2012年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换

合集下载

高中数学 必修四 课件:第三章 三角恒等变换

高中数学  必修四 课件:第三章 三角恒等变换

或asinα+bcosα=
a2+b2·cos(α-φ),其中tanφ=ab.
第三章 章末归纳总结
数学 ·人教A版 · 必修4
[特别提醒] 化简的基本思想方法是统一角、统一三角 各个名称.
化简:2cos21θ++3stainn2θθ-1-cos2θ3-+45stainn2θθ-4
第三章 章末归纳总结
[分析] 利用β=(α+β)-α进行角的代换,则cosβ= cos[(α+β)-α],利用公式展开,结合已知条件求解.
第三章 章末归纳总结
数学 ·人教A版 · 必修4
[解析] ∵α、 β均为锐角,∴0<α+β<π. 又cos(α+β)=-1114 ∴sin(α+β)= 1--11142=5143. 又tanα=4 3 ∴sin2α=sin2αsi+n2cαos2α=1+tanta2nα2α=4489. ∴sinα=473,从而cosα= 1-sin2α=17,
第三章 章末归纳总结
数学 ·人教A版 · 必修4
专题一 三角函数式的化简 1.三角函数式化简的基本原则: (1)“切”化“弦”. (2)异名化同名 (3)异角化同角. (4)高次降幂. (5)分式通分. (6)无理化有理. (7)常数的处理(特别注意“1”的代换).
第三章 章末归纳总结
数学 ·人教A版 · 必修4
数学 ·人教A版 · 必修4
若cos(
π 4
+x)=
3 5

