(完整版)22.3实际问题与一元二次方程(传播问题)
人教版九年级上册数学 22.3 实际问题与二次函数 第1课时 传播问题与一元二次方程教案

22.3 实际问题与二次函数 第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究 探究点:最大面积问题 【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x =-x2+30x .自变量x 的取值范围是0<x <30.(2)S =-x 2+30x =-(x -15)2+225,∵a=-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件(2014·江苏淮安)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y =-16x2+2x .(3)设OB =m 米,则点A 的坐标为(m ,-16m2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m-3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.。
22.3.3实际问题与一元二次方程

∴此方程无实数解. ∴用20cm长的铁丝不能折成面积为30cm2的矩形.
3.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型 H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了 甲型H1N1流感,每天平均一个人传染了几人?如果按照这个 传染速度,再经过5天的传染后,这个地区一共将会有多少人 患甲型H1N1流感?
22.3.2实际问题与一元二次方程
商品销售问题
问题:
1. 某商场礼品柜台春节期间购进大量贺年片,一种贺年片平均 每天能售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取 适当的降价措施.调查表明:当销售价每降价0.1元时,其销售量就将 多售出100张.商场要想平均每天盈利达到120元,每张贺年片应降价 多少元? ①销售价在谁的基础上降价?销售量在谁的基础上多?
x 300 x 22500 0
2
解之,得
x1 x2 150 2900-x 2750
所以,每台冰箱的定价应为2750元
学以致用:
1.百佳超市将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品每涨价1元,其销售量就要减少10个,为了 赚8000元利润,售价应定为多少,这时应进货为多少个? 分析:设商品单价为(50+x)元,则每个商品得利润 [(50+x) —40] (500 —10 x) 元,销售量为 个,
相等关系为: 总利润=每件商品的利润×件数 列方程为: (500 —10 x)·[(50+x) —40]=8000
解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500 —10 x)个, 2 则(500 —10 x)·[(50+x) —40]=8000,整理得 x 40x 300 0,
22.3-实际问题与一元二次方程-课件2

即 32 x20 x 540.
化简得:x2 52x 100 0, x1 50, x2 2
再往下的计算、格式书写与解法1相同。
第16页,共23页。
例4.某林场计划修一条长750m,断面为 等腰梯形的渠道,断面面积为1.6m2, 上口
宽比渠深多2m,渠底比渠深多0.4m. (1)渠道的上口宽与渠底宽各是多少?
例. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为
S米2,
(1)求S与x的关系式;(2)如果要围成面积为45米2的花 圃,AB的长是多少米?
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
这里a=1,b=-10,c=30,
b2 4ac (10)2 4130 20 0
∴此方程无解.
答:用20cm长的铁丝不能折成面积为30cm2的矩形.
第4页,共23页。
3.如图,是长方形鸡场平面示意图,一边靠墙, 另外三面用竹篱笆围成,若竹篱笆总长为35m,所 围的面积为150m2,则此长方形鸡场的长、宽分 别为_______.
第1页,共23页。
上一节,我们学习了解决“流感传
播问题和平均增长(下降)率问题”, 现在,我们要学习解决“面积、体 积问题。
第2页,共23页。
例题解析
1.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该
22.3实际问题与一元二次方程1(传播问题)

一元二次方程
概念
解法
应用
“一元”的; “二次”的; “整式”方程
1.直接开方法; 2.配方法; 3.公式法; 4.因式分解法。
1.会列一元二次 方程; 2.建立数学模型; 3.一般步骤。
复习回顾 列方程解应用题的一般步骤?
(1)审 清题意和题目中的已知数、未知数。
(2)设 未知数(单位名称); (3)列 出方程;
(4)解 这个方程,求出未知数的值;
(5)验 ①值是否是所列方程的解,
②值是否符合实际意义; (6)答 题完整(单位名称)。
2.若一人患流感每轮能传染5人, 6 则第一轮过后共有_____ 人患了流问题:有一人患了流感,经过两轮传染后共有121人 患了流感,每轮传染中平均一个人传染了几个人?
3. 参加中秋晚会的每两个人都握了一次手,所有 人共握手10次,设有X人参加聚会,则列方程为 ( )
1.列一元二次方程解应用题的步骤,即
审、设、列、解、验、答
2.温馨提示: 在列一元二次方程解应用题时,由于 所得的根一般有两个,所以要检验这 两个根是否符合实际问题的要求.
作业 布置 第21页复习巩固
分析:(1)题目中的已知量和未知量分别是什么? (2)若设每轮传染中平均一个人传染x个人,那么 x 人;第一轮传染后, ①患流感的这个人在第一轮传染中传染了___ x+1 共有 人患了流感. ②在第二轮传染中,传染源是 x+1 人,这些人中每一个人又传 染了 x 人,那么第二轮传染了 (x+1)x 人,第二轮传染后, 共有 1+x+(1+x)x 人患流感. (3)题目中的等量关系是什么? 解:设每轮传染中平均一个人传染了x人,根据题意得方程: 1+x+(1+x)x=121. 解方程得 x1=10 , x2=-12. 因为传染人数不可能为负数,所以x=-12不合题意舍去. 所以 x=10. 答:每轮传染中平均一个人传染了10人.
《实际问题与一元二次方程》(传播、增长率问题问题)课件

