%承载力计算-抗压-轴压-混凝土柱
混凝土梁抗弯承载力计算方法

混凝土梁抗弯承载力计算方法一、前言混凝土梁是建筑中常见的结构元素,其主要承载荷载是弯矩荷载,因此在设计中需要进行抗弯承载力的计算。
本文将介绍混凝土梁抗弯承载力计算的方法。
二、混凝土梁抗弯承载力计算公式混凝土梁的抗弯承载力计算公式为:Mn = 0.9fcbh^2(1-0.59β1φ)其中,Mn为混凝土梁的极限弯矩承载力,fcb为混凝土的轴心抗压强度,h为混凝土梁的截面高度,β1为混凝土的受压区高度系数,φ为混凝土的黏聚力系数。
三、混凝土梁抗弯承载力计算步骤1. 确定混凝土梁的截面形状和尺寸,包括截面高度h和宽度b。
2. 计算混凝土的轴心抗压强度fcb。
3. 确定混凝土受压区高度系数β1。
4. 确定混凝土的黏聚力系数φ。
5. 计算混凝土梁的极限弯矩承载力Mn。
下面将分别介绍每一个步骤的详细计算方法。
四、确定混凝土梁的截面形状和尺寸混凝土梁的截面形状和尺寸一般是按照设计要求进行确定的。
在确定截面形状和尺寸时,需要考虑到混凝土梁的荷载和支座情况,以及混凝土的强度等因素。
一般来说,混凝土梁的截面形状可以是矩形、T形、L形等,而截面尺寸则需要根据设计要求进行确定。
五、计算混凝土的轴心抗压强度fcb混凝土的轴心抗压强度fcb是指混凝土在轴向受力作用下的最大抗压强度。
混凝土的轴心抗压强度可以通过试验或经验公式进行计算。
通常情况下,混凝土的轴心抗压强度可以按照设计要求进行取值。
六、确定混凝土受压区高度系数β1混凝土的受压区高度系数β1是指混凝土受压区的高度与混凝土梁高度之比。
混凝土受压区高度系数β1的取值与混凝土的强度等因素有关。
混凝土受压区高度系数β1的计算公式为:β1 = 1-0.5α1/αs其中,α1为混凝土受压区的高度,αs为混凝土梁的截面高度。
七、确定混凝土的黏聚力系数φ混凝土的黏聚力系数φ是指混凝土在受弯矩作用下的抗裂能力。
混凝土的黏聚力系数可以通过试验或经验公式进行计算。
通常情况下,混凝土的黏聚力系数可以按照设计要求进行取值。
轴心受压构件正截面承载力计算

0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S
;
A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。
钢管混凝土柱抗剪承载力计算