17 12
π<x<
7 4
π,求
sin2x+2sin2x 1-tanx

值.
[分析]
注意x=(
π 4
+x)-
π 4
,及2x=2(

人教A版数学必修四(新课标人教A版)必修四《第三章 三角恒等变换》.docx

人教A版数学必修四(新课标人教A版)必修四《第三章  三角恒等变换》.docx

高中数学学习材料马鸣风萧萧*整理制作高中新课程数学(新课标人教A 版)必修四《第三章 三角恒等变换》模块检测(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若cos θ>0,且sin 2θ<0,则角θ的终边所在的象限是( ). A .第一象限 B .第二象限 C .第三象限D .第四象限解析 sin 2θ=2sin θcos θ<0,又cos θ>0, ∴sin θ<0,∴θ是第四象限角. 答案 D2.函数y =sin x ⎝ ⎛⎭⎪⎫π6≤x ≤2π3的值域是( ).A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎦⎥⎤12,32 D.⎣⎢⎡⎦⎥⎤32,1 答案 B3.已知|a |=8,e 为单位向量,当它们的夹角为2π3时,a 在e 方向上的投影为( ).A.12 B .-12 C .4 D .-4 解析 a 在e 的方向上的投影为|a |cos 2π3=8×⎝ ⎛⎭⎪⎫-12=-4.答案 D4.下列关系式中,不正确的是( ). A .sin 585°<0B .tan(-675°)>0C .cos(-690°)<0D .sin 1 010°<0解析 585°=360°+225°是第三象限角,则sin 585°<0;-675°=-720°+45°,是第一象限角,∴tan(-675°)>0;1 010°=1 080°-70°,是第四象限角, ∴sin 1 010°<0;而-690°=-720°+30°是第一象限角, ∴cos(-690°)>0. 答案 C5.函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的一条对称轴为x =π12,则φ=( ).A.π6B.π3C.π4 D .-π4 解析 由y =sin x 的对称轴为x =k π+π2(k ∈Z ),所以3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ).又|φ|<π2,所以k =0,φ=π4,故应选C.答案 C6.已知D 是△ABC 的边BC 上的一点,且BD =13BC ,设AB →=a ,AC →=b ,则AD →等于( ).A.13(a -b ) B.13(b -a ) C.13(2a +b ) D.13(2b -a ) 解析 AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →=23a +13b ,故选C.答案 C7.已知a ,b 均为单位向量,且它们的夹角为60°,那么|a +3b |等于( ). A.7 B.10 C.13 D. 4解析 本题若直接求|a +3b |则较为困难,因此解答时可依据公式|a |=a 2先求(a +3b )2. 因为|a |=1,|b |=1,且它们的夹角为60°, 故a ·b =cos 60°=12,所以(a +3b )2=a 2+6a ·b +9b 2=1+3+9=13,即|a +3b |=13,故应选C. 答案 C8.计算2sin 14°·cos 31°+sin 17°等于( ). A.22 B .-22 C.32 D .-32解析 原式=2sin 14°cos 31°+sin(31°-14°) =sin 31°cos 14°+cos 31°sin 14°=sin 45°=22. 答案 A9.设向量a =(cos 25°,sin 25°),b =(sin 20°,cos 20°),若t 是实数,且c =a +t b ,则|c |的最小值为( ).A. 2 B .1 C.22 D.12解析 c =a +t b =(cos 25°,sin 25°)+(t sin 20°,t cos 20°) =(cos 25°+t sin 20°,sin 25°+t cos 20°), ∴|c |=+t2++t2=1+t 2+2t sin 45°=t 2+2t +1 =⎝⎛⎭⎪⎫t +222+12,∴当t =-22时,|c |最小,最小值为22. 答案 C10.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C 的值为( ). A.π6 B.π3 C.2π3D.5π6解析 ∵m ·n =3sin A cos B +3cos A sin B =3sin(A +B )=1+cos(A +B ),∴3sin(A +B )-cos(A +B )=3sin C +cos C =2sin ⎝⎛⎭⎪⎫π6+C =1.∴sin ⎝ ⎛⎭⎪⎫π6+C =12,∴π6+C =56π或π6+C =π6(舍去),∴C =23π. 答案 C二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上). 11.若cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,则sin α+cos α=________.解析原式可化为cos 2α-sin 2α22α-cos α=α+sin αcos α-sin α22α-cos α=-22,∴sin α+cos α=12. 答案 1212.已知向量m =(3sin x ,cos x ),p =(23,1).若m ∥p ,则sin x ·cos x =________. 解析 ∵m ∥p ,∴3sin x =23cos x ,tan x =2, ∴sin x ·cos x =sin x ·cos x sin 2x +cos 2x =tan x 1+tan 2x =25.答案 2513.若向量a 与b 不共线,a ·b ≠0,且c =a -a ·aa ·b·b . 则向量a 与c 的夹角为________. 解析 ∵a ·c =a ·a -a ·aa ·b·b ·a =a ·a -a ·a =0, ∴a ⊥c ,即a 与c 的夹角为90°. 答案 90°14.已知tan(α+β)=35,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan(α+π4)的值为________. 解析tan(α+π4)=tan 错误!=错误!=错误!=错误!.答案723三、解答题(本大题共5小题,共54分,解答时应写出必要的文字说明,证明过程或演算步骤)15.(10分)对任意实数x 和整数n ,已知f (sin x )=sin[(4n +1)x ],求f (cos x ). 解 f (cos x )=f ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-x =sin ⎣⎢⎡⎦⎥⎤n +⎝ ⎛⎭⎪⎫π2-x=sin ⎣⎢⎡⎦⎥⎤2n π+π2-4n +1x =sin ⎣⎢⎡⎦⎥⎤π2-4n +1x=cos[(4n +1)x ].16.(10分)已知a ,b 不共线,AB →=2a +k b ,CB →=a +3b ,CD →=2a -b ,若A ,B ,D 三点共线,求实数k 的值.解 ∵BD →=BC →+CD →=-CB →+CD →=a -4b , 而a 与b 不共线,∴BD →≠0.又∵A ,B ,D 三点共线,∴AB →,BD →共线.故存在实数λ,使AB →=λBD →,即2a +k b =λa -4λb . 又∵a 与b 不共线,∴由平面向量基本定理,得⎩⎪⎨⎪⎧2=λk =-4λ⇒k =-8.17.(10分)已知α为锐角,且sin α=45.(1)求sin 2α+sin 2αcos 2α+cos 2α的值;(2)求tan ⎝⎛⎭⎪⎫α-5π4的值. 解 (1)因α为锐角,且sin α=45,∴cos α=1-sin 2α=35.∴sin 2α+sin 2αcos 2α+cos 2α=sin 2α+2sin αcos α3cos 2α-1=⎝ ⎛⎭⎪⎫452+2×45×353×⎝ ⎛⎭⎪⎫352-1=20.(2)∵tan α=sin αcos α=43,∴tan ⎝⎛⎭⎪⎫α-5π4=tan α-tan5π41+tan αtan5π4=tan α-11+tan α=17.18.(12分)设a =⎝ ⎛⎭⎪⎫32,cos α,b =⎝ ⎛⎭⎪⎫sin α,12,若a ∥b ,求锐角α的值.解 ∵a =⎝ ⎛⎭⎪⎫32,cos α,b =⎝ ⎛⎭⎪⎫sin α,12,且a ∥b ,∴32×12-cos αsin α=0,即sin αcos α=34. 由⎩⎪⎨⎪⎧sin 2α+cos 2α=1,sin αcos α=34,得sin α+cos α=sin 2α+cos 2α+2sin αcos α =1+32=3+12, ∴sin α、cos α是方程x 2-3+12x +34=0的两根. 解得⎩⎪⎨⎪⎧sin α=32cos α=12,或⎩⎪⎨⎪⎧sin α=12,cos α=32.又α∈⎝⎛⎭⎪⎫0,π2,∴α=π3或π6.19.(12分)已知向量b =(m ,sin 2x ),c =(cos 2x ,n ),x ∈R ,f (x )=b ·c ,若函数f (x )的图象经过点(0,1)和⎝ ⎛⎭⎪⎫π4,1.(1)求m 、n 的值;(2)求f (x )的最小正周期,并求f (x )在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最小值;解 (1)f (x )=m cos 2x +n sin 2x , ∵f (0)=1,∴m =1.∵f ⎝ ⎛⎭⎪⎫π4=1,∴n =1.(2)f (x )=cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4, ∴f (x )的最小正周期为π.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴π4≤2x +π4≤3π4.∴当x =0或x =π4时,f (x )的最小值为1.。

