传播问题与一元二次方程
巧用一元二次方程,助力疫情防控

巧用一元二次方程,助力疫情防控作者:***来源:《初中生世界·九年级》2022年第09期一元二次方程存在于我们生活的方方面面,以新冠肺炎疫情为背景的问题就有多种题型。
下面,我们通过三个问题,一起来看一下如何用一元二次方程解决此类问题。
一、传播问题例1 新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后可能有169人患新冠肺炎(假设每轮传染的人数相同),则每轮传染中平均每个人传染了多少人?【分析】设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,那么一轮传染结束后应该有(x+1)人携带病毒,第二轮传染中有(x+1)x人被感染,根据经过两轮传染后可能有169人患新冠肺炎,即可得数量关系:原本携带病毒人数+第一次传染人数+第二次传染人数=总感染人数。
解:设每轮传染中平均每个人传染了x人,则第一轮传染中有x人被感染,第二轮传染中有(x+1)x人被感染。
根据题意,得1+x+(x+1)x=169,即(1+x)2=169。
解这个方程,得x1=12,x2=-14(不合题意,舍去)。
答:每轮传染中平均每个人传染了12人。
【点评】用一元二次方程解决实际问题,主要是找准数量关系,而本题的关键点是一轮传染结束后应该有(x+1)人携带病毒,总的感染人数中原本携带病毒的人数不能忘記,然后才能正确列出一元二次方程。
本题中得出来的两个实数根需要进行检验,检查是否符合实际情况,对于不符合题意的答案,我们要舍去。
二、增长(降低)率问题例2 为了有效抗击新冠肺炎疫情,根据国家的政策,某市疫情防控应急指挥部要求全市符合新冠疫苗接种的人群应接尽接,为落实这一要求,某街道统计,7月份共有2500人接种,9月份增加到3600人,如果每月接种人数的增长率相同,求每月接种人数的平均增长率?【分析】设每月接种人数的平均增长率为x,首先有这样的数量关系:变化前的量×(1+平均增长率)=变化后的量。
传播问题与一元二次方程

21.3 实际问题与一元二次方程
第1课时 传播问题与一元二次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.会分析实际问题((重点) 2.正确分析问题(传播问题)中的数量关系 .(难点) 3.会找出实际问题(传播问题等)中的相等关系并建模 解决问题 .
的人数
人数
人数
(1+x)1
(1+x)2
(1+x)3
第1种做法 以1人为传染源 ,3轮传染后的人数是 : (1+x)3=(1+10) 3=1331 人.
第2种做法 以第2轮传染后的人数 121为传染源,传染一 次后就是 :121(1+x)=121(1+10)=1331 人.
思考:如果按这样的传染速度, n轮后传染后有多 少人患了流感?
解方程,得 x1= 10 , x2= -12 . (不合题意,舍去) 答:平均一个人传染了 ___1_0____个人. 注意:一元二次方程的解有可能不符合题意,所以 一定要进行检验 .
想一想:如果按照这样的传染速度 ,三轮传染后有 多少人患流感 ? 分析
第一轮传染后 第二轮传染后的 第三轮传染后的
传染源 新增患者人数 本轮结束患者总人数
第一轮 1
1?x=x
1+x
第二轮 1+x
(1+x)x
1+x+(1+x)x= (1+x)2
第三轮 (1+x)2 (1+x)2?x 第n轮
(1+x)2+(1+x)2?x= (1+x)3 (1+x)n
经过n轮传染后共有 (1+x)n 人患流感 .
一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)

一元二次方程应用题分类汇总一、传播问题:1、 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x的位置不要调换(2)解这类问题列出的方程一般用直接开平方法1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里, 到2005年已增至144平方公里。
请问:2003至2005年沙化土地的平均增长率为多少?三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。
人教版九年级数学上章节知识点深度解析 第1课时 传播问题与一元二次方程

