【答案】 (1) 根据题意 , 200(5 x1 3)30005x 143 0又 1 x 10 , 可解得 3 x 10xx(2) 设利润为 y 元 , 则 y900 100(5x 1 3) 9 104[ 3( 11)261]xxx 6 12第 4 页 共 5 页故 x 6 时,y max 457500元.第 5页共5页。
全国高考数学试题分类汇编:不等式选讲( 文科)(教师版)

全国高考数学试题分类汇编:不等式选讲( 文科)【2013年高考试题】1.(2013年普通高等学校招生统一考试重庆数学)若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是_________【答案】(],8-∞2.(2013年高考陕西卷) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______【答案】2 【解析】利用柯西不等式求解,212)()())(22=⋅=+⋅=⋅+⋅≥++b a mn bm bn an am bm an bn am (,且仅当n m bmbnan am =⇒=时取最小值 2 3.(2013年高考江西卷)在实数范围内,不等式211x --≤的解集为_________【答案】[]0,44.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥.【答案】5 .(2013年普通高等学校招生统一考试辽宁数学)已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.【答案】6.(2013年普通高等学校招生统一考试福建数学)设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.【答案】解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为37.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)已知b a ≥>0,求证:b a ab b a 223322-≥-证明:∵=---b a ab b a 223322()=---)(223223bb a aba ())(22222b a b b a a ---())2)()(()2(22b a b a b a b a b a --+=--= 又∵b a ≥>0,∴b a +>0,0≥-b a 02≥-b a ,∴0)2)()((≥--+b a b a b a ,∴0222233≥---b a ab b a ∴b a ab b a 223322-≥-8.(2013年高考新课标1)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【答案】当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43].【2012年高考试题】1.【2012高考真题新课标】已知函数()2f x x a x =++-(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.2.【2012高考真题陕西】若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .3.【2012高考真题辽宁】已知()|1|()f x ax a R =+∈,不等式3)(≤x f 的解集为}12{≤≤-x x 。
2013高考数学真题分类汇编—不等式模块 2

高一升高二7.30晚上六点半一对一两份2013高考数学—不等式一:选择题1.(2013北京卷文2)设R c b a ∈,,,且b a >,则 .A bc ac > .B ba 11< 22.b a C > 33.b a D >2.(2013安徽卷理6)已知一元二次不等式0)(<x f 的解集}211|{>-<x x x 或,则0)10(>x f 的解集为.A }2lg 1{->-<x x x 或 .B }2lg 1{-<<-x x .C }2lg {->x x .D }2lg {-<x x3.(2013新课标2卷12)若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是 .A ),(+∞-∞ .B ),2(+∞- .C ),0(+∞ .D ),1(+∞-4.(2013江西卷文6)下列选项中,不等式21x xx<<成立的x 的取值范围.A )1,(--∞ .B )0,1(- .C )1,0( .D ),1(+∞ 5.(2013大纲卷文4)不等式222<-x 的解集是.A )1,1(- .B )2,2(- .C )1,0()0,1( - .D )2,0()0,2( -.6(2013山东卷理6)在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的平面区域上一动点,则OM 斜率的最小值为 .A 2 .B 1 .C 31-.D 21-7(2013新课标2卷理5)已知0>a ,y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=2的最小值为1,则=a .A 41 .B 21.C 1 .D 2 8.(2013北京卷理8)设关于y x ,的不等式组⎪⎩⎪⎨⎧>-<+≥+-0012m y m x y x 表示的平面区域内存在点),(00y x P ,满足2200=-y x ,求m 的取值范围是.A )34,(--∞ .B )31,(-∞ .C )32,(--∞ .D )35,(--∞ 9.(2013四川卷文8)若变量,x y 满足约束条件8,24,0,0,x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩且5zy x =-的最大值为a ,最小值为b ,则a b -的值是( )(A )48 (B )30 (C )24 (D )16 10(2013福建卷文7)若221,x y x y +=+则的取值范围是A .[]0,2B .[]2,0-C .[]2,-+∞D .[],2-∞-填空题1.(2013广东卷理9)不等式022<-+x x 的解集为 .2.(2013浙江卷理13)设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________。