人教A版数学必修4第三章三角恒等变换(2)

人教A版数学必修4第三章三角恒等变换(2)

必修4第三章三角恒等变换(2)一、选择题 1已知(,0)2x π∈-,4cos 5x =,则=x 2tan () A 247B 247-C 724D 724- 2函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于()A 3-B 2-C 1-D 3在△ABC 中,cos cos sin sin A B A B >,则△ABC 为()A 锐角三角形B 直角三角形C 钝角三角形D 无法判定4函数)cos[2()]y x x ππ=-+是() A 周期为4π的奇函数B 周期为4π的偶函数 C 周期为2π的奇函数D 周期为2π的偶函数 5函数221tan 21tan 2x y x-=+的最小正周期是() A 4πB 2πC D 2π 6sin163sin 223sin 253sin313+=o o o o()A 12-B 12C 2-7已知3sin(),45x π-=则sin 2x 的值为() A 1925B 1625C 1425D 7258若(0,)απ∈,且1cos sin 3αα+=-,则cos2α=()B C9函数x x y 24cos sin +=的最小正周期为() A 4πB 2πC πD 2π 10当04x π<<时,函数22cos ()cos sin sin x f x x x x =-的最小值是() A 4B 12C 2D 1411函数2sin cos y x x x =+的图象的一个对称中心是()A 2(,32π-B 5(,62π-C 2(,32π-D (,3π 120000tan 21)(1tan 22)(1tan 23)(1tan 24)++++的值是() A 16B 8C 4D 2二、填空题13已知在ABC ∆中,3sin 4cos 6,4sin 3cos 1,A B B A +=+=则角C14.在ABC ∆中,,53sin ,135cos ==B A 则C cos =______. 15函数f x x x x ()cos sin cos =-223的最小正周期是___________16已知sin cos ,223θθ+=那么sin θ的值为 ,cos2θ的值为 三、解答题17求值:(1)000078sin 66sin 42sin 6sin ; (2)00020250cos 20sin 50cos 20sin ++18已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数19.求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+--20.已知函数.,2cos 32sin R x x x y ∈+= (1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象必修4第三章三角恒等变换(2)三角恒等变换(2)参考答案一、选择题 1D2C3C4C5B6.B7D8.A9.B10A11.B12C二、填空题 13.6π14.651615π16.1739 三、解答题17解:(1)原式0000000000sin 6cos 6cos12cos 24cos 48sin 6cos12cos 24cos 48cos 6== 000000000000000011sin12cos12cos 24cos 48sin 24cos 24cos 4824cos6cos6111sin 48cos 48sin 96cos6181616cos6cos6cos616====== (2)原式00001cos 401cos1001(sin 70sin 30)222-+=++- 0001111(cos100cos 40)sin 70224=+-+- 000313sin 70sin 30sin 70424=-+=18.解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈(2)())4f x x πθ=-+为偶函数,则4k πθπ-= ,4k k Z πθπ∴=+∈ 19解:原式2000000002cos 10cos5sin 5sin10()4sin10cos10sin 5cos5=-- 000000cos10cos102sin 202cos102sin102sin10-=-= 0000000000cos102sin(3010)cos102sin 30cos102cos30sin102sin102sin10---+==0cos30==20解:sin 2sin()2223x x x y π=+=+ (1)当2232x k πππ+=+,即4,3x k k Z ππ=+∈时,y 取得最大值 |4,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭为所求 (2)2sin()2sin 2sin 232x x y y y x ππ=+−−−−−→=−−−−−−−→=右移个单位横坐标缩小到原来的2倍3 sin y x −−−−−−−→=纵坐标缩小到原来的2倍。

2011-2012年高考数学真题分类汇编第三章三角恒等变换(含解析)新人教版必修4

2011-2012年高考数学真题分类汇编第三章三角恒等变换(含解析)新人教版必修4

必修4第三章三角恒等变换1.(2012·安徽高考卷·T18·5分)在平面直角坐标系中,点O (0,0),点()6,8P ,将向量OP 绕点O 按逆时针方向旋转34π后得向量OQ ,则点Q 的坐标是( ) (A)(- (B)(-(C) ()2-- (D) ()- 【答案】A【解析】三角求值和定义.设POx α∠=,因为()6,8P ,所以4t a n=3α,可得431t a n t a n 3134tan =34471tan tan 143παπαπα-+⎛⎫+== ⎪⎝⎭-⨯+,验证可知只有当Q点坐标为(-时满足条件,故答案为A ;法二:估算.设POx α∠=,因为()6,8P ,所以4t a n=3α,可得<43ππα<,313<412πππα<+,所以点Q 在第三象限,排除B ,D 选项,又30tan <24πα⎛⎫<+- ⎪⎝⎭故答案为A.【技巧点拨】本题快速求解的办法是直接估测出角34πα+的范围,再利用三角函数定义加以排除.2.(2012·安徽高考卷·T4·5分)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】B【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x —1)+1,再向下平移1个单位长度得:y 3=cos(x —1).令x =0,得:y 3>0;x =12π+,得:y 3=0;观察即得答案.【点评】本题主要考察三角函数的图象变化,三角变换是三角函数图象内容的一个重要的考点3.(2011年辽宁)设sin 1+=43πθ(),则sin 2θ= (A )79-(B )19-(C )19 (D )79【答案】A4.(2011年福建)若tan α=3,则2sin 2cos a α的值等于A .2B .3C .4D .6 【答案】D5.(2011年全国新课标)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 【答案】A6.(2011年上海)函数sin()cos()26y x x ππ=+-的最大值为 。