由题意得 x2+(11- x )2=85,
解得 x1=2, x2=9.
当 x =2时,两位数为92,
当 x =9 时,两位数为29.
答:这个两位数为92或29.
1
2
3
4
5
谢谢观看
Thank you for watching!
第二十一章
一元二次方程
21.3 实际问题与一元二次方程
第1课时 传播问题与一元二次方程
要点归纳
知识要点 传播问题
1. 传播、裂变问题:若有一个人患了流感,设每
轮传染 x 人, n 轮传染后患流感的总人数为(1+x )n .
2. 握手次数问题: x 位同学为表示友好,他们相
(−)
互握手,则握手次数为
A. ( x +1)2=73
B. x +2 x +1=73
C. x ( x +1)=73
D. x2+ x +1=73
1
2
3
4
5
2. 教材P22习题T6变式某校九年级组织一次篮球比
赛,每两班之间都赛一场,共进行了55场比赛,则
该校九年级共有班级个数为(
A. 9
B. 10
C. 11ቤተ መጻሕፍቲ ባይዱ
D. 12
C
)
3. 小明去参加聚会,每两人都互相赠送一件礼物,
;若他们彼此通
信,则信件的总件数为 x ( x -1) .
3. 比赛场次问题: x 支足球队进行比赛,若赛
制为双循环制(每两队之间都赛两场),比赛的总
场次为
x ( x -1)
;若赛制为单循环制(每两
传播问题与一元二次方程公式(一)

传播问题与一元二次方程公式(一)一元二次方程公式介绍一元二次方程是数学中常见的方程形式,通常可表示为:ax^2 + bx + c = 0。
在传播问题中,一元二次方程公式可以用于计算传播过程中的变量之间的关系。
一元二次方程公式一元二次方程公式可以用于求解传播问题中的变量值。
以下是一元二次方程的公式:1.一元二次方程的一般解求根公式: x = (-b ±√(b^2 - 4ac)) / 2a2.一元二次方程的顶点坐标公式: x = -b / (2a) y =-Δ / (4a),其中Δ = b^2 - 4ac解释和例子下面通过举例来解释一元二次方程公式的应用:例子1:计算传播过程中的变量关系假设某种传播活动的传播速度为v,传播时间为t,传播距离为d,其中传播速度和传播时间满足一元二次方程关系。
已知传播速度为2m/s,传播时间为5s,求传播距离。
根据一元二次方程公式,我们可以得到: t = d / v d = vt代入已知值,可以计算得到: d = 2m/s * 5s = 10m因此,传播距离为10m。
例子2:求解一元二次方程的根解方程:x^2 + 4x + 4 = 0根据一元二次方程公式,我们可以得到: x = (-b ± √(b^2 -4ac)) / 2a代入已知值,可以计算得到: a = 1, b = 4, c = 4 x = (-4 ± √(4^2 - 414)) / (2*1) x = (-4 ± √(16 - 16)) / 2 x = (-4 ± √0) / 2 x = -2因此,该一元二次方程的解为x = -2。
总结一元二次方程公式是解决传播问题中变量关系的重要方法之一。
通过使用一元二次方程公式,我们可以计算出传播过程中各个变量之间的关系,并求解方程的根。
在实际应用中,我们可以根据具体的传播问题,灵活运用一元二次方程公式进行计算。
21.3实际问题与一元二次方程1传播问题(教案)

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元二次方程1——传播问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过信息或病毒传播的情况?”(如微信朋友圈的谣言传播、流感病毒传播等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索传播问题的奥秘。
4.培养学生数据分析素养,使学生能够通过对传播问题的研究,理解数据背后的规律,为现实生活中的类似问题提供解决思路。
三、教学难点与重点
1.教学重点
(1)理解传播问题背景,能从实际问题中抽象出一元二次方程。
-通过案例分析,让学生明确如何从传播问题中提炼出一元二次方程,掌握方程构建的方法。
-强调一元二次方程在解决传播问题中的应用,如病毒传播、信息传播等。
3.通过传播问题,掌握解决实际问题时如何列出相关的一元二次方程,并求解。
4.分析以下案例:
(1)病毒传播问题:在某次疫情中,病毒通过接触传播,假设每个感染者在接触一个人后,有50%的概率将病毒传播给对方。如果已知病毒最初由一个人传播,求经过5次传播后,预计有多少人可能感染病毒。
(2)信息传播问题:在社交网络上,一个热门话题最初由一名用户发布,如果每个阅读该话题的用户有20%的概率转发,求经过3次转发后,预计有多少人看到该话题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
传播问题与一元二次方程公式