2013年全国各地高考文科数学试题分类汇编15:常用逻辑用语

2013年高考真题文科数学分类汇编常用逻辑用语1、(2013年高考(安徽卷))“(21)0x x -=”是“0x =”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】B2、(2013年高考(福建卷))设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A3、(2013年高考(湖北卷))在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q答案:A4、(2013年高考(湖南卷))“1<x <2”是“x <2”成立的___ A ____A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A5、(2013年高考(山东卷))给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分也不必要条件答案:A6、(2013年高考(上海卷))钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件【答案】 A7、(2013年高考(四川卷))设x Z ∈,集合A 是奇数集,集合B 是偶数集。
若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈(C ):,2p x A x B ⌝∃∈∉ (D ):,2p x A x B ⌝∀∉∉答案:C8、(2013年高考(天津卷))设,a b ∈R , 则 “2()0a b a -<”是“a b <”的(A) 充分而不必要条件(B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件【答案】A9、(2013年高考(新课标II 卷))已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x =(B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x =【答案】C10、(2013年高考(新课标I 卷))已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝答案:B11、(2013年高考(浙江卷))若α∈R ,则“α=0”是“sin α<cos α”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件【 答案】A12、(2013年高考(重庆卷))命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <【答案】A .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国各地高考文科数学试题分类汇编6:不等式
一、选择题
1 .(2013年高考四川卷(文))若变量,x y 满足约束条件8,24,0,0,
x y y x x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩且5z y x =-的最大值为a ,最小值
为b ,则a b -的值是 ( ) A .48 B .30 C .24 D .16
【答案】C
2 .(2013年高考福建卷(文))若变量y x ,满足约束条件⎪⎩
⎪
⎨⎧≥≥≤+012
y x y x ,则y x z +=2的最大值和最小值分别
为
( )
A .4和3
B .4和2
C .3和2
D .2和0
【答案】B
3 .(2013年高考课标Ⅱ卷(文))设x,y 满足约束条件,则z=2x-3y 的最小值是 ( )
A .
B .-6
C .
D .-3
【答案】B
4 .(2013年高考福建卷(文))若122
=+y x
,则y x +的取值范围是
( )
A .]2,0[
B .]0,2[-
C .),2[+∞-
D .]2,(--∞
【答案】D
5 .(2013年高考江西卷(文))下列选项中,使不等式x<
1x
<2
x 成立的x 的取值范围是 ( )
A .(,-1)
B .(-1,0)
C .0,1)
D .(1,+)
【答案】A
6 .(2013年高考山东卷(文))设正实数z y x ,,满足
04322=-+-z y xy x ,则当
z
xy
取得最大值时,2x y z +-的最大值为 ( )
A .0
B .
9
8
C .2
D .
94
【答案】C
7 .(2013年高考课标Ⅱ卷(文))若存在正数x 使2x
(x-a)<1成立,则a 的取值范围是
( )
A .(-∞,+∞)
B .(-2, +∞)
C .(0, +∞)
D .(-1,+∞)
【答案】D
8 .(2013年高考天津卷(文))设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪
⎨⎪⎩
则目标函数2z y x =-的最小值
为
( )
A .-7
B .-4
C .1
D .2
【答案】A
9 .(2013年高考湖北卷(文))某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆
的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21
辆,且B 型车不多于A 型车7辆.则租金最少为 ( ) A .31200元 B .36000元 C .36800元 D .38400元 【答案】C 10.(2013年高考陕西卷(文))若点(x ,y )位于曲线y = |x |与y = 2所围成的封闭区域, 则2x -y 的最小值
为 ( ) A .-6 B .-2 C .0 D .2 【答案】A
11.(2013年高考重庆卷(文))关于x 的不等式2
2
280x ax a --<(0a >)的解集为12(,)x x ,且:2
115x x -=,
则a = ( )
A .
5
2 B .
72
C .
