作业用一元二次方程解决传播问题

合集下载

人教版九年级上册数学实际问题与一元二次方程——传播问题应用题

人教版九年级上册数学实际问题与一元二次方程——传播问题应用题

人教版九年级上册数学21.3实际问题与一元二次方程——传播问题应用题1.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.(1)求每轮传染中平均每个人传染了几个健康的人;(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?2.某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人:(1)第一轮后患病的人数为;(用含x的代数式表示)(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.3.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为多少?4.在一次象棋比赛中,实行单循环制(即每个选手都与其他选手比赛一局),每局赢者记2分,输者记0分,如果平局,两个选手各记1分.今有4个同学统计了比赛中全部选手的得分总和,结果分别为2005分、2004分、2070分、2008分,经核实只有一位同学统计无误,试计算这次比赛中共有多少名选手参赛.5.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?6.我们知道,“传销”能扰乱一个地区正常的经济秩序,是国家法律明令禁止的.你了解传销吗?某非法传销组织由头目一人可发展若干数目的下线成员,每个下线成员再发展同样数目的下线成员,经过两轮发展后,非法传销组织成员共有421人.问,在每轮发展中平均一个成员发展下线多少人?7.元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?8.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?9.张老师自编了一套健美操,他先教会一些同学,然后让学会健美操的同学每人教会相同的人数,每人每轮教会的人数相同,经过两轮,全班57人(含张老师)都能做这套健美操,请问每轮中每人必须教会几人?10.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?11.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?12.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?13.组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?14.春季是流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出多少小分支?16.有一种传染性疾病,蔓延速度极快.据统计,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?17.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.某象棋比赛,每名选手都要与其他选手比赛一局,每局胜者记2分,负者记0分,和棋各记1分.有四位观众统计了比赛中全部选手得分总数,分别是2017,2070,2018,2078,经核实,只有一位观众统计准确,则这次比赛的选手共有多少名?19.参加足球联赛的每两队之间都进行两场比赛.共要比赛90场.共有多少个队参加比赛?20.元旦来临,全班每一个同学都将自己制作的贺年卡向其他同学各送一张以表示纪念,如果全班有x名学生,则送了多少张贺年卡?(用含x的代数式表示)。

人教版九年级数学上册作业设计 21.3 实际问题与一元二次方程 第1课时 用一元二次方程解决传播问题

人教版九年级数学上册作业设计 21.3 实际问题与一元二次方程  第1课时 用一元二次方程解决传播问题

4.某种植物的主干长出若干数目的支干,每个支干又长出同样 数目的小分支,主干、支干、小分支的总数是111,求每个支干长 出多少个小分支.
解:设每个支干长出x个小分支,根据题意,得1+x+x2=111. 解得x1=10,x2=-11(舍去).答:每个支干长出10个小分支
知识点 2:握手问题和数字问题 5.在某次聚会上,每两人都握了一次手,所有人共握手 210
14.一个两位数,十位上的数字比个位上的数字的平方小2,如 果把这个数的个位数字与十位数字交换,那么所得到的两位数比原 来的数小36,求原来的两位数.
解:设原来两位数的个位数字是x,则[10(x2-2)+x]-(10x+ x2-2)=36,解得x1=3,x2=-2(不合题意,舍去),x2-2=7.所以 原来的两位数为73
练习2:一个两位数等于它个位数的平方,且个位数比十位数大 3,则这个两位数是( C )
A.25 B.36 C.25或36 D.-25或-36
知识点 1:倍数传播问题 1.(2017·安定月考)某班同学毕业时都将自己的照片向全班其 他同学各送一张表示留念,全班共送 1 980 张照片,如果全班有 x 名同学,根据题意,列出方程为( B ) A.x(x+1)=1 980 B.x(x-1)=1 980 C.12x(x+1)=1 980 D.12x(x-1)=1 980
9.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条 航线,一共开辟了15条航线,则这个航空公司共有飞机场( C )
A.4个 B.5个 C.6个 D.7个
10.如图是某月的日历表,在此日历表上可以用一个矩形圈出 3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21, 22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的 和为( D )

