4统计物理学基础
统计物理的基本概念

二、热力学概率
在确定N、E、V的宏观状态下,系统可能的 微观状态是大量的。
根据等概率原理,一种宏观状态对应的微观 状态越多,则这种宏观状态出现的概率就越大。
热力学概率是指一种宏观态对应的微观状态数。
三、分布{Ni}
对于确定的宏观状态下,粒子数按能级的排列方式 能级: 1 , 2 ,, i , 简并度: g1 , g 2 ,, gi , 粒子数: 1 , N 2 ,, Ni , N
A B
对于玻色系统可以有6种不同的微观状态 1 2 3 4 5 6 量子态1 AA 量子态2 AA 量子态3
AA
A A A A A
A
对于费米系统可以有3个不同的微观状态 量子态1 1 2 3 A 量子态2 A A 量子态3 A A
A
在确定N、E、V的宏观状态下,系统可能的微 观状态是大量的。为了研究系统的宏观性质,没必 要也不可能追究微观状态的复杂变化,只要知道一 个宏观状态对应的微观状态数以及各个微观状态出 现的概率,就可以用统计方法求微观量的统计平均 值获得相应的宏观性质。 因此,确定一个宏观状态对应的微观状态数以 及各微观状态出现的概率是统计物理的根本问题。
四玻耳兹曼系统的微观状态数四玻耳兹曼系统的微观状态数个编了号的粒子分别占据能级上的量子态共有种方式玻耳兹曼系统的粒子可以分辨交换粒子将给出系统不同的状态将n个粒子交换交换数是因为前面已考虑了同一能级上个粒子的交换所以交换数应除以所以对于玻尔兹曼系统玻尔兹曼系统分布相应的微观状态数为
第十三章
统计物理的基本概念 §13-1 引言
一、粒子运动状态的经典描述
自由度为r 的一个微观粒子的微观运动状态由 2r 个广义坐标和广义动量确定。 广义坐标:
统计物理

Γ空间中的一个点 ———系统的一个微观态 Γ空间中的轨迹 ———系统运动状态随时间的演化 代表点:Γ空间中的点称为系统的代表点. 相轨迹:随着时间变化,代表点在Γ空间描出的曲线.
BEIJING NORMAL UNIVERSITY
全同粒子系统: 由具有完全相同的属性(相同的质量, 电荷,自旋等)的同类粒子组成的系统.
px 等能面
0
p x = 2mε
x
2 px 等能面方程:H = = ε (常量) 2m
BEIJING NORMAL UNIVERSITY
◆三维空间运动的自由粒子,自由度r=3
t 时刻的运动状态:(x, y, z, px ,py ,pz) μ空间:由相互垂直的三根坐标轴x,y,z及
三根动量轴px ,py ,pz张成的6维空间 . 将μ空间分成两个三维的子空间 一个是坐标空间,一个是动量空间.
2 px 1 + kx 2 H a m ilto n ia n : H = 2m 2 2 1 px 2 2 ω = + mω x H = 2m 2
k m
BEIJING NORMAL UNIVERSITY
μ空间:x,px 张成的二维空间
等能面方程 p2 1 x ε= + m ω 2x 2 2m 2
BEIJING NORMAL UNIVERSITY
统计分布函数和热力学几率
一,统计分布函数 在统计物理学中,我们的目的是研究系统在给定宏观条 件下的宏观性质.如系统具有的粒子数为N,体积为V,能量 为E.在给定的这些宏观条件下,系统可能的微观状态还是很 多的,各种可能微观状态都有出现的机会.我们不能肯定系 统在某一时刻一定处在或一定不处在某运动状态 ,而只能确 定系统在某一时刻处在各状态的概率.宏观物理量应当是相 应微观量在满足给定宏观条件的一切可能的微观状态上的平 均值.