154
D .
152
【答案】A
12.(2013年高考课标Ⅱ卷(文))设a=log 32,b=log 52,c=log 23,则
( )
A .a>c>b
B .b>c>a
C .c>b>a
D .c>a>b
【答案】D
13.(2013年高考北京卷(文))设,,a b c R ∈,且a b >,则
( )
A .ac bc >
B .
11
a b
< C .22a b >
D .33a b >
【答案】D 二、填空题
14.(2013年高考大纲卷(文))若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
则z x y =-+的最小值为____________.
【答案】0
15.(2013年高考浙江卷(文))设a,b ∈R,若x ≥0时恒有0≤x 4
-x 3
+ax+b ≤(x 2
-1)2
,则ab 等于______________.
【答案】1-
16.(2013年高考湖南(文))若变量x,y 满足约束条件28,04,03,x y x y +≤⎧⎪
≤≤⎨⎪≤≤⎩
则x+y 的最大值为______
【答案】6
17.(2013年高考重庆卷(文))设0απ≤≤,不等式2
8(8sin )cos 20x
x αα-+≥对x R ∈恒成立,则a 的
取值范围为____________.
【答案】5[0,
][
,]
6
6π
π
π
18.(2013年高考山东卷(文))在平面直角坐标系xOy 中,M 为不等式组2360
200x y x y y +-≤⎧⎪
+-≥⎨⎪≥⎩
所表示的区域上
一动点,则直线OM 的最小值为_______
19.(2013年高考四川卷(文))已知函数()4(0,0)a
f x x x a x
=+
>>在3x =时取得最小值,则a =__________.
【答案】36
20.(2013年高考课标Ⅰ卷(文))设,x y 满足约束条件 13,
10
x x y ≤≤⎧⎨
-≤-≤⎩,则2z x y =-的最大值为______.
【答案】3
21.(2013年高考浙江卷(文))设z kx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪
-+≥⎨⎪--≤⎩
,若z 的最大值为12,则实
数k =________ . 【答案】2
22.(2013年上海高考数学试题(文科))不等式
021
x
x <-的解为_________. 【答案】1(0,)2
23.(2013年高考北京卷(文))设D 为不等式组02030x x y x y ≥⎧⎪
-≤⎨⎪+-≤⎩
,表示的平面区域,区域D 上的点与点(1,0)
之间的距离的最小值为___________.
【答案】
24.(2013年高考陕西卷(文))在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影
部分), 则其边长x 为___(m
).
【答案】20
25.(2013年高考天津卷(文))设a + b = 2, b >0, 则
1||
2||a a b
+
的最小值为______. 【答案】
3
4
26.(2013年上海高考数学试题(文科))设常数0a >,若2
91a x a x
+≥+对一切正实数x 成立,则a 的取值
范围为________.
【答案】1[,)5
+∞
27.(2013年高考广东卷(文))已知变量,x y 满足约束条件⎪⎩
⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是___. 【答案】5
28.(2013年高考安徽(文))若非负数变量,x y 满足约束条件1
24x y x y -≥-⎧⎨
+≤⎩
,则x y +的最大值为__________.
【答案】4 三、解答题
29.(2013年上海高考数学试题(文科))本题共有2个小题.第1小题满分6分,第2小题满分8分.
甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是
3
100(51)x x
+-元.
(1)求证:生产a 千克该产品所获得的利润为2
13100(5)a x x +
-; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.
【答案】解:(1)每小时生产x 克产品,获利310051x x ⎛⎫+-
⎪⎝⎭
, 生产a 千克该产品用时间为
a x ,所获利润为2313100511005a x a x x x x ⎛⎫⎛
⎫+-⋅=+- ⎪ ⎪⎝⎭⎝
⎭.
(2)生产900千克该产品,所获利润为213900005x x ⎛⎫
+- ⎪⎝
⎭1161900003612x ⎡⎤⎛⎫=--+ ⎪⎢⎥⎝⎭⎣⎦
所以6x =,最大利润为61
9000045750012
⨯=元.。