新课标高中数学人教A版必修四全册教案第三章三角恒等变换复习(二)

新课标高中数学人教A版必修四全册教案第三章三角恒等变换复习(二)

第三章 三角恒等变换复习(二)教学目标:1. 综合运用知识解决相关问题.
2. 培养学生分析问题,运用知识解决问题的能力.
教学重点:运用知识解决实际问题
教学难点:建立函数关系解决实际问题.
教学过程
一、作业讲评
《习案》作业P.196的第5、6题.
二、例题分析 ,求证:,已知3
1)sin(21)sin(.1=-=+βαβα ;βαβαsin cos 5cos sin )1(=
.tan 5tan )2(βα=
.tan ).,0(5
1cos sin .2的值求,已知βπβββ∈=+
.32tan 2
tan 322.3说明理由的度数;若不存在,请、求出同时成立?若存在,,使,、是否存在锐角βαβαπβαβα-==
+
4. 已知直线l 1∥l 2,A 是l 1,l 2之间的一定点,并且A 点到l 1,l 2的距离分别为h 1,h 2 . B 是直线l 2上一动点,作AC ⊥AB ,且使AC 与直线l 1交于点C ,求△ABC 面积的最小值.
5. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当△ABC的周长为2时,求∠PCQ的大小.
三、课堂小结
本节主要讲运用公式解决有关问题:最值问题、存在性问题.
四、课后作业
《习案》作业三十六.
A。

人教A版高中数学必修四第三章三角恒等变换复习

人教A版高中数学必修四第三章三角恒等变换复习

第三章 三角恒等变换复习(一)1. 通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络.2. 能灵活运用公式进行求值、证明恒等式.)二、新课导学※ 典型例题1、已知三角函数值求三角函数值1、已知cosa+cos β=12,sina+sin β=13,求cos(a-β)的值。

2332.(1)cos ,,52cos )22ππθθθ=-<θ<-已知求(sin的值..sin 512cos 2sin )2(的值求,已知ααα=-.2sin 95cos sin )3(44的值求,已知θθθ=+.cos sin 532cos )4(44的值求,已知θθθ+=.tan tan 53)cos(51)cos(.3的值,求,已知βαβαβα⋅=-=+4.已知534cos =⎪⎭⎫ ⎝⎛+x π,471217ππ<<x ,求x x x tan 1sin 22sin 2-+的值。

.40tan 20tan 120tan 40tan 20tan .5oo oo o 的值求⋅++例2、证明恒等式.cos 832cos 44cos .14ααα=++证明:.21tan 212sin cos 22sin 1.22+=++αααα证明:2223.sin cos 2sin ,sin cos sin 2cos 2.θθθθ+=α=β,α=β已知求证:4cos三、小结反思1. 给值求角时,先要求所求角的某一三角函数值,需结合角的范围确定角的符号;2. 证明三角恒等式时,要灵活地运用公式.教材P.146第8题第(3)、(4)问; P.146第1、2、3题; P.146第4题第(1)、(2)、(3)问; P.147第3题;。