关 键 词 : 管 混 凝 土 ; 作 原 理 ; 究进 展 ; 钢 工 研 剪切
1概述 袁 lV 。 的计算结果 钢管混凝土柱 的抗剪强度 由钢管和核 心 混凝土所提供 , 它不 同于普通钢筋混凝土柱的 脆性 剪切破坏 , 而是钢管约束混凝土受剪 , 使强 度和塑性性能都有所提高 ,钢管混凝土构件在 受力过程中 ,钢管和核心混凝土之间存在着相 互作用以及应力重分布 , 核心混凝土的横向 当 变形 大于钢管的横 向变形时,混凝土对外 钢管 有径 向应力状态,而钢管对核心混凝土有 约束 作用 ,这样使钢管和核心混凝土呈三维应力状 态,尤其是混凝土 ,它的工作性质起 了质 的变 化, 由脆性材料转化成塑性材料 。 2影 响钢 管混凝土柱抗 剪承载力 的主要 因素 21 .套箍指标对抗剪承载能力 的影响 钢管和混凝土在受力过程 中的相互作 用 , 是 这类 结 构 具 有 一系 列 特殊 力学 性 能 的 根 本原 因 。 由于 这 种相 互 作 用 构成 了钢 管 混 凝 土 力学 性能的复杂性,如何正确 合理地估算这种相互 当剪跨比 很小时 ,钢管混凝土的破坏 为 V =卜— +(,5 .5 ) ] ̄ +01 N 06 —04 A 0A .8 作用, 是准确 了解这类组合结构工作性 能的关 A十 0 () 7 在支座处被剪断 , 属于剪切型破坏 , 载到支座 荷 键所在 。通过对以往研 究者们大量的理论和试 之问的混凝土可以看成一个短柱一样被压坏 , 结语 验研究成果的分析和总结发现 ,钢管和混凝土 这 时抗剪强度很高。故剪跨 比是影响集中荷载 在剪跨比一定 的情况下,钢管混凝土构件 之间的相互作用 ,主要表现在钢管对其核心混 作 用 下 钢 管混 凝 土抗 剪 强度 的 主要 因 素 之 一 。 的抗剪承 载力 随轴压 比增大 而增大 。当轴压 凝土的约束作用 , 混凝土材料本身性质得到 使 由表 2可 以得 到 :钢管 混 凝 土 柱 的抗 剪 承 载 力 比< . ,抗剪承载力随着轴压 比的增加而明 O2时 改善 , 即强度得 以提高 , 塑性和韧性性 能大为改 随着剪跨 比的增大而下 降。而这种剪切破坏是 显增加 , 当轴压比达到 0 时 , . 钢管混凝土构件 4 善。 此外 , 由于混凝土的存在可以延缓或 阻止钢 因为钢管和混凝土到达极限强度时发 生的 , 的抗剪承载力增加不显著 。钢管混凝土构件在 由 管不能发生内凹的局部屈 曲; 在这种情况下 , 不 于钢管对其核心混凝土套箍约束作用 ,使核心 剪力作用下 的破坏形态 ,视剪跨 与钢管直径比 仅钢管和混凝土材料本身的性质对钢管混凝土 混凝土处于三向受压状态 , 延缓其纵向微裂缝 值的大小 , 可能为弯 曲型破坏或剪切型破坏 。 前 性能的影响很大 ,且二者几何特性和物理特性 的发生和发展 ,从而使核心混凝土具有更高的 者发生于剪跨 比大的场合 , 后者发生于剪跨 比 参数如何“ 匹配” 也将对 钢管混凝土构件力学 , 抗压强度和压缩变形能力 ,故这种套箍效 应对 小 的场合 ,本次试验的钢管混凝土构件 的破坏 性能起着非常重要的影响。这种做法是非常合 钢管混凝土的剪切强度的影响也很大。当剪跨 皆为剪切型破坏 。提出了钢管混凝土柱 的抗剪 理 的且 已被多个试验所验证并被 国家现行规范 比和 轴 压 比一 定 时 ,抗 剪 承 载 力 随 套箍 指 标 值 承载力计算公式 ;并给出的抗剪承载力计算公 所采用。 的增大而增大 , 两者大体为线性关系 , 但剪跨 比 式 的基础上 , 考虑了剪跨 比和轴压比对抗剪承 钢管混凝 土轴压短柱 的极限承载 能力按 和 轴 压 比不 同时 , 载力 的 增 长 率不 同 。 承 载 力 的影 响 ,推 导 出 实用 的 钢 管混 凝 土 抗 剪 承 下列公计算 : AC 3 抗剪承载力计算公式 载力简化计算公式。 套箍指标参数 A‘ () 1 钢管混凝土的截面几何特性和材料强度特 参 考 文献 当0 1 , = < 时 Ⅳ0 (+2 ) 1 0 () 2 性影响其抗剪承载力, 而套箍指标 、 剪跨 比和轴 f l 1蔡绍 怀. 代铜 管混凝 土 结构 北 京 : 民交 现 人 当 0 时 , =LAO+ + >1  ̄ () 3 2 0 ,- 9 . 压比也是影响的主要因素。轴力对抗剪承载力 通 出版社 ,0 3 11 0 剪跨等于零时的“ 纯剪”将 是钢管 混凝土 , 的影 响, 是线性的, 故可用线性方程来表示这种 [ cn ie P A i l lae ocee—fld 2 Sh edrS . xa y od dcn rt i e 1 l l 受剪承载力的上限 V ∽: 变化规律 : seltb SrtE g9 8 141) 53. te u e t . n 19 , 2( :1 - 8 u 0 12 - V… = o +A厶 () 4 V=( K + ) A +0 1 N .8 () f 蔡绍怀, 5 3 1 焦占栓. 钢管混凝土短柱的基本性能和 v 。 的计算结果见表 l 。 式 中的待定 系数 K 、 c为取决 于剪 跨 比 强度计算【 建筑结构学 , 8, 4(: -9 sK J J . 报 1 4 3 5 )32 . 9 61 由表中的数据分析可知 : 不考虑轴 向力 N 的需 由试验确定的经验系数 。 对不同的剪跨 比, I] Hh J O1 GOURLE BC. Pe e tt n f 4 JAP 7 , Y rsnai o o 和剪跨 比人对 抗剪承 载力 的影响 ,在 0值为 均 能 根据 试 验 结 果 通 过多 元 线性 回 归求 出它 们 c n rt f id tb s t f m lt nⅡ o r a o o eee ie -u e, o u a o lJu n f -l r i l 03 3O之间时 ,受剪 承载力 v ,将介于 O 3 .~ . 。 .~ 2 的 K 和 K, s c根据统计得 出 h 05的系数 K 和 Src rl n ier g20 , 2 (: 3 7 <. s t t a E gnei .0 6 1 3 )7 6_ uu n 6 4 03 N 之间, .6 。 随着 0值的增大 , 钢管混凝土 的抗 K c的公 式 : 【 曲卫波淤侯朝胜, 5 J 钢管混凝土的应用 福 建建 剪承载能力也在增大 。 筑 . 0 .:3 4. 2 0233 —3 : ! ! 22剪跨 比和轴压 比对抗剪承载力的影 响 . + O2 .5 【 刘兵, 6 】 付功义, 陈务军, 虞晓文. 圆形钢 管混凝土 在相 同轴压 比和剪跨 比情况下 , 试验值 v K 一06 —04 A 、5 . 5 ( ) 梁 柱 节 点 局 部 抗 拉 强度 的 研 究『1 尔滨 工 业 6 J. 哈 与 , 的比 随套箍系数 0的增大而增大 。 值 数 钢 管 混凝 土的 抗 剪 承载 力公 式 如 下: 大学学报 ,0 3 5增刊) 8 — 8 . 20 , ( 3 : 0 14 1 据 见表 2
轴心受压