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学 杨爱青

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学 杨爱青

《用一元二次方程解决“传播问题”》教学设计北京市中关村中学杨爱青一、内容和内容解析1.内容用一元二次方程解决“传播问题”.2.内容解析许多现实问题的数量关系都可以抽象为一元二次方程,与前面所学的方程比较,一元二次方程有更广泛的应用,是初中学生体会和理解数学与外部世界联系的重要载体.探究1以流感为问题背景,讨论按一定传播速度逐步传播的问题.这类问题在现实世界中有许多原型,例如细胞分裂、信息传播、传染病扩散等.探究1讨论的是两轮的传播,它可以用一元二次方程作为数学模型,相比前面出现的实际问题,它在分析数量关系方面更复杂些,问题情境与实际情况也更接近.二、目标和目标解析1.教学目标(1)通过解决“传播问题”,体验建立方程模型解决问题的一般过程;(2)体会一元二次方程的数学模型作用,增强应用意识和应用能力.2.目标解析(1)理解“传播问题”的问题背景,能找出可以作为列方程依据的主要等量关系,并根据它列出一元二次方程,正确求解所列方程,能检验方程的解是否符合实际意义,得到合乎实际的结果;(2)认识到许多现实问题的数量关系都可以抽象为一元二次方程,通过解“传播问题”的经历,积累问题背景知识,并会把与“传播问题”类似的实际意义问题数学化、方程化.三、教学问题诊断分析本节课是在由实际问题列出一元二次方程,研究其解法的基础上,进一步以“探究”的形式更深入地讨论如何用一元二次方程解决“传播问题”.由于“传播问题”的背景和表达都比较贴近实际,综合性较强,学生缺乏对问题系统、全面的认识,会出现各种认识和理解上的错误,所以在探究过程中正确找到数量关系,建立一元二次方程是主要难点.为此,本节课实施以下三个步骤:(1)由简单问题入手,让学生独立思考然后解答问题,唤起学生对问题的原有认知;(2)针对学生中出现的不同答案(有错有对)再次思考、讨论,形成对问题的初步认识;(3)教师在学生认识的基础上引导学生数学化地解决问题,使学生进一步加深对问题的理解,并独立解决相关问题.四、教学过程设计1.问题引入同学们听说过“一传十,十传百”这句话吗,它出自哪里,本意是什么?“一传十,十传百”语出宋陶谷《清异录·丧葬义疾》:“一传十,十传百,展转无穷,故号义疾.”意思是说,“一个人传染给十个人,十个人传染给一百个人,辗转传染,越传染越多,没有休止,所以这种病叫传染病”.后来人们活用此语,指“言语消息辗转相传,越传越广”.2.对问题的初步认识问题1如果把“一传十”称为第一轮传染,那么两轮之后总共有多少人被传染?师生活动:这里,让学生独立思考,调动学生对“传播问题”的原有认知,通过计算得到答案(121人),也有可能出现错误答案(111人).【设计意图】设置这个简单的算术问题,是想了解学生对“传播问题”了解多少,程度如何,会出现哪些问题.问题2你是怎么得到答案的?师生活动:这里给学生充分表达、展示的机会,引导学生自我反思,借鉴其他同学的观点,再表达,以澄清问题,修正错误,明确正确答案.【设计意图】设置这个问题,是想针对问题1中学生出现的各种答案,通过讨论交流,引导学生自我反思,然后再交流,达到加深对问题理解的目的.3.对问题的深入探究给出课本第19页的探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?问题3若设每轮传染中平均一个人传染了个人,第一轮后共有人患了流感;第二轮传染中,这些人又传染了人,第二轮后共有人患了流感(用含的代数式表示).师生活动:教师提出问题,学生思考、回答.【设计意图】通过回答问题,进一步明确“传播问题”的基本数量关系,同时考查学生用代数式表示未知量的能力.问题4你能得到探究1的答案吗?如何得到的?师生活动:学生依据已知条件列方程,解方程,检验方程的解是否符合实际意义,进而得到探究1的答案.教师巡视,及时发现学生解答中的问题,适时引导.【设计意图】让学生经历建模解题的完整过程.问题5如果按照这样的传染速度,三轮传染后有多少人患流感?师生活动学生独立思考,列出算式,得到答案人.【设计意图】把“传播问题”推广到两轮以上,其基本数量关系不变.通过这个问题的解决,进一步加深学生对“传播问题”的基本数量关系的认识.4.小结问题6通过这节课,你对类似的“传播问题”中的数量关系有什么新的认识?师生活动:请学生回顾“传播问题”的探究过程,并回答问题:若设每轮传染中平均一个人传染了个人,第一轮的传染源有人.第一轮有人被传染,共有人患流感;第二轮传染中,这些人又传染了人,第二轮后共有人患了流感;第三轮传染中,这些人又传染了人,第三轮后共有人患了流感;……第n轮后共有人患了流感.【设计意图】设置这个问题,是想在得到探究1的正确解答后,更进一步,引导学生进行题后反思,使学生加深对“传播问题”的认识,感受与“增长率”相关的数学模型中的数量关系.5.巩固应用利用我们在“探究1”中学会的方法,探究下面的问题:某种传染病,传播速度极快,通常情况下,每天一个人会传染给若干人.(1)现有一人患病,开始两天共有人患病,求一人传染给几个人?(2)两天后人们有所察觉,这样平均一人一天以少传染人的速度递减,求再经过两天后,共有几人患病?师生活动:教师提出问题,学生思考、回答.选学生展示解答过程,教师点评.【设计意图】在完成“探究1”之后,通过类似问题让学生刚刚获取的经验得到巩固和深化,进一步熟悉解决问题的方法和过程,从而提高分析问题和解决问题的能力.附:解题过程(1)设每天一人传染了人.列方程,得.解方程,得(不符合题意,舍去).答:每天一人传染了14人.(2).答:共有人患病.6.布置作业教科书习题21.3第4,6题.五、目标检测设计甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?【设计意图】考查学生对“传播问题”中的基本数量关系的掌握情况及利用一元二次方程解决综合性问题的能力.。

