实际问题与一元二次方程传播问题.
数学人教版九年级上册21.3实际问题与一元二次方程——传播问题

一、传播问题
1.母体在传播过程中每次都参与 探究1.有一个人患了流感,经过两轮 传染后共有121个人患了流感,每轮 传染中平均一个人传染几个人?
2.母体只参与一次传播便停止
变形1.某种植物的主干长出若干数目枝干,每 个枝干又长出同样数目的小分支。主干、枝 干和小分支的总数是13,则每个枝干长出多 少小分支?
第二十一章 一元二次方程
21.3实际问题与一元二次方程
—传播问题
主讲人:何萍萍
内蒙古乌海市第二中学
学习目标:
1.通过对实际问题的数量关系的探索,进一 步体验方程是反映现实世界数量关系的一个 有效的数学模型; 2.能根据具体的问题中数量关系,列出一元 二次方程解决传播问题,并根据实际意义检 验方程是否合理,同时感受数学知识与现实 生活的联系,增强应用数学的意识。
3.分裂(分裂后母体消失)
变形2.某生物实验室需要培育一群有益菌,现 有60个活体样本,经过两轮培植后总和达到 24000个,其中每个有益菌每一次分裂成相同 数目的有益菌。问:每轮分裂中平均每个有 益菌可以分裂成多少个有益菌?
课堂练习
1.某种细菌,若一个细菌经过两轮繁殖后,共 有256个细菌,则每轮繁殖中平均一个细菌繁 殖了多少个细菌?
2.乌海市创建文明城市,小明写了一篇倡议书, 决定用微博转发方式传播,他设计了如下传 播规则:将倡议书发表在自己的微博上,再 邀请若干个好友转发倡议书,每个好友转发 倡议书之后,又邀请相同数量的不相同的好 友转发倡议书,依此类推,已知经过两轮传 播后,共有111人 参与了该传播活动。问:每 个人传播给多少人倡议书?
课堂小结
1.你学到了哪些知识点? 2.它们之间有什么区别和联系?
作业
书P22习题4
21.3.1 实际问题与一元二次方程(一)传播问题、增长率问题

支
x
支干
……
小 分
小 分
支
支
x
…… 支干
x
1
主 干
1.在分析探究一和例1中的数量关系时它们有何区别? 每个树枝只分裂一次,每名患者每轮都传染.
2.解决这类传播问题有什么经验和方法? (1)审题,设元,列方程,解方程,检验,作答; (2)可利用表格梳理数量关系; (3)关注起始值、新增数量,找出变化规律.
· ·
探究一:有一人患了流感,经过两轮传染后共有121人患了流感,
每轮传染中平均一个人传染了几个人?
解:设每轮传染中平均一个人传染了x个人.
1 x x(1 x) 121
解方程,得 x1= 10 , x2= -12 . (不合题意,舍去) 答:平均一个人传染了___1_0____个人.
注意:一元二次方程的解有可能不符合题意,所以一定要进行 检验.
例2:某种植物的主干长出若干数目的支干,每个支干又长出同样数
目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分
支? 解:设每个支干长出x个小分支, 则 1+x+x2=91
即 x2 x 90 0
解得,
x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9个小分支.
…… ……
小
7.【例5】某电器企业计划用两年的时间把某型号电冰箱的成 本降低36%,若每年下降的百分数相同,求这个百分数. 解:设下降的百分数为x,依题意,得 1(1-x)2=1-36%, 解得x1=0.2=20%,x2=1.8(不合题意,舍去). 答:下降的百分数为20%. 小结:解决这类问题时,如果没有给出初始值,通常设初始
21.某厂去年利润为100万元,若每年利润增长率为20%,则:
人教版初三数学上册21.3实际问题与一元二次方程---传播问题