2
1柱的破坏形态
3
第二节
轴心受压构件的承载力 计算
4
5
一.轴心受压构件受力性能 与破坏特征
6
长柱、短柱之分:
短柱:
长柱:
除短柱外的称为~
一般截面lo/i≤28; (i为构件截面回转半径)
对矩形截面lo/b≤8 (b为截面宽度)
7
先分析——短柱:
轴心受压短柱:
钢筋混凝土轴心受压短柱 受荷后—— 截面应变为均匀分布, 钢筋应变εs与 混凝土εc应变相同。
38
为什么?
28
分析:为什么高强度钢筋不能达到屈服强度?
《规范》偏于安全取最大压应变为0.002; 相应的钢筋抗压强度fy’取0.002Es,
29
破坏时: 砼已达到轴心抗压强度,构件极限压应变值为0.002左右, 相应的纵向钢筋应力: σs = 0.002Es=0.002×2.0×105 =400N/mm2 对HPB235、HRB335、HRB400钢筋,均已达到屈服强 度; 但是: 对于高强度钢筋,其抗压强度设计值,破坏时也只能取 400N/mm2 ,其强度显然没有得到充分利用。
已知: 截面尺寸b×h , 纵向受力钢筋面积A‘s , 钢筋的抗压强度设计值f‘y , 砼的轴心抗压强度设计值fc , 构件计算长度l0 , 要求验算:构件在轴向力设计值N的作用下是否满足要 求。
25
解: 1、计算并检验配筋率; 2、算出l0/b ,查表4-18得φ ; 3、将有关数值代入式(5-3),(即可求得N), 若公式成立,N≤NU ,则承载力满足要求。
N N φ主要与柱的长细比l0/b有关: 构件越细长,侧向弯曲的影响就越大, φ值越小,构件的承载力就—— 越小!
第五章1 钢筋混凝土受压构件正截面承载力计算w

5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。
承载力计算

6 承载能力极限状态计算 6.1 一 般 规 定6.1.1 本章适用于钢筋混凝土构件、预应力混凝土构件的承载能力极限状态计算;素混凝土结构构件设计应符合本规范附录D 的规定。
对深受弯构件、牛腿、叠合式构件的承载力计算应符合本规范第9章的有关规定。
6.1.2 对于二维或三维非杆系结构构件,当按弹性或弹塑性分析方法得到构件的应力设计值分布后,可根据主拉应力设计值的合力在配筋方向的投影确定配筋量,按主拉应力的分布区域确定钢筋分布,并应符合相应的构造要求;当混凝土处于受压状态时,可考虑受压钢筋和混凝土共同作用,受压钢筋配置应符合构造要求。
6.1.3 采用应力表达式进行混凝土结构构件的承载能力极限状态验算时,应符合下列规定:1 应根据设计状况和构件性能设计目标确定混凝土和钢筋的强度取值。
2 钢筋应力不应大于钢筋的强度取值。
3 混凝土应力不应大于混凝土的强度取值;多轴应力状态混凝土强度取值和验算可按本规范附录C.4的有关规定进行。
6.2 正截面承载力计算 (I )正截面承载力计算的一般规定6.2.1 正截面承载力应按下列基本假定进行计算:1 截面应变保持平面。
2 不考虑混凝土的抗拉强度。
3 混凝土受压的应力与应变关系曲线按下列规定取用: 当00εε≤时nc c c 0[1(1)]f εσε=--(6.2.1-1)当0c cu εεε<≤时c c f σ= (6.2.1-2)cu,k 12(50)60n f =--(6.2.1-3)50cu,k 0.0020.5(50)10f ε-=+-⨯ (6.2.1-4) 5c u c u ,k0.0033(50)10f ε-=--⨯(6.2.1-5)式中:c σ——混凝土压应变为c ε时的混凝土压应力;c f ——混凝土轴心抗压强度设计值,按本规范表4.1.4-1采用; 0ε——混凝土压应力达到c f 时的混凝土压应变,当计算的0ε值 小于0.002时,取为0.002;cu ε——正截面的混凝土极限压应变,当处于非均匀受压按公式 (6.2.1-5)计算的值大于0.0033时,取为0.0033;当处 于轴心受压时取为0ε; c u ,kf ——混凝土立方体抗压强度标准值,按本规范第4.1.1条确 定;n ——系数,当计算的n 值大于2.0时,取为2.0。
圆钢管混凝土柱轴心受压承载力计算分析

