高考数学一轮复习讲义(提高版) 专题10.12 定直线

合集下载

高三数学一轮复习第十章 平面解析几何10.12第十二节 抛物线与轨迹方程课件

高三数学一轮复习第十章 平面解析几何10.12第十二节 抛物线与轨迹方程课件

x y

f(k), g(k).
(3)消去参数k,得M的轨迹方程.
(4)由k的范围确定x,y的范围.
【对点练·找规律】 1.长为3的线段AB的端点A,B分别在x轴、y轴上移动,
AC=2CB ,则点C的轨迹方程是________.
【解析】设C(x,y),A(a,0),B(0,b),则a2+b2=9①,又
3
轨迹是两条平行于x轴的线段.
②当λ≠ 3 时,方程变形为
4
x2 112
y2 =1,其中x∈
112
[-4,4].
162 9 162
当0<λ< 3 时,点M的轨迹为中心在原点,实轴在y轴上
4
的双曲线满足-4≤x≤4的部分;
当 3 <λ<1时,点M的轨迹为中心在原点,长轴在x轴上
4
的椭圆满足-4≤x≤4的部分;
命题角度2 无明确等量关系求轨迹方程 【典例】已知直线l过抛物线C:y2=4x的焦点,l与C交于 A,B两点,过点A,B分别作C的切线,且交于点P,则点P的 轨迹方程为________.
【解析】不妨将抛物线翻转为x2=4y,设翻转后的直线l
的方程为y=kx+1,翻转后的A,B两点的坐标分别为
(x1,y1),(x2,y2),联立
提醒:利用定义法求轨迹方程时,还要看所求轨迹是否 是完整的圆、椭圆、双曲线、抛物线,如果不是完整的 曲线,则应对其中的变量x或y进行限制.
考点二 相关点法求轨迹方程 【典例】(1)已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q是OP的中点,M是FQ的中点,则点M的 轨迹方程是__________.
直线A2Q的方程为y=

高考数学一轮复习 直线、平面垂直的性质定理课件

高考数学一轮复习 直线、平面垂直的性质定理课件
[解析] 如果平面 ⊥ 平面 ,那么只有平面 内垂直于交线的直线才垂直于平面 ,
故C错误.
02
研考点 题型突破
题型一 直线与平面垂直的性质
典例1 如图,PA ⊥ 平面ABD,PC ⊥ 平面BCD,E,F分别为BC,CD上的点,
且EF ⊥
CF
AC.求证:
DC
=
CE
.
BC
证明 ∵ PA ⊥平面ABD,PC ⊥ 平面BCD,
②线(三垂线定理):过二面角的一个面内的一点作另一个平面的垂线,过垂足作棱的
垂线,利用线面垂直可找到二面角的平面角或其补角.
③面(垂面法):过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,
这两条交线所成的角即是二面角的平面角.
(2)求(求二面角的平面角的余弦值或正弦值).
①在三角形中,利用余弦定理求值;
PD ⊥ 平面PBC.
证明 由题设,知BC ⊥ CD,又平面PDC ⊥ 平面ABCD,平面PDC ∩ 平
面ABCD = CD,BC ⊂ 平面ABCD,
所以BC ⊥ 平面PDC,
而PD ⊂ 平面PDC,则BC ⊥ PD.
由∠DPC = 90∘ ,得PC ⊥ PD.
又BC ∩ PC = C,BC,PC ⊂ 平面PBC,则PD ⊥ 平面PBC.
又BC ⊂ 平面PBC,所以AD ⊥ BC.
因为PA ⊥ 平面ABC,BC ⊂ 平面ABC,
所以PA ⊥ BC.
因为AD ∩ PA = A,AD,PA ⊂ 平面PAC,
所以BC ⊥ 平面PAC.
又AC ⊂ 平面PAC,所以BC ⊥ AC.
规律方法
(1)在应用面面垂直的性质定理时,若没有与交线垂直的直线,则一般需作辅助线,基