高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换精编版

高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换精编版

2012年高考数学按章节分类汇编(人教A 必修四)第三章三角恒等变换一、选择题1 .(2012年高考(重庆文))sin 47sin17cos30cos17-( )A .B .12-C .12D2 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .33 .(2012年高考(陕西文))设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于A2 B 12C .0D .-14 .(2012年高考(辽宁文))已知sin cos αα-=α∈(0,π),则sin 2α= ( )A .-1B .2-C .2D .15 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1B .2-C .2D .16.(2012年高考(江西文))若sin cos 1sin cos 2αααα+=-,则tan2α=( )A .-34B .34C .-43D .437.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ=( )A .15B .14C .13D .128.(2012年高考(大纲文))已知α为第二象限角,3sin 5α=,则sin 2α=( )A .2425-B .1225-C .1225D .24259 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=( )A .35B .45C .4D .3410.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .[-2 , 2]11.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos2α= ( )A .B .CD 二、填空题1.(2012年高考(大纲文))当函数sin (02)y x x x π=≤<取最大值时,x =____.2.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____.3.(2012年高考(大纲理))当函数s i n c o s (02)y x x x π=≤<取得最大值时,x =_______________.三、解答题1.(2012年高考(四川文))已知函数21()cos sin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()10f α=,求sin 2α的值.2.(2012年高考(湖南文))已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示.(Ⅰ)求函数f(x)的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.3.(2012年高考(湖北文))设函数22()sincos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其中,ωλ为常数,且1(,1)2ω∈ (1) 求函数()f x 的最小正周期; (2) 若()y f x =的图像经过点(,0)4π,求函数()f x 的值域.4.(2012年高考(福建文))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.5.(2012年高考(北京文))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递减区间.6.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.7.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8.(2012年高考(四川理))函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9.(2012年高考(山东理))已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.10.(2012年高考(湖北理))已知向量(c o s s x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.11.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.12.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒(5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.13.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.14.(2012年高考(安徽理))设函数2())sin 24f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.参考答案一、选择题 1. 【答案】:C【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====【考点定位】本题考查三角恒等变化,其关键是利用473017=+2. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.3. 解析:0a b ⋅=,212cos 0θ-+=,2cos 22cos 10θθ=-=,故选C.4. 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.5. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=-,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=-,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中. 6. 【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.7. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sincos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 8.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos 0α<,而3sin 5α=,故4cos 5α==-,所以24sin 22sin cos 25ααα==-,故选答案A.9. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.10. 【答案】B【解析】f(x)=sinx-cos(x+6π)1sin cos sin )226x x x x π=-+=-,[]sin()1,16x π-∈-,()f x ∴值域为].【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.11. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】s i n c o s 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=-α是第二象限角,因此sin 0,cos 0αα><,所以cos sin 3αα-===-22cos 2cos sin (cos sin )(cos sin )3ααααααα∴=-=+-=-法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 1.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.2. 【考点】同角三角函数,倍角三角函数,和角三角函数.【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭ 2427217==2252550-.3.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值. 三、解答题1. [解析](1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)( )(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22,(2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-= 257251814cos 212=-=+-=)(πα, [点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.2. 【解析】(Ⅰ)由题设图像知,周期11522(),21212TTππππω=-=∴==.因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即.又55450,,=26636πππππϕϕϕπ<<∴<+<+从而,即=6πϕ. 又点0,1()在函数图像上,所以s i n 1,26A A π==,故函数f(x)的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=-+12sin 22(sin 2cos 2)22x x x =-+sin 22x x =2sin(2),3x π=-由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得.3. 【解析】(1)因为22()sin cos cos cos 222sin(2)6f x x x x x x x πωωωωλωωλωλ=-++=-++=-+由直线x π=是()y f x =图像的一条对称轴,可得sin(2)16x πω-=±所以2()62x k k Z ππωπ-=+∈,即1()23k k Z ω=+∈又1(,1),2k Z ω∈∈,所以1k =时,56ω=,故()f x 的最小正周期是65π.(2)由()y f x =的图象过点(,0)4π,得()04f π=即52sin()2sin 6264πππλ=-⨯-=-=即λ=故5()2sin()36f x x π=-函数()f x 的值域为[22-+.【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.4. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 42422αααααααα=+++--22333sin cos 444αα=+= 5. 【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手.解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈. 因为(s()sin x xxf x x-==2cos (sin cos )x x x -=sin 2cos21x x --=)14x π--,所以()f x 的最小正周期22T ππ==. (2)函数sin y x =的单调递减区间为3[2,2]()22k k k Z ππππ++∈.由3222,()242k x k x k k Z ππππππ+≤-≤+≠∈得37,()88k x k k Z ππππ+≤≤+∈所以()f x 的单调递减区间为37[],()88k x k k Z ππππ+≤≤+∈6. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+所以,()f x 的最小正周期22T ππ==.(2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-,最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可. 7. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()14cos sin sin cos 222f x x x x x ωωωω⎛⎫=++⎪ ⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. [解析](Ⅰ)由已知可得:2()6cos 3(0)2xf x x ωωω=+->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,(所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567= [点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.9.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f ,则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-.另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x , 于是367sin 6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g ,故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-.10.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos 22x x ωωλ=-++π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=即λ=故5π()2sin()36f x x =--由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 11.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α=,15sin 17β=,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-. 12. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 42422αααααααα=+++--22333sin cos 444αα=+=13. 【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手. 解:(sin cos )sin 2()sin x x x f x x -==(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x -=sin 21cos2x x --)14x π--,{|,}x x k k Z π≠∈(1) 原函数的定义域为{|,}x x k k Z π≠∈,最小正周期为π; (2)原函数的单调递增区间为[,)8k k k Z πππ-+∈,3(,]8k k k Z πππ+∈. 14. 【解析】2111()cos(2)sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =- (I)函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。