巧用一元二次方程,助力疫情防控

巧用一元二次方程,助力疫情防控

巧用一元二次方程,助力疫情防控作者:***来源:《初中生世界·九年级》2022年第09期一元二次方程存在于我们生活的方方面面,以新冠肺炎疫情为背景的问题就有多种题型。

下面,我们通过三个问题,一起来看一下如何用一元二次方程解决此类问题。

一、传播问题例1 新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后可能有169人患新冠肺炎(假设每轮传染的人数相同),则每轮传染中平均每个人传染了多少人?【分析】设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,那么一轮传染结束后应该有(x+1)人携带病毒,第二轮传染中有(x+1)x人被感染,根据经过两轮传染后可能有169人患新冠肺炎,即可得数量关系:原本携带病毒人数+第一次传染人数+第二次传染人数=总感染人数。

解:设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,第二轮传染中有(x+1)x人被感染。

根据题意,得1+x+(x+1)x=169,即(1+x)2=169。

解这个方程,得x1=12,x2=-14(不合题意,舍去)。

答:每轮传染中平均每个人传染了12人。

【点评】用一元二次方程解决实际问题,主要是找准数量关系,而本题的关键点是一轮传染结束后应该有(x+1)人携带病毒,总的感染人数中原本携带病毒的人数不能忘記,然后才能正确列出一元二次方程。

本题中得出来的两个实数根需要进行检验,检查是否符合实际情况,对于不符合题意的答案,我们要舍去。

二、增长(降低)率问题例2 为了有效抗击新冠肺炎疫情,根据国家的政策,某市疫情防控应急指挥部要求全市符合新冠疫苗接种的人群应接尽接,为落实这一要求,某街道统计,7月份共有2500人接种,9月份增加到3600人,如果每月接种人数的增长率相同,求每月接种人数的平均增长率?【分析】设每月接种人数的平均增长率为x,首先有这样的数量关系:变化前的量×(1+平均增长率)=变化后的量。

一元二次方程应用题(传播问题)

一元二次方程应用题(传播问题)