教学反思一、关于方程模型的处理在“实际问题与一元二次方程”这一课的教学过程中,“实际问题”与“方程”的转化,是贯穿始终的一条主线.主要反映在以下二个方面.第一,实际问题一直都是学生的难点,学生主要的困难就是在较复杂的实际问题中抽象出数学模型,找到等量关系来列出方程,本节课教师设置了多个问题,由易到难,引导学生的思维层层递进,很自然地列出式子表示每一轮的患病人数,从而列出方程,突破了本节课的难点.第二,本节课紧扣“模型思想”安排大量的探究学习,改变了以前“老师讲,学生听”的模式,让学生真正经历问题的解决过程,逐步学会自己解决问题,这样才能真正培养学生的“模型思想”.于是,在教学中,关注了对“等量关系”的分析.二、关于教学效果的反思在实际授课过程中,教学环节的展开是自然、顺畅的,如“观察探究,形成新知”环节,学生能够在教师的引导下,说出用一元一次方程解决实际问题的步骤和方法,并通过类比一元一次方程应用的研究方法,完成审、设、列、解、答的过程,也可以通过分析传播问题中的等量关系,列出一元二次方程模型和检验得到符合要求的解.然而,由于学生刚刚接触一元二次方程模型,一元二次方程根的个数(2个)与一元一次方程根的个数(1个)之间存在差异,学生还缺乏对一元二次方程“整体形象”的把握.一方面,在解方程中不能选用恰当方法求解,学生还不能有意识地从“实际问题,实际背景”来考虑问题,传播问题的三种类型题中,传染源的参与情况分析不好,这致使学生在课后“目标检测”时,对部分问题的解决出现偏差.此外,展开本节课学习的一个重要的方法,就是“类比”.在教学过程中,教师极力引导学生要“类比一元一次方程学习的方法”,最大限度地调动学生“合情推理”的因素,以确保学习知识的“正迁移”效应.事实上,这样也会带来另一些负面的影响,学生往往对属于一元一次方程和一元二次方程“共性”的结论印象比较深刻,而对于新的一元二次方程“个性”的结论,在理解上反而会受到一些干扰.三、关于教学设计的改进基于上述思考,我认为在教学设计中,还存在需要改进的地方.应关注“类比”中的“差异性”实际问题与一元二次方程的学习,可以类比一元一次方程的研究方法进行,从而体现了方程学习的一般规律和方法.本教学设计尊重人教版课标教材的编写意图,其中所呈现的通过“实际问题”背景,到“一元二次方程”,到利用一元二次方程模型“解决实际问题”,这一探究的过程和方法,是学习方程时不可或缺的.无疑,“类比”是一种重要的方法,对于学生理解一元二次方程应用、建立完善的认知结构具有重要的意义.但是,我们在运用“类比”的方法研究一元二次方程应用的过程中,还应注意“趋同求异”,关注一元二次方程与一元一次方程之间的“差异性”,如方程的根“2个”与“1个”、“一轮后”与“两轮后”等,这样的认识,在本课教学时,应加以强调,并传达给学生.。
21-3实际问题与一元二次方程(第1课时传播问题)-

病源A 第1轮
第2轮传染后患病人数_1_+_2_+_(_1_+_2_)_×_2_人.
第2轮
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人. 第1轮传染后患病人数_(_1_+_x_)_人;
第2轮传染后患病人数_[_1_+_x_+_(_1_+_x_)_x_]人. 规律发现
传染源 第1轮传染后 第2轮传染后的人数 人数 的人数 1 1+x=(1+x)1 1+x+x(1+x)=(1+x)2
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
课堂小结
人教版数学九年级上册
传播问题公式1:1+x+x(1+x)=(1+x)2 传播问题公式2: 1+x+x2 列一元二次方程解应用题的步骤: 1.审:理解题意,明确未知量、已知量以及它们之间的数量关系. 2.设:根据题意,可直接设未知数,也可间接设未知数. 3.列:根据题中的等量关系,用含所设未知数的代数式表示其他 未知量,从而列出方程. 4.解:准确求出方程的解. 5.验:检验所求出的根是否符合方程和实际问题. 6.答:写出答案.
A.x+(x+1)x=36
B.1+x+(1+x)x=36
C.1+x+x2=36
D.x+(x+1)2=36
课堂检测
《实际问题与一元二次方程》(传播、增长率问题问题)课件

探究2:某种植物的主干长出若干数目的支干, 每个支干又长出同样数目的小分支,主干、 支干、小分支的总数是111.求每个支干长出 多少个小分支.设:每个支干长出x个小分支
每两人赠两次
1个人
赠送(x-1)人
共计 x(x-1)图书
探究一:循环问题
2、在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参
加这次聚会,则列出方程正确的是( B )
A.x(x-1)=10
B. xx 1 10
C. x(x + 1)=10
D. xx2 1 10
2
1个人
3、某商品经过连续两次降价,销售单价由原来的125元降 到80元,则平均每次降价的百分率为____2_0_%__.
小结
本节课我们学习了几种问题: 传播问题、增长率问题 解决问题的步骤: 审、设、列、解、答
探究一:循环问题
1、“山野风”文学社在学校举行的图书共享仪式上互
赠图书,每个同学都把自己的图书向本组其他成员赠送
设每轮传染中平均一个人传染了x个人, 则第一轮的传染源有 1 人,有 x 人被传染,
第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
1 x 传染源 1人
每人传染x人
传染了
传染后
结果
(x+1)人
传染源
每人传染x人
传染后
实际问题与一元二次方程传染问题