2012年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换

2012年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换

2012年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换2012年高考数学按章节分类汇编(人教A 必修四)第三章三角恒等变换一、选择题 1.(2012年高考(重庆文))sin 47sin17cos30cos17-o o oo()A .32-B .12- C .12D .322 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为()A .3-B .1-C .1D .33 .(2012年高考(陕西文))设向量ar=(1.cos θ)与br =(-1, 2cos θ)垂直,则cos2θ等于 A22B 12C .0D .-1 4 .(2012年高考(辽宁文))已知sin cos 2αα-=α∈(0,π),则sin 2α=()A .-1B .22-C .22D .15 .(2012年高考(辽宁理))已知sin cos 2αα-=,α∈(0,π),则tan α=()A .-1B .22-C .22D .1 6.(2012年高考(江西文))若sin cos 1sin cos 2αααα+=-,则tan2α=()A .-34B .34C .-43D .437.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ= ()A .15B .14C .13D .128.(2012年高考(大纲文))已知α为第二象限角,3sin 5α=,则sin 2α=()A .2425-B .1225- C .1225D .24259 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2θ,则sin θ= ()A .35B .45C .74D .3410.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ()A .[ -2 ,2]B .[-3,3]C .[-1,1 ]D .[-3 ,3]11.(2012年高考(大纲理))已知α为第二象限角,3sin cos 3αα+=,则cos2α=()A .5B .5C 5D 5二、填空题1.(2012年高考(大纲文))当函数sin 3(02)y x x x π=-≤<取最大值时,x =____.2.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____.3.(2012年高考(大纲理))当函数sin 3(02)y x x x π=-≤<取得最大值时,x =_______________.三、解答题1.(2012年高考(四川文))已知函数21()cossin cos 2222x x x f x =--.(Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若32()f α=,求sin 2α的值.2.(2012年高考(湖南文))已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示. (Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.3.(2012年高考(湖北文))设函数22()sin 23sin cos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其中,ωλ为常数,且1(,1)2ω∈ (1) 求函数()f x 的最小正周期;(2) 若()y f x =的图像经过点(,0)4π,求函数()f x 的值域.4.(2012年高考(福建文))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)2sin 13cos17sin13cos17︒+︒-︒︒(2)2sin 15cos15sin15cos15︒+︒-︒︒(3)2sin 18cos12sin18cos12︒+︒-︒︒(4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒(5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.5.(2012年高考(北京文))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递减区间.6.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.7.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω (Ⅰ)求函数()y f x = 的值域(Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8.(2012年高考(四川理))函数2()6cos33(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若083()f x =,且0102(,)33x ∈-,求0(1)f x+的值.9.(2012年高考(山东理))已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n x x A ==>u r r ,函数()f x m n=⋅u r r 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.10.(2012年高考(湖北理))已知向量(cos sin ,sin )x x x ωωω=-a ,(cos sin ,23)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.11.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π.(Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=-⎪⎝⎭,5165617f βπ⎛⎫-=⎪⎝⎭,求()cos αβ+的值.12.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)2sin 13cos17sin13cos17︒+︒-︒︒(2)2sin 15cos15sin15cos15︒+︒-︒︒(3)2sin 18cos12sin18cos12︒+︒-︒︒(4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒(5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.13.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.14.(2012年高考(安徽理))设函数22()cos(2)sin 4f x x x π=++(I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.参考答案一、选择题 1.【答案】:C 【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=o o o o o o ooosin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====o o o o o o o o oo o【考点定位】本题考查三角恒等变化,其关键是利用473017=+oo o2.【答案】A 【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.3. 解析:a b r r ⋅=,212cos 0θ-+=,2cos 22cos 10θθ=-=,故选C.4.【答案】A 【解析】2sin cos 2,(sin cos )2,sin 21,ααααα-=∴-=∴=-Q 故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题. 5.【答案】A【解析一】sin cos 2,2)2,sin()144ππαααα-=-=-=Q3(0),,tan 14παπαα∈∴=∴=-Q ,,故选A【解析二】2sin cos 2,(sin cos )2,sin 21,ααααα-=-=∴=-Q33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=-Q ,故选A【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中.6.【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.7.D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.8.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos 0α<,而3sin 5α=,故24cos 1sin 5αα=--=-,所以24sin 22sin cos 25ααα==-,故选答案A.9.【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.10.【答案】B 【解析】 f(x)=sinx-cos(x+6π)31sin cos sin 3)226x x x x π=-+=-,[]sin()1,16x π-∈-Q ,()f x ∴值2αα域为33【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.11.答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题. 【解析】3sin cos 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=-αQ 是第二象限角,因此sin 0,cos 0αα><,所以2215cos sin (cos sin )13αααα-=--=-+= 225cos 2cos sin (cos sin )(cos sin )3ααααααα∴=-=+-=-法二:单位圆中函数线+估算,因为α是第二象限的角,又11sin cos 23αα+ 所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 1.答案:56π【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点. 【解析】由sin 32sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.2.17250【考点】同角三角函数,倍角三角函数,和角三角函数.【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭g g .∴7cos 2325απ⎛⎫+=⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭ 2427217=2252550-g g3.答案:56π【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点. 【解析】由sin 32sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.三、解答题 1.[解析](1)由已知,f(x)=212x cos 2x sin 2x cos2--21sinx 21cosx 121--+=)()(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22,(2)由(1)知,f(α)=,)(10234cos 22=+πα所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-= 257251814cos 212=-=+-=)(πα,[点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.2.【解析】(Ⅰ)由题设图像知,周期11522(),21212T Tππππω=-=∴==.因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即.又55450,,=26636πππππϕϕϕπ<<∴<+<+Q 从而,即=6πϕ. 