统计物理知识点总结

统计物理知识点总结一、统计力学的基本概念1. 微观态和宏观态统计物理研究的对象是处于宏观系统中的微观粒子,其中微观态是指粒子的位置和动量的具体取值,宏观态是指系统的宏观物理性质,例如温度、压强等。
2. 系统的能级系统的能级是指系统各种可能的微观态所对应的能量值,通常将系统的能级表示为E_i,i=1,2,3,...,N。
3. 概率分布统计物理中,概率分布描述了系统各种微观态出现的概率,通常表示为P_i,i=1,2,3,...,N。
4. 统计物理的基本假设统计物理的基本假设包括系统处于平衡态、系统微观态的等可能性、独立粒子假设等,这些假设为统计物理的推导提供了基本条件。
二、玻尔兹曼分布1. 玻尔兹曼分布的概念玻尔兹曼分布描述了理想气体在平衡状态下各个微观态的出现概率与相应能级之间的关系,通过玻尔兹曼分布可以推导出热力学的一些基本性质。
2. 玻尔兹曼分布的表达式玻尔兹曼分布的概率分布表达式为P_i=exp(-E_i/kT)/Z,其中E_i表示系统的能级,k为玻尔兹曼常数,T表示系统的温度,Z为配分函数。
3. 玻尔兹曼分布的重要性质玻尔兹曼分布是理想气体状态密度的重要分布律,它描述了系统各个微观态的出现概率与相应能级之间的关系,为热力学性质的计算提供了重要依据。
三、配分函数1. 配分函数的概念配分函数是统计物理中的一个重要概念,它描述了系统各个微观态的出现概率和相应能级之间的关系,可以用来计算系统的热力学性质。
2. 配分函数的表达式配分函数通常用Z表示,它的表达式为Z=Σ(exp(-E_i/kT)),其中E_i表示系统的能级,k 为玻尔兹曼常数,T表示系统的温度,Σ表示对系统所有可能的微观态求和。
3. 配分函数的重要性质配分函数是统计物理的重要概念之一,通过配分函数可以计算系统的内能、熵、平均能级等重要热力学性质,它是统计物理推导的基础。
四、热力学性质1. 内能系统的内能是系统中所有粒子的动能和势能之和,通过配分函数可以计算系统的内能,它是系统热力学性质的重要参量。
物理学中的统计力学原理

物理学中的统计力学原理统计力学是物理学中的一个重要分支,它研究大量微观粒子的运动和宏观系统的性质之间的关系。
通过对分子、原子或粒子的统计行为进行建模和分析,统计力学为我们理解物质的宏观性质提供了有力的工具和理论框架。
本文将介绍物理学中的统计力学原理,包括热力学、玻尔兹曼分布和熵增等重要概念。
热力学是统计力学的基础,它研究的是宏观系统的性质和相互作用。
根据热力学第一定律,能量在系统内不会被创造或毁灭,只会从一种形式转化为另一种形式。
这个定律建立了能量守恒的基本原理。
而热力学第二定律则提供了一个关于物质自发变化的基本原理,即熵增定律。
熵可以看作是系统的无序程度的量度,熵增定律描述了在一个孤立系统中,熵的增加是不可逆过程的一个普遍趋势。
玻尔兹曼分布是统计力学中的一个重要概念,它描述了封闭系统中粒子的分布情况。
根据玻尔兹曼分布定律,系统中不同能级的粒子数目与能级的指数函数成正比。
这个定律可以用来解释气体的温度和分布情况。
根据玻尔兹曼分布定律,当系统处于平衡状态时,粒子会自发地分布在各个能级上,形成热平衡。
热平衡是统计力学中一个重要的概念,它描述了一个封闭系统内部的能量分布情况。
在热平衡状态下,系统内各个能级之间的能量转移达到平衡,粒子的分布按照玻尔兹曼分布进行。
根据热平衡的概念,我们可以进一步推导出热力学中的基本关系式,例如压强和体积的关系、温度和熵的关系等。
统计力学的一个重要应用领域是热力学系统的微观描述。
热力学系统由一个非常大的粒子数目组成,研究系统的微观行为和统计分布可以提供对宏观性质的理解。
例如,通过统计力学的方法,我们可以计算出气体的压强和体积的关系,从而得到物理学中的理想气体定律。
同样,统计力学也可以解释固体和液体的性质,以及相变过程中的能量转移和熵的变化。
另一个值得注意的概念是热力学系统的微观状态数。
对于一个具有N个粒子的系统,每个粒子有一组离散的微观状态,系统的总微观状态数可以表示为每个粒子的微观状态数的连乘。
统计物理学

研究方法
J.W.吉布斯把整个系统作为统计的个体,提出研究大量系统构成的系综在相宇中的分布,克服了气体动理论 的困难,建立了统计物理。在平衡态统计理论中,对于能量和粒子数固定的孤立系统,采用微正则系综;对于可 以和大热源交换能量但粒子数固定的系统,采用正则系综;对于可以和大热源交换能量和粒子的系统,采用巨正 则系综。这是三种常用的系统,各系综在相宇中的分布密度函数均已得出。量子统计与经典统计的研究对象和研 究方法相同,在量子统计中系综概念仍然适用。区别在于量子统计认为微观粒子的运动遵循量子力学规律而不是 经典力学规律,微观运动状态具有不连续性,需用量子态而不是相宇来描述。