(3)在列一元二次方程解应用题时,由于所 得的根一般有两个,所以要检验这两个根是否 符合实际问题的要求.
谢谢老师们和 同学们
总结归纳:
a(1x)n A
轮每人传染的人数,n 表示传的天 数或轮数,A 表示最终的总人数
学以致用
某种电脑病毒传播非常快, 某种细菌,一个细菌经过 如果一电脑被感染,经 两轮繁殖后,共有256个 过两轮感染后就会有81台 细菌,每轮繁殖中平均一 电脑被感染.请你用学过 个细菌繁殖了多少个细菌? 的知识分析,每轮感染中 平均一台电脑会感染几台 电脑?若病毒得不到有效 控制,3轮感染后,被感 染的电脑会不会超过700 台?《高效课堂 第29页》
变式:甲型H1N1流感病毒的传染性极强,某地因a人患了
甲型H1N1流感没有及时隔离治疗,每天平均一个人传染
了b人,第一轮后,传染了ab( )人,共a有+a(b
)
人患病,第二轮后,传染(了a+(ab)b
)人,
共有((a+ab)+ (a+ab)b
)人患病。整理得a:1b
2
a 表示传染之前的人数,x 表示每
了x人。
练习:甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感 没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天 平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这 个地区一共将会有多少人患甲型H1N1流感?
分析:第一天人数+第二天人数=9,
1xx(1x)9
第二轮的传染源
1
第二轮:这些人中的每个人都又传染了x人,第二轮共传染______人
x(x+1)
第二轮后共有_________1_+__x_+__x_(_x_+__1人)=患(x了+流1)感2 .
21.3实际问题与一元二次方程1传播问题(教案)

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元二次方程1——传播问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过信息或病毒传播的情况?”(如微信朋友圈的谣言传播、流感病毒传播等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索传播问题的奥秘。
4.培养学生数据分析素养,使学生能够通过对传播问题的研究,理解数据背后的规律,为现实生活中的类似问题提供解决思路。
三、教学难点与重点
1.教学重点
(1)理解传播问题背景,能从实际问题中抽象出一元二次方程。
-通过案例分析,让学生明确如何从传播问题中提炼出一元二次方程,掌握方程构建的方法。
-强调一元二次方程在解决传播问题中的应用,如病毒传播、信息传播等。
3.通过传播问题,掌握解决实际问题时如何列出相关的一元二次方程,并求解。
4.分析以下案例:
(1)病毒传播问题:在某次疫情中,病毒通过接触传播,假设每个感染者在接触一个人后,有50%的概率将病毒传播给对方。如果已知病毒最初由一个人传播,求经过5次传播后,预计有多少人可能感染病毒。
(2)信息传播问题:在社交网络上,一个热门话题最初由一名用户发布,如果每个阅读该话题的用户有20%的概率转发,求经过3次转发后,预计有多少人看到该话题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
实际问题与一元二次方程题型知识点归纳总结

实际问题与一元二次方程题型知识点归纳总结典型题型归纳1、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?2、平均增长率问题:M=a(1±x)n, n为增长或降低次数 ,M为最后产量,a为基数,x为平均增长率或降低率例1、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
练习:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.问每次倒出溶液的升数?3、商品销售问题例1、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?练习:1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程(1)(探究案)
1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(
分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
解:
【合作探究】
问题1、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
【题型练习】2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【题型练习】
1、参加一次足球联赛的每两个队之间都进行两次比赛(双循环比赛),共要比赛90场,共有多少个队参加比赛?
2、一个小组若干人,新年互送贺卡,若全
组共送贺卡72张,则这个小组共?
3、某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人?
【轻松检测】
1、生物兴趣小组的学生,将自己收集的标
本向本组其他成员各赠送一件,全组共互赠
了182件,生物兴趣小组共有多少人?
2、我们知道传销能扰乱一个地方的正常的
经济秩序,是国家法律明令禁止的,如图是
某传销公司的发展模式,该传销模式经两轮
发展后,共有传销人员111名,问该传销公
司要求每人发展多少名下家?
3、某种电脑病毒传播非常快,如果一台电
脑被感染,经过两轮感染后就会有81台电
脑被感染,请你用学过的知识分析,每轮感
染中平均一台电脑会感染几台电脑?若病
毒得不到有效控制,3轮感染后,被感染的
电脑会不会超过700台》
4、参加一次商品交易会的每两家公司之间
都签订一份合同,所有的公司共签订了45
份合同,共有多少家公司参加商品交易会?
头目
下家下家
下家下家下家下家。