又点0,1()在函数图像上,所以sin 1,26A A π==,故函数f(x)的解析式为()2sin(2).6f x x π=+ (Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=-+132sin 22(sin 2cos 2)22x x x =-+sin 232x x= 2sin(2),3x π=- 由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22T πω==.再利用特殊点在图像上求出,A ϕ,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得.3.【解析】(1)因为22()sin cos 23cos cos 2322sin(2)6f x x x x x x x πωωωωλωωλωλ=-++=-+=-+由直线x π=是()y f x =图像的一条对称轴,可得sin(2)16x πω-=± 所以2()62x k k Z ππωπ-=+∈,即1()23k k Z ω=+∈ 又1(,1),2k Z ω∈∈,所以1k =时,56ω=,故()f x 的最小正周期是65π.(2)由()y f x =的图象过点(,0)4π,得()04f π= 即52sin()2sin 26264πππλ=-⨯-=-=-即2λ=故5()2sin()236f x x π=--,函数()f x 的值域为[22,22].【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.4.【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想. 解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒=(2)证明:22sincos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒ 222233131sin cos cos sin cos sin 442αααααααα=+++-22333sin cos 444αα=+=5.【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手.解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈.因为(sin cos )sin 2()sin x x xf x x-==2cos (sin cos )x x x -=sin 2cos21x x --=2)14x π--,所以()f x 的最小正周期22T ππ==.(2)函数sin y x=的单调递减区间为3[2,2]()22k k k Z ππππ++∈.由3222,()242k x k x k k Z ππππππ+≤-≤+≠∈得37,()88k x k k Z ππππ+≤≤+∈所以()f x 的单调递减区间为37[],()88k x k k Z ππππ+≤≤+∈6.【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+ sin 2cos 22)4x x x π=+=+ 所以,()f x 的最小正周期22T ππ==.(2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()2,()184f f ππ==,故函数()f x 在区间[,]44ππ-上的最大值为2,最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.7.【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()314cos sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪⎪⎝⎭22223cos 2sin cos sin x x x x x ωωωωω=++-321x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为13,13⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()3sin 21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数.依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8.[解析](Ⅰ)由已知可得:2()6cos33(0)2xf x x ωωω=->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4所以,函数482824)(πωωπ===⨯=,得,即的周期T x f 所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx即由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx即故=+)1(0xf =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567=[点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.9.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f ,则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g . 当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-. 另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x , 于是367sin 6)245(,62sin6)24(,333sin 6)0(-======πππππg g g ,故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-.10.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos 23cos f x x x x x ωωωωλ=-+⋅+cos 232x x ωωλ=-++π2sin(2)6x ωλ=-+. 由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z .又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5.(Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =, 即5πππ2sin()2sin 26264λ=-⨯-=-=-即2λ=-故5π()2sin()236f x x =--由3π05x ≤≤,有π5π5π6366x -≤-≤, 所以15πsin()1236x -≤-≤,得5π122sin()22236x --故函数()f x 在3π[0,]5上的取值范围为[12,22]---. 11.解析:(Ⅰ)210T ππω==,所以15ω=. (Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3sin 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+==⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以24cos 1sin 5αα-=,215sin 1cos 17ββ=-=,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-.12.【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想. 解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sincos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒222233131sin cos sin cos sin sin cos sin 42422αααααααα=+++--22333sin cos 444αα=+=13.【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手. 解:(sin cos )sin 2()sin x x xf x x-==(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x-=sin 21cos2x x -- =2)14x π--,{|,}x x k k Z π≠∈(1) 原函数的定义域为{|,}x x k k Z π≠∈,最小正周期为π;(2)原函数的单调递增区间为[,)8k k k Zπππ-+∈,3(,]8k k k Z πππ+∈.14.【解析】22111())sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =-(I)函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈11()()sin 2()sin 22222g x g x x xππ=+=+=-当[,)2x ππ∈--时,()[0,)2x ππ+∈11()()sin 2()sin 222g x g x x xππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考数学按章节分类汇编(人教A 必修四)第三章三角恒等变换一、选择题1 .(2012年高考(重庆文))sin 47sin17cos30cos17-( )A .2-B .12-C .12D .22 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .33 .(2012年高考(陕西文))设向量a =(1.cos θ)与b=(-1, 2cos θ)垂直,则cos2θ等于B 12C .0D .-14 .(2012年高考(辽宁文))已知sin cos αα-=,α∈(0,π),则sin 2α= ( )A .-1B .CD .15 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1B .CD .16.(2012年高考(江西文))若sin cos 1sin cos 2αααα+=-,则tan2α=( )A .-34B .34C .-43D .437.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ=( )A .15B .14C .13D .128.(2012年高考(大纲文))已知α为第二象限角,3sin 5α=,则sin 2α=( )A .2425-B .1225-C .1225D .24259 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=( )A .35B .45C D .3410.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .]11.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos2α= ( )A .B .CD 二、填空题1.(2012年高考(大纲文))当函数sin (02)y x x x π=≤<取最大值时,x =____.2.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____.3.(2012年高考(大纲理))当函数s i n c o s (02)y x x x π=≤<取得最大值时,x =_______________.三、解答题1.(2012年高考(四川文))已知函数21()cos sin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()10f α=,求sin 2α的值.2.(2012年高考(湖南文))已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示.(Ⅰ)求函数f(x)的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.3.(2012年高考(湖北文))设函数22()sincos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其中,ωλ为常数,且1(,1)2ω∈ (1) 求函数()f x 的最小正周期; (2) 若()y f x =的图像经过点(,0)4π,求函数()f x 的值域.4.