探究2:某种植物的主干长出若干数目的支干, 每个支干又长出同样数目的小分支,主干、 支干、小分支的总数是111.求每个支干长出 多少个小分支.设:每个支干长出x个小分支
每两人赠两次
1个人
赠送(x-1)人
共计 x(x-1)图书
探究一:循环问题
2、在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参
加这次聚会,则列出方程正确的是( B )
A.x(x-1)=10
B. xx 1 10
C. x(x + 1)=10
D. xx2 1 10
2
1个人
3、某商品经过连续两次降价,销售单价由原来的125元降 到80元,则平均每次降价的百分率为____2_0_%__.
小结
本节课我们学习了几种问题: 传播问题、增长率问题 解决问题的步骤: 审、设、列、解、答
探究一:循环问题
1、“山野风”文学社在学校举行的图书共享仪式上互
赠图书,每个同学都把自己的图书向本组其他成员赠送
设每轮传染中平均一个人传染了x个人, 则第一轮的传染源有 1 人,有 x 人被传染,
第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
1 x 传染源 1人
每人传染x人
传染了
传染后
结果
(x+1)人
传染源
每人传染x人
传染后
21.3 实际问题与一元二次方程(第3课时) 人教版数学九年级上册同步习题(含答案)

.
答:2 秒后△PBQ 的面积等于 8cm2. 3、解:(1)设每件衬衫应降价 元.
则依题意,得:(40- )(20+2 )=1200,
整理,得
,解得:
.
∴若商场平均每天赢利 1200 元,每件衬衫应降价 10 元或 20 元. (2)设每件衬衫降价 元时,商场平均每天赢利最多为 y,
则 y=(40- )(20+2 )=
◆典例分析
一辆汽车以 20m/s 的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行 25m 后 停车. (1)从刹车到停车用了多少时间? (2)从刹车到停车平均每秒车速减少多少? (3)刹车后汽车滑行到 15m 时约用了多少时间(精确到 0.1s)? 分析:本题涉及到物理学中的运动知识,具体分析如下: (1)刚刹车时时速还是 20m/s,以后逐渐减少,停车时时速为 0.因为刹车以后,其速度
∴ (20-4 )=15,整理得:
,
解方程:得 =
,∴ ≈4.08(不合题意,舍去), ≈0.9(s).
∴刹车后汽车滑行到 15m 时约用了 0.9s.
◆课下作业
●拓展提高
1、为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的
人均约为
提高到
若每年的年增长率相同,则年增长率为( )
Q
AP
B
3、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢
利
40 元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发
现,如果每件衬衫每降价一元,商场平均每天可多售出 2 件.
(1)若商场平均每天赢利 1200 元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
22.3实际问题与一元二次方程(销售问题)

2
x 30 0 .5
x 1 0 .5 = 2 7 5 0 .5
整理得: 2 x 1 1 x 5 = 0 解得:
x1 = 5 , x 2 = 0 .5
答:当每间商铺的年租金定为15万元或10.5万元时,该公司的年收益为 275 万元.
解:设每件应涨价 x 元,依题意得
5 500 - 10 x =8000
x 40x 300= 0
x1 = 1 0 , x2 = 30
当x=10时,进货量为: 5 0 0 -1 0 x = 5 0 0 -1 0 1 0 = 4 0 0(个) 当x=30时,进货量为: 500-10x= 500 -1 0 30 = 20 0(个)
40 - x 20 2 x =1200
整理得: 解得:
x 30x 200= 0
x1 = 1 0 , x2 = 20
2
为了减少库存,则降价越大,售出越多,库存就越少.故应降价20元.
答:要盈利1200元的利润,每件应降价20元.
练习 2
某公司投资新建了一商场,共有商铺 30 间.据预测,当每间 的年租金定为 10 万元时,可全部租出.每间的年租金每增加5000 元,少租出商铺 1 间.该公司要为租出的商铺每间每年交各种费用 1 万元,未租出的商铺每间每年交各种费用 5000 元. (1)当每间商铺的年租金定为 13 万元时,能租出多少间? (2)当每间商铺的年租金定为多少万元时,该公司的年收益为 275 万元? (收益=租金-各种费用) 解:(1)5000元=0.5万元 少租的间数为:(13-10)÷0.5=6(间) 租出的间数为: 30-6=24(间) (2)设每间的年租金增加 x 万元,依题意得
22.3实际问题与一元二次方程