一元二次方程的定义和公式
定义
一元二次方程是二次多项式方程,其中只有一个未知数,并且最高次数为2。
公式
一元二次方程的一般形式为ax²+ bx + c = 0,其中a、b和c是已知常数。
应用一元二次方程解决传播问题的基 本步骤
1
问题分析
首先要明确传播问题的具体情况和需论和思考
一元二次方程是解决传播问题的有力工具,通过合理的建模和求解,我们可 以优化传播策略,增强信息传递的效果,并提升团队的合作能力。
问题讨论和答疑
如果您对一元二次方程在传播问题中的应用有任何疑问或想要进一步讨论,欢迎在本节中提出。
根据已知条件,建立相关的一元二次方程,将问题转化为数学模型。
3
求解方程
通过求解一元二次方程,得到传播问题的具体解答。
通过实例演示一元二次方程在传播问 题中的应用
企业演讲
使用一元二次方程可以帮助 我们分析演讲的影响力和传 播效果,优化表达方式,提 高演讲的成功率。
社交媒体营销
一元二次方程可以帮助我们 评估社交媒体广告的投放效 果,优化广告策略,提高市 场传播的成功率。
团队头脑风暴
通过应用一元二次方程,我 们可以量化和评估团队头脑 风暴的效果,优化团队协作, 提高创新能力。
一元二次方程在传播问题中的局限性 和注意事项
1 局限性
2 注意事项
一元二次方程只适用于特定的传播问题, 对于复杂的情况可能不适用。
在应用一元二次方程解决传播问题时, 需要准确收集和分析数据,并合理假设 变量之间的关系。
一元二次方程应用题(传 播问题)
传播问题是日常生活、社交媒体和企业环境中常见的挑战。了解一元二次方 程的应用可以帮助我们解决这些问题,并提高我们的沟通和协作能力。

用一元二次方程解决传播问题含答案

用一元二次方程解决传播问题含答案

用一元二次方程解决传播问题基础题知识点1传播问题1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后会有81台电脑被感染,每轮感染中平均一台电脑会感染几台电脑?设每轮感染中平均一台电脑会感染x台电脑,则x满足的方程是(B)A.1+x2=81 B.(1+x)2=81C.1+x+x2=81 D.1+x+(1+x)2=81 2.(大同一中期末)有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为(A) A.1+x+x(1+x)=100B.x(1+x)=100C.1+x+x2=100D.x2=1003.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支?解:设每个支干长出x个小分支,根据题意,得1+x+x2=111.解得x1=10,x2=-11(舍去).答:每个支干长出10个小分支.知识点2 握手问题4.新年里,一个小组有若干人,若每人给小组的其他成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为(C)A .7B .8C .9D .105.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空.解:设应邀请x 支球队参赛,则每队共打(x -1)场比赛,比赛总场数用代数式表示为12x(x -1). 根据题意,可列出方程12x(x -1)=28.整理,得x 2-x -56=0.解得x 1=8,x 2=-7.合乎实际意义的解为x =8.答:应邀请8支球队参赛.6.一条直线上有n 个点,共形成了45条线段,求n 的值.解:由题意,得12n(n -1)=45.解得n 1=10,n 2=-9(舍去).答:n 等于10.知识点3数字问题7.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是98.8.若两个连续整数的积是56,则它们的和是±15.9.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?解:设这个两位数的个位数字为x,则十位数字为(x-3),由题意,得x2=10(x-3)+x.解得x1=6,x2=5.当x=6时,x-3=3;当x=5时,x-3=2.答:这个两位数是36或25.中档题10.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场(B)A.4个B.5个C.6个D.7个11.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?解:设有x 家公司出席了这次交易会,根据题意,得12x(x -1)=78.解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.12.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?解:设最小数为x ,则最大数为x +16,根据题意,得x(x +16)=192. 解得x 1=8,x 2=-24(舍去).故这9个数为8,9,10,15,16,17,22,23,24.所以这9个数的和为8+9+10+15+16+17+22+23+24=144.13.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x人,则1+x+x(x+1)=64.解得x1=7,x2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.综合题14.(1)6位新同学参加夏令营,大家彼此握手,互相介绍自己,这6位同学共握手多少次?小莉是这样思考的:每一位同学要与其他5位同学握手5次,6位同学握手5×6=30次,但每两位同学握手2次,因此这6位同学共握手15次.依此类推,12位同学彼此握手,共握手66次;(2)我们经常会遇到与上面类似的问题,如:2条直线相交,最多只有1个交点;3条直线相交,最多有3个交点;…;求20条直线相交,最多有多少个交点?(3)在上述问题中,分别把人、线看成是研究对象,两人握手、两线相交是研究对象间的一种关系,要求的握手总次数、最多交点数就是求所有对象间的不同关系总数.它们都是满足一种相同的模型.请结合你学过的数学知识和生活经验,编制一个符合上述模型的问题;(4)请运用解决上述问题的思想方法,探究一个多边形的对角线的条数可能为20条吗?一个多边形的对角线的条数可能为28条吗? 解:(2)每一条直线最多与其他19条直线相交,20条直线相交有20×19=380个交点,但每两条直线相交2次,因此这20条直线相交,最多有20×192=190个交点.(3)答案不唯一,如:现有12个乒乓球队参加乒乓球循环赛(每个队都要与其他队比赛1场),共需比赛多少场?(4)若这个n 边形的对角线条数为20条,则有n (n -3)2=20. 解得n 1=8,n 2=-5(舍去).故一个多边形的对角线的条数可能是20条.若这个n 边形的对角线条数为28条,则有n (n -3)2=28. 整理,得n 2-3n -56=0.因为Δ=32+4×1×56=233,所以n =3±2332.因为233为无理数,而对角线的条数是有理数,所以不存在一个多边形的对角线的条数为28条.。