研究对象
研究对象从少量个体变为由大量个体组成的群体,导致规律性质和研究方法的根本变化,大量粒子系统所遵 循的统计规律是不能归结为力学规律的。统计物理是由微观到宏观的桥梁,它为各种宏观理论提供依据,已经成 为气体、液体、固体和等离子体理论的基础,并在化学和生物学的研究中发挥作用。气体动理论(曾称气体分子 运动论)是早期的统计理论。它揭示了气体的压强、温度、内能等宏观量的微观本质,并给出了它们与相应的微 观量平均值之间的关系。平均自由程公式的推导,气体分子速率或速度分布律的建立,能量均分定理的给出,以 及有关数据的得出,使人们对平衡态下理想气体分子的热运动、碰撞、能量分配等等有了清晰的物理图像和定量 的了解,同时也显示了概率、统计分布等对统计理论的特殊重要性。
非平衡态统计物理内容广泛,是尚在迅速发展远未成熟的学科。对处于平衡态附近的系统,研究其趋于平衡 的弛豫时间及其与温度的依赖关系;对离平衡不太远,维持温度差、浓度差、电势差等而经历各种输运过程的系 统,研究其各种线性输运系数,另外,还研究涨落现象。弛豫、输运、涨落是平衡态附近的主要非平衡过程。
统计物理

③ 在平衡状态时,每个分子指向任何方向的概率都是一样的, 或者说,分子速度按方向的分布是均匀的
vx2
v y2
vz2
1 v2 3
讨论:
p
1 3
nmv2
2 3
n
1 2
mv2
2 3
n t
压强公式将宏观量 p 和微观量
的统计平均值联系在一起。
2. 气体分子平均平动动能与温度关系
2 NA M
2M
( NAm )
答案 (A)
例 一容器中贮有理想气体,压强为0.010mmHg 15
高,温度为270C,问在1cm3中有多少分子,这些
分子动能之总和为多少?
解: P nkT n P
kT
N
nV
PV kT
1.33 1.38 1023 300
106
3.211016个
以 ε i (i=1,2,…) 表示粒子的第 i 个能级, gi 表示能级 ε i 的简并度, Ni 表示能级 ε i 上的粒子数,
通常以 Ni 表示数列 N1 ,N2 ,N3 ,…Ni …,称为一个分布。 满足两个约束条件(总粒子数和总能量守恒)的可能分布
是大量的。 对每一个分布还应有若干个微观态。
步骤3:求dt 时间内 ,各种速度分子对 ds 的总冲量。
dI
2mvix
vix 0
nids vixdt
1 2
i
2mvi2xn i dsdt
i
mnivix2dsdt
dt内各种速度分子对ds 的总冲量为:
10
1
物理学必读书目

物理学必读书目
以下是一些物理学必读的经典书目:
1. 《物理学原理》- 理查德·费曼
2. 《量子力学与路径积分》- 理查德·费曼
3. 《理论物理学的数学方法》- 因格里德·瓦累金
4. 《经典电动力学》- 约翰·杰克逊
5. 《统计物理学》- 罗伯特·鲍曼
6. 《粒子物理学导论》- 弗朗克·希利
7. 《热力学与统计物理学》- 弗朗茨·理波
8. 《原子物理学》- J·J·萨区
9. 《量子力学概论》- 大井戸望
10. 《凝聚态物理学导论》- 迈克尔·邦诺
这些书涵盖了物理学的各个分支,从经典力学到电动力学,再到量子力学和统计物理学等等。
阅读这些书籍将使读者对物理学的基础概念和重要原理有更深入的理解。
统计力学基础知识点

统计力学基础知识点统计力学是物理学的一个重要分支,研究宏观系统中的粒子统计行为和宏观性质与微观状态之间的关系。
本文将介绍统计力学的基础知识点,包括热力学基本概念、热力学函数和分布函数等。
一、热力学基本概念1. 系统和环境在热力学中,我们研究的对象称为系统,与系统发生相互作用的一切外界部分称为环境。
2. 状态变量和过程变量状态变量是系统状态的特征量,如温度、压力、体积等;而过程变量是系统随时间变化的量,如功、热量等。
3. 热平衡和热力学平衡态当系统与环境之间达到热平衡时,它们之间不再有净的热量传递。
处于热力学平衡态的系统各部分之间没有净的宏观运动。
二、热力学函数1. 内能和焓内能是系统中原子或分子的动能和势能的总和,通常用符号U表示。
而焓是在恒压条件下定义的,用符号H表示,它等于内能加上系统对外界所做的功。
2. 熵熵是热力学函数中的一个重要概念,它表示系统的无序程度。
熵增原理是热力学第二定律的基础,它说明了孤立系统的熵总是趋向于增加。