探究2
两年前生产1吨甲种药品的成本是5000元,生 产1吨乙种药品的成本是6000元,随着生产技 术的进步,现在生产 1吨甲种药品的成本是 3000元,生产1吨乙种药品的成本是3600元, 哪种药品成本的年平均下降率较大?
自学教材46页探究2,按要求回答下列问题,自学 后能讲解本问题。(6分钟) 1、药品成本年平均下降额与年平均下降率有什么 区别和联系? 2、列方程求出乙种药品成本的年平均下降率。 3、思考:经过计算,你能得出什么结论?成本下降 额较大的药品,它的成本下降率一定也较大吗 ?应 怎样全面地比较对象的变化状况? 4、你能总结出有关增长率和降低率的有关数量关 系是吗?
B.500(1+x)2=720 D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两 年的投资总额为8万元,若设该校今明两年在实验器 材投资上的平均增长率是x,则可列方程为
*3.美化城市,改善人们的居住环境 已成为城市建设的一项重要内容。某 城市近几年来通过拆迁旧房,植草, 栽树,修公园等措施,使城区绿地面 积不断增加(如图所示)。(1)根 据图中所提供的信息回答下列问题: 2001年底的绿地面积为 60 。 公顷,比2000年底增了 4 。 公顷;在1999年,2000年,2001年这 三年中,绿地面积增加最多的是 ____________年; 2000 (2)为满足城市发展的需要,计划 到2003年底使城区绿地面积达到72.6 公顷,试求2002年,2003年两年绿地 面积的年平均增长率。
则:(1)第一年的本息和为:2000+2000X(1-20%)x 整理为:2000+1600x;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)审题,分析题意. 找出已知量和未知量,弄清它们之间的数量 关系; (2)设未知数. 一般采取直接设法,有的要间接设; (3)寻找数量关系,列出方程. 要注意方程两边 的数量相等,方 程两边的代数式的单位相同; (4)选择合适的方法解方程. (5)检验
因为一元二次方程的解有可能不符合题意,如:线段的长度不 能为负数,降低率不能大于100%.因此,解出方程的根后,一定 要进行检验 (6)写出答语.
解:设每轮感染中平均一台电脑会感染x台电脑,依题意得:
1+x+x(1+x)=81 解得: x1=8 , x2=-9 (不合题意,舍去)
第3轮感染后总电脑台数为:81+81×8=729 >700 答:每轮发送短信一个人要向8个人发送该短信;3轮感染后,被感染的电
脑会超过700台.
第二轮后共有 1 x x1 x 人患了流感.
列方程 1+x+x(1+x)=121
解方程,得 x1=_____1_0_____, x2=_____-__1_2______.
平均一个人传染了____1_0_____个人.
如果按照这样的传染速度,三轮传染后有多少人患流感?
三轮传染的总人数为: 121+121×10 =1331(人)
思考:四轮转染后,有多少人患流感?
1331+1331×10 =14641(人)
有一人利用手机发短信,获得信息的人也按他的发送 人数发送该短信,经过两轮短信的发送,共有90人手机上 获得同一条信息。则每轮发送短信一个人要向多少人发送 该短信?
解:设每轮发送短信一个人要向x个人发送该短信,依题意得:
1+x+x(1+x)=100 解得: x1=9 , x2=-11 (不合题意,舍去)
探 究1
有一个人患了流感,经过两轮传染后共有121人患 了流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人. 开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个
人,用代数式表示,第一轮后共有 x 1 人患了流感;
第二轮传染中,这些人中的每个人又传染了x个人,用代数式示,
…… ……
小 分
……
小 分
小 分
支
支
支
x
x
支干
……
x
支干
答:每个支干长出9个小分支.
主
1干
(2009广东中考)某种电脑病毒传播非常快,如果一台电脑 被感染,经过两轮感染后就会有81台电脑被感染.请你用学 过的知识分析,每轮感染中平均一台电脑会感染几台电脑? 若病毒得不到有效控制,3轮感染后,被感染的电脑会不会 超过700台?
答:每轮发送短信一个人要向9个人发送该短信.
习题22.3 4.某种植物的主干长出若干数目的支干,每个支干又长出同样
数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少
小分支? 解:设每个支干长出x个小分支,依题意得:
x2
1+x+x2=91
小
分
解得,Βιβλιοθήκη 支x1=9, x2=-10(不合题意,舍去)