一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)

一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)

一元二次方程应用题分类汇总一、传播问题:1、 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里, 到2005年已增至144平方公里。

请问:2003至2005年沙化土地的平均增长率为多少?三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。

一元二次方程应用题传播问题

一元二次方程应用题传播问题
通过深入研究一元二次方程在传播问题中的应用,我们可以更加高效地解决现实生活中的传播挑战,并探索更 多创新的传播方法。
一元二次方程应用题传播 问题
本次演讲将探讨一元二次方程的应用,并以传播问题为例,为您呈现一种新 的思维方式。让我们一起来看看它如何应用于现实世界中的传播挑战。
一元二次方程的定义和公式
一元二次方程是一个重要的数学概念,形式为ax^2 + bx + c = 0,其中a、b、 c为常数。它可以帮助我们解决许多实际问题,包括传播问题。
根据调研结果制定传播计划和策略。
3
执行计划
按照计划执行传播活动并监控效果。
应用题解题技巧
找出关键信息
分析问题中的关键信息,有 助于建立方程。
建立方程
将问题转化为数学方程,并 解方程得到答案。
验证答案
通过将答案代入原问题检验 解的准确性。
实际案例分析
营销活动
社交媒体
演讲活动
我们将分析一次成功的营销活动, 揭示其中的传播策略。
我们将探索社交媒体上的传播影 响力,了解其对信息传播的影响。
我们将研究一次影响力强大的演 讲活动,剖析其传播机制。
影响传播的因素
1 媒体环境
媒体的发展和使用方式对 传播的影响。
2 受众特点
受众的特点和行为习惯对 传播结果产生重要影响。
3 传播技巧
一些技巧和策略的基本要素
1 目标群体
了解您要传播到的特定目 标群体是解决传播问题的 关键。
2 信息内容
明确传播的具体信息,目 标明确的信息内容更容易 传递给受众。
3 传播渠道
选择适合目标群体的传播 渠道可以最大限度地提高 传播效果和影响力。
解决传播问题的步骤与方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业用一元二次方程解
决传播问题
TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】
实际问题与一元二次方程
用一元二次方程解决传播问题
基础题
知识点1 传播问题
1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )
A.8人 B.9人
C.10人 D.11人
2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )
A.10只 B.11只
C.12只 D.13只
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支.
知识点2 握手问题
4.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己
的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x-1)=210
C.2x(x-1)=210 D.1
2
x(x-1)=210
5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是( )
A.x(x-1)=10 B.x(x-1)
2
=10
C.x(x+1)=10 D.x(x+1)
2
=10
6.参加一次足球联赛的每两个队之间都进行两场比赛,若共要比赛110场,则共有________个队参加比赛( )
A.8 B.9
C.10 D.11
7.一条直线上有n个点,共形成了45条线段,求n的值.
知识点3 数字问题
8.两个连续偶数的和为6,积为8,则这两个连续偶数是________.
9.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是________.
10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?
中档题
11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )
A.4个 B.5个
C.6个 D.7个
12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?
13.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?
14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?
15.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
综合题
16.(1)n边形(n>3)其中一个顶点的对角线有________条;
(2)一个凸多边形共有14条对角线,它是几边形?
(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.。

相关文档
最新文档