3. 自由能和吉布斯函数自由能F是判断系统是否能自发发生变化的指标,如果在恒温、恒容条件下自由能减小,说明系统趋于平衡。
吉布斯函数G是在恒温、恒压条件下定义的,它将系统的内能、熵和对外界所做的功综合考虑在内。
三、分布函数1. 经典统计和量子统计根据统计物体粒子是否具有可区分性,我们将统计力学分为经典统计和量子统计。
经典统计适用于大量粒子系统,而量子统计适用于微观系统。
2. 环境状态和系统状态环境状态是指环境的宏观性质,如温度和压力;而系统状态是指系统的微观状态,如粒子的动量和位置。
3. 分布函数和配分函数分布函数描述了系统中粒子的分布情况,它包括玻尔兹曼分布、费米-狄拉克分布和波色-爱因斯坦分布。
配分函数是描述整个系统的状态的函数,它与能级和温度有关。
四、热力学理论和统计力学理论的关系热力学理论是基于宏观实验结果和经验定律建立的,而统计力学理论则是从微观角度上解释和推导热力学规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 就质量而言,空气是由76%的N2,23%的O2和 1%的Ar三种气体组成,它们的分子量分别为28、32、 40。空气的摩尔质量为28.910-3kg,试计算1mol空气 在标准状态下的内能。 解: 在1摩尔空气中
N2质量 M1 28.9 10 76% 22.1 10 kg M1 22.1 摩尔数 n1 0.789 M mol 1 28 O2质量 M 2 28.9 103 23% 6.65 103 kg M2 6.65 摩尔数 n2 0.208 M mol 2 32
分布情况: 中间多,两边少。 重复几次 ,结果相似。 单个小球运动是随机的 , 大量小球运动分布是确定 的。
小球数按空间 位置 分布曲线
大量偶然事件整体所遵循 的规律 —— 统计规律。
统计规律特点:
(1)只对大量偶然的事件才有意义. (2)它是不同于个体规律的整体规律(量变到质变). (3) 大数量现象在一定宏观条件下的稳定性。 四、 统计的基本概念
( 130 10 ) 32 9.6天 1 400
4-2 理想气体的压强 温度和内能
一、理想气体的微观模型和统计假设
1 . 理想气体微观模型 分子本身的大小比起它们之间的平均距离
可忽略不计。 除碰撞外,分子之间的作用可忽略不计。 分子间的碰撞是完全弹性的。 分子所受重力忽略不计
平均振动动能
t kT 2
r kT 2
s kT 2
注意:对应分子的一个振动自由度,除有一份 振动的动能外,还有一份平均势能。 结论:分子的平均总能量
1 1 1 ( t r s )kT skT ( t r 2 s )kT 2 2 2
对刚性分子:气体分子无振动,则分子的平均动 能为
1 i ( t r )kT kT 2 2
五、理想气体的内能
分子间相互作用 可以忽略不计 分子间相互作用的势能=0
理想气体的内能=所有分子的热运动动能之总和
i i 1mol理想气体的内能为 E mol N A ( kT ) RT 2 2 M i 一定质量理想气体的内能为 E RT M mol 2 温度改变,内能改变量为 E M i RT M mol 2
2. 概率分布函数
随机变量 在一定条件下, 变量以确定的概率 取各种不相同的值。 1. 离散型随机变量
取值有限、分立
1 2 S 表示方式 P1 P2 PS
Pi 0 ( i 1,2, S ) 有 Pi 1
i 1 S
2. 连续型随机变量
1. 自由度 确定一个物体的空间位置所需要的独立坐标数目。 以刚性分子(分子内原子间距离保持不变)为例
z
C ( x, y, z )
平动自由度t=3
y
i tr3
x
单原子分子
z
C ( x, y, z )
平动自由度t=3 转动自由度r=2
y
x 双原子分子 z
i tr5
三原子或三
V1T2 2V2 450 p2 p1 3 p1 V2T1 V2 300
3 ( 2 ) w kT 2
3 w w 2 w1 k ( T2 T1 ) 2 3 23 21 1.38 10 ( 450 300 ) 3.11 10 J 2
x
C ( x, y, z )
原子以上 的分子
平动自由度t=3 转动自由度r=3
y
itr 6
实际气体不能看成刚性分子,因原子之间还有振动
二、能量均分定理
1 3 2 w m v kT 2 2
v x v y vz
2 2
2
1 2 v 3
1 1 1 1 2 2 2 mv x mv y mv z kT 2 2 2 2
强为1.3107Pa,若每天用105Pa的氧气400L,问此瓶
氧气可供多少天使用?设使用时温度不变。