传播问题与一元二次方程公式传播问题与一元二次方程公式一元二次方程公式的定义•一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b 和c是已知的常数,且a≠0。
•一元二次方程通常表示为的解式形式即 x = (-b ± √(b^2 - 4ac)) / (2a)。
传播问题中的一元二次方程公式•在某些传播问题中,可以使用一元二次方程的公式来分析和解决问题。
1. 投射物体的高度与时间的关系•当一个物体沿着竖直方向进行抛射时,可以使用一元二次方程来描述物体在不同时间下的高度。
•假设一个物体从地面上方的高度H0被抛射,并受到重力加速度g 的作用,那么它在时间t后的高度H可以用一元二次方程描述:H = H0 - ^2。
2. 声音的传播距离与时间的关系•声音在空气中的传播速度是已知的,通常用v表示。
•在空气中,当一个声源开始发出声音时,声音通过距离x传播到接收者处所需的时间t,可以用一元二次方程描述:t = (x - d) / v,其中d是声源与接收者之间的初始距离。
3. 光线的折射角度与入射角度的关系•光线从一个光密介质射入到一个光疏介质时,会产生折射现象。
•光线在介质交界面上折射时,折射角度θ_2与入射角度θ_1之间满足一定的关系,可以使用一元二次方程公式来求解。
•斯涅尔定律说明了折射角和入射角之间的关系:n_1sin(θ_1) = n_2sin(θ_2),其中n_1和n_2分别是两个介质的折射率。
总结•一元二次方程公式在传播问题中有着广泛的应用,能够帮助我们分析和解决与传播相关的各种问题。
•通过理解和应用一元二次方程公式,我们可以更好地理解和解释传播现象,并能够进行更准确的预测和计算。
4. 传感器信号的强度与距离的关系•在无线传感器网络或其他传感器应用中,传感器的信号强度通常会随着距离的增加而减弱。
•可以使用一元二次方程来描述传感器信号的强度与距离之间的关系。
•假设传感器的信号强度S0与距离x之间满足关系S = S0 / (x^2),其中S是距离为x时的信号强度。
实际问题与一元二次方程题型知识点归纳总结

实际问题与一元二次方程题型知识点归纳总结典型题型归纳1、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?2、平均增长率问题:M=a(1±x)n, n为增长或降低次数 ,M为最后产量,a为基数,x为平均增长率或降低率例1、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
练习:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.问每次倒出溶液的升数?3、商品销售问题例1、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?练习:1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。
当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。
(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甲型h1n1流感病毒的传染性很强,某 地因1人患了甲型h1n1流感没有及 时隔离治疗,经过两天传染够共有9 人患了甲流,每天传染中平均一个 人传染了几个人?
如果按照这个责任速度,再经过5天 的传染后,这个地区一个将有多少 人患甲流?
有一个人利用手机发短信,获得信 息的人也按他的发送人数发送该条 短信,经过两轮短信的发送,共有 100人手机上获得同一条信息,则 每轮发送短信过程中平均一个人向 多少个人发送短信?
某种电脑病毒传播非常快,如果一台 电脑被感染,经过两轮感染后就会有 81台电脑被感染。请你用学过的知识 分析,每轮感染中平均一台电脑会感 染几台电脑?
通过这节课的学习:
我学会了…… 使我感触最深的是……
我发现生活中……
我还感到疑惑的是……
有一人患了流感 , 每轮传 染每个人传染10人。
第一轮传染后,有多少人患有流感?
1+10=11
第二轮传染后有多少人患有流感? 11x10 +11
解:设每轮传染中平均一个人传染了x个人.
1+x+x(1+x)=121
解方程,得 -12 (不合题意 10 ,舍去) _____, ______ . x1 x2
典型练习题
1、一个两位数个位数字比十位数字大1,个位数字与十位数字 对调后所得的两位数比原数大9,求:这个两位数 3、某班同学在圣诞节期间互赠礼物182件,求:这个班级的人 数 4、某校进行乒乓球单循环比赛,共比赛55场,问:共有多少名 同学参加 5、 一名同学进行登山训练,上山速度为2千米/小时,下山速度 为6千米/小时,求:往返一次的平均速度。
有一人患了流感 , 经过两轮传染后共 有121人患了流感,每轮传染中平均一 个人传染了几个人? 第二轮 1+x+x(1+x) 第一轮 1 传染后 1+x 传染后
10 答:平均一个人传染了________ 个人.
如果按照这样的传染速度, 三轮传染后有多少人患流菌经过两轮繁 殖后,共有256个细菌,每轮繁 殖中平均一个细菌繁殖了多少个 细菌?