(2012年高考(福建文))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.5.(2012年高考(北京文))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递减区间.6.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.7.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8.(2012年高考(四川理))函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9.(2012年高考(山东理))已知向量(sin ,1),cos ,cos 2)(0)3Am x n x x A ==> ,函数()f x m n =⋅的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.10.(2012年高考(湖北理))已知向量(c o s s x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.11.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.12.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒(4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.13.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.14.(2012年高考(安徽理))设函数2())sin 4f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.参考答案一、选择题 1. 【答案】:C【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====【考点定位】本题考查三角恒等变化,其关键是利用473017=+2. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.3. 解析:0a b ⋅=,212cos 0θ-+=,2cos 22cos 10θθ=-=,故选C.4. 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=- 故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.5. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中. 6. 【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.7. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=.【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 8.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos0α<,而3sin 5α=,故4cos 5α==-,所以24sin 22sin cos 25ααα==-,故选答案A.9. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.10. 【答案】B【解析】f(x)=sinx-cos(x+6π)1sin sin )26x x x x π=+=-,[]sin()1,16x π-∈- ,()f x ∴值域为].【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.11. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】s i n c o s 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=- α是第二象限角,因此sin 0,cos0αα><,所以cos sin 3αα-===-22cos 2cos sin (cos sin )(cos sin )ααααααα∴=-=+-=法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 1.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.2. 【考点】同角三角函数,倍角三角函数,和角三角函数.【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+=⎪⎝⎭,∴3sin 65απ⎛⎫+=⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭247=2525-. 3.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.三、解答题1. [解析](1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)( )(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-= 257251814cos 212=-=+-=)(πα, [点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.2. 【解析】(Ⅰ)由题设图像知,周期11522(),21212TTππππω=-=∴==.因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即.又55450,,=26636πππππϕϕϕπ<<∴<+<+ 从而,即=6πϕ. 又点0,1()在函数图像上,所以s i n 1,26A A π==,故函数f(x)的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦ 2sin 22sin(2)3x x π=-+12sin 22(sin 22)2x x x =-sin 22x x =2sin(2),3x π=-由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得.3. 【解析】(1)因为22()sin cos cos cos 222sin(2)6f x x x x x x x πωωωωλωωλωλ=-++=-++=-+由直线x π=是()y f x =图像的一条对称轴,可得sin(2)16x πω-=±所以2()62x k k Z ππωπ-=+∈,即1()23k k Z ω=+∈又1(,1),2k Z ω∈∈,所以1k =时,56ω=,故()f x 的最小正周期是65π.(2)由()y f x =的图象过点(,0)4π,得()04f π=即52sin()2sin 6264πππλ=-⨯-=-=即λ=故5()2sin()36f x x π=-函数()f x 的值域为[22-+.【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.4. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=++-22333sin cos 444αα=+= 5. 【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手.解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈. 因为(s()sin x xxf x x-==2cos (sin cos )x x x -=sin 2cos21x x --=)14x π--,所以()f x 的最小正周期22T ππ==. (2)函数sin y x =的单调递减区间为3[2,2]()22k k k Z ππππ++∈.由3222,()242k x k x k k Z ππππππ+≤-≤+≠∈得37,()88k x k k Z ππππ+≤≤+∈所以()f x 的单调递减区间为37[],()88k x k k Z ππππ+≤≤+∈6. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sinsin 2coscos 2sincos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+ 所以,()f x 的最小正周期22T ππ==.(2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可. 7. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. [解析](Ⅰ)由已知可得:2()6cos 3(0)2xf x x ωωω=+->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f (Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567= [点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.9.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A x f ,则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-.另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x , 于是367sin 6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g ,故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-. 10.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-++π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =--由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 11.解析:(Ⅰ)210T ππω==,所以15ω=. (Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s i n5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8cos 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4cos 5α=,15sin 17β=,所以()4831513cos cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-. 12. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒=(2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos sin cos sin cos sin 42422αααααααα=+++--22333sin cos 444αα=+=13. 【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手.解:(sin cos )sin 2()sin x x x f x x -==(sin cos )2sin cos sin x x x xx-=2(sin cos )cos x x x -=sin 21cos2x x --)14x π--,{|,}x x k k Z π≠∈(1) 原函数的定义域为{|,}x x k k Z π≠∈,最小正周期为π; (2)原函数的单调递增区间为[,)8k k k Z πππ-+∈,3(,]8k k k Z πππ+∈. 14. 【解析】2111()cos(2)sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =- (I)函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。

相关文档
最新文档