解: 根据题意,可确定研究对象为原来气体、用去气 体和剩余气体,设这三部分气体的状态参量分别为
p1 V1 M1
p2 V2 M 2
原有
p3 V3 M 3 使用时的温度为T
剩余
设可供 x 天使用
x 每天用量
理想气体的分子模型是弹性的自由运动的质点。
2 . 统计假设
① 分子数密度处处相等;
② 分子沿各个方向运动的几率均等。 亦即:分子速度在各个方向上的分量的各种平均值相等。
a
b
c
1 2 2 2 2 v x v y vz v 3
na nb nc
2 2 v 2 (v12 v2 vn ) / N
d
二、系统状态的描写
宏观量——状态参量
描写热力学系统宏观状态的参量。
如 压强 p、体积 V、温度 T 等。
微观量
描述系统内个别微观粒子特征和运动状态的物理 量。 如分子的质量、 直径、速度、动量、能量 等。 微观量与宏观量有一定的内在联系。
平衡态: 在无外界的影响下,系统的宏观性质不随
时间改变的稳定状态。 设一容器,用隔板将其隔开当 隔板右移时,分子向右边扩散 在这过程中,各点密度、温度等均不相同,这就是 非平衡态。但随着时间的推移,各处的密度、压强 等都达到了均匀,无外界影响,状态保持不变,就 是平衡态。
三、分子的平均平动动能与温度的关系
M pV RT M mol
1 Nm R p RT n T V N Am NA
k R N A 1.38 1023 J K 1玻尔兹曼常量
p nkT
2 p nw 3
1 3 2 w m v kT 2 2
温度是气体分子平均平动动 能大小的量度
取值无限、连续
随机变量X的概率密度
dP ( x ) ( x) dx 概率密度等于随机变量取值在单位间隔内的概率。
变量取值在x—x+dx间 隔内的概率
( X )又称为概率分布函数(简称分布函数)。
( x )dx 1
3. 统计平均值
对于离散型 随机变量
算术平均值为
例:(1)在一个具有活塞的容器中盛有一定的气体。 如果压缩气体并对它加热,使它的温度从270C升到 1770C,体积减少一半,求气体压强变化多少? (2)这时气体分子的平均平动动能变化多少?
p1V1 p2V2 解: (1) T1 T2
由已知: V1 2V2 , T1 273 27 300 K , T2 273 177 450 K
p2 V2 M 2 T
p1 V1 M1 T
p3 V3 M 3 T
分别对它们列出状态方程,有
M1 p1 V1 RT M mol
M2 p2 V2 RT M mol
M3 p3 V3 RT M mol
V1 V3 M1 M 3 xM 2
M1 M 3 ( p1 p3 )V1 x M2 p2V2
什么是统计规律性(statistical regularity) 大量偶然性从整体上所体现出来的必然性。 例. 扔硬币
统计规律和方法
伽尔顿板
从入口投入小球 与钉碰撞
落入狭槽 ( 偶然 )
为清楚起见 , 从正面来观察。
铁钉
隔板
统计规律和方法 伽尔顿板 再投入小球:
经一定段时间后 , 大 量小球落入狭槽。
N N N
i i i i
N
i
N
lim 统计平均值为 N i N i N i Pi
i lim ( N i N )
随机变量的统计平均值等于一切可能状态 的概率与其相应的取值 i 乘积的总和。
对于连续型随机变量
统计平均值为
x x ( x )dx
2 ix
mN v ix
N
2
v
i 1
N
N
v ix
2
N n l1 l 2 l 3
p nmvix
2
平衡态下
1 2 v x v y vz v 3
2 2 2
p nmv x
2
1 2 nmv 3
1 w m v 2 ——分子的平均平动动能 2
2 p nw 3
vi2 / N
二.理想气体的压强公式 一定质量的处于平衡态的某种理想气体。(V,N,m )
y
l1
平衡态下器壁
A2
O v iz
v iy
vi
v ix
A1
l2
各处压强相同,
选A1面求其所
l3 x
受压强。
z
vi vix i viy j viz k
y
mv ix
A2
i分子动量增量
pix 2mv ix
i分子对器壁的冲量 2mv ix i分子相继与A1面碰撞的时间间隔
mv ix A1
O
x
l1
t 2l / v ix
2mv ix vix / 2l1
单位时间内i分子对A1面的碰撞次数 Z 1 / t vix / 2l1
单位时间内i分子对A1面的冲量
i分子对A1面的平均冲力 Fix 2mv ix vix / 2l1
所有分子对A1面的平均作用力
m N 2 Fx Fix v ix l1 i 1 i 1
N
N
压强