圆钢管混凝土柱轴心受压承载力计算分析胡栋【摘要】The article analyzes different types of concrete-filled steel tubular columns and factors that influence the load carrying capacity of concrete-filled steel tubular columns. It also introduces four computational theories for columns and compares the designing codes in different countries, the results shows that although there are differences among these codes, the factors of these code concerning have little difference, and the computational results also have little difference.%本文对钢管混凝土柱的形式、影响钢管混凝土柱承载力的因素行了分析,简要介绍钢管混凝土柱承载力计算公式的四种理论,并对各国规范计算轴心受压柱公式进行验证比较,结果表明各国规范尽管公式在形式上有所区别,但考虑因素都大同小异,计算结果偏差不大.【期刊名称】《低温建筑技术》【年(卷),期】2011(033)003【总页数】3页(P59-61)【关键词】钢管混凝土柱;受压承载力【作者】胡栋【作者单位】同济大学土木工程学院建筑工程系,上海,200092【正文语种】中文【中图分类】TU375.31897年John Lally[1]在钢管中填充混凝土作为房屋建筑的承重柱,距今钢管混凝土结构在土木工程中的应用已逾百年的历史。
混凝土抗压强度标准值计算

1 总 则1.0.1~1.0.3 本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。
其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。
但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。
当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。
1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。
3 材 料 3.1 混凝土3.l.2 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。
在确定混凝土强度等级时作了两点重大修改;(1)混凝土试件标准尺寸,由边长200mm 的立方体改为边长150mm 的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去1.27倍标准差(保证率90%),改为强度总体分布的平均值减去1.645倍标准差(保证率95%)。
用公式表示,即:f cu,k =μfcu,15-1.645σfcu =μfcu ,15(1-1.645δfcu ) (3.1.2-1) 式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。
混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(mm2) (mm2) (N)
声明: 1.本程序为上海同济大学2003级结构工程李凌志编制整理, 目的是为了便于在电脑上用Excel和在PDA上用Pocket Excel进 行简单的结构手算,程序根据新规范编制,如有什么疑问请 联系我,以便立刻修正! 2.程序中黄底红字的部分需要使用者根据实际情况输入,黑 色的部分请不要随便更改,除非你发现有错误! email:lingzhi0512@ OICQ:49551484 如需获得更多Excel手算程序请登录
C20 强度 类型 fc N/mm2 9.6 强度 类型 HPB235 fy N/mm2 210
轴压混凝土柱承载力计算
Pi= = l0= = b= = h= = dst= = n= = λ= φ= As= = Ac= = Ncu= = 3.14159265 3.200 300 650 22 8 10.667 0.977 3041.06 195000.00 2.447E+06 (m) (mm) (mm) (mm) Pi=3.14159265 柱计算长度 l0 柱截面宽 b 柱截面高 h 全截面纵筋直径 dst 全截面纵筋根数 n 柱长细比 λ=l0/b φ=需要查稳定系数表格 全截面纵筋面积 As=Pi*dst^2/4 混凝土面积 Ac=b*h Ncu=0.9φ*(fc*Ac+fy'*As)
强度及弹性模量
C25 C30 C35 11.9 14.3 16.7 HRB335 HRB400 300 360 C40 19.1 C45 21.1 C50 23.1 C55 25.3
�
钢筋和混凝土指标
C fc= fc= HRB fy= fy= 20 9.6 335 300 C?(20,25,30,35,40,45,50,55) 混凝土等级 (N/mm2) 混凝土抗压强度设计值 fck HRB(235,335,400) 纵筋强度等级 (N/mm2) 纵筋抗拉压强度设