新高考数学一轮复习课件 直线的方程

新高考数学一轮复习课件    直线的方程

第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(2)当-1≤k<0 时,34π≤θ<π, 当 0≤k≤1 时,0≤θ≤π4. 因此 θ 的取值范围是0,π4∪34π,π.]
第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
考点二 直线方程的求法 1.经过两条直线 l1:x+y=2,l2:2x-y=1 的交点,且直线的 一个方向向量 v=(-3,2)的直线方程为________.
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
4 . 过 点 P(2,3) 且 在 两 轴 上 截 距 相 等 的 直 线 方 程 为 __________________.
3x-2y=0 或 x+y-5=0 [当纵、横截距为 0 时,直线方程为 3x-2y=0;
当截距不为 0 时,设直线方程为ax+ay=1,则2a+3a=1,解得 a= 5,直线方程为 x+y-5=0.]
当 k=0 时,直线为 y=1,符合题意, 故 k 的取值范围是[0,+∞).
第一节 直线的方程
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
(3)由题意可知 k≠0,再由 l 的方程,得 A-1+k2k,0,B(0,1+ 2k).
(1)A (2)(-∞,- 3]∪[1,+∞) [(1)由题意,在 Rt△BCD 中, ∠BCD=π2,BC= 3AB= 3CD,
∴tan∠CBD= 33,∴∠CBD=π6,∴直线 BC 的倾斜角为π3,故 kBC=tanπ3= 3.故选 A.
第一节 直线的方程

2025年高考数学一轮复习-圆锥曲线中的定点、定值、定直线问题【课件】

2025年高考数学一轮复习-圆锥曲线中的定点、定值、定直线问题【课件】
− 2 + 2,所以的坐标为 2 ,
1 −2
1 −2
−2
−1 2 −2 +2 1 −2
由1 = 1 − 1 可得, 1
2 − 2 + 2 = 1
,
1 −2
1 −2
从而可得点的纵坐标
1 1 −1 2 −2 +2 1 −2
2
1 −2
[21 2 −3 1 +2 +4]+2 1 −2
2
− 2

= 1 > 0, > 0 过点 2,2 ,且与的两个顶
(1)求的方程;
解 因为双曲线的两个顶点为 ±, 0 ,
2
所以
2+
2
2−
+
将 2,2
代入的方程可得, 2
=
8
4−2
= 4,即2 = 2,
=
2
4,故的方程为
2

2
4
= 1.
(2)过点 1,0 的直线与双曲线交于,两点(异于点),设直线与轴垂直且
交直线于点,若线段的中点为,证明直线的斜率为定值,并求该定值.
解 依题意,可设直线: = − 1 ≠ 0 , 1 , 1 , 2 , 2 .
将 = − 1
2

2
所以 2 ≠ 2,Δ =
2
− = 1联立,整理得 2 − 2 2 − 2 2
则可设直线的方程为 = − 4, 1 , 1 , 2 , 2 .
又的左、右顶点分别为1 ,2 ,
所以1 −2,0 ,2 2,0 ,
= − 4,
联立ቊ 2
4 − 2 = 16,

直线的方程课件-2025届高三数学一轮复习

直线的方程课件-2025届高三数学一轮复习

3
2
.
[易错题]已知点 A (3,4),则经过点 A 且在两坐标轴上截距相等的直线方程为
4 x -3 y =0或 x + y -7=0

.

[解析] 设直线在 x 轴、 y 轴上的截距均为 a .(讨论截距是否为0)
①若 a =0,即直线过点(0,0)及(3,4),
2025届高考数学一轮复习讲义
平面解析几何之 直线的方程
一、知识点讲解及规律方法结论总结
1. 直线的倾斜角与斜率
直线的倾斜角
直线的斜率
(1)定义式:把一条直线的倾斜角α的正切值叫做
定义:当直线l与x轴相交时,
这条直线的斜率,斜率通常用小写字母k表示,
我们以x轴为基准,x轴正向
π
k=tan
α
即③
(α≠
D. 8
5−1
=-2,则线段 lAB : y -1=-2( x -4), x ∈[2,4],即
2−4
y =-2 x +9, x ∈[2,4],故2 x - y =2 x -(-2 x +9)=4 x -9, x ∈[2,4].设 h ( x )
1
1
1
1
差为0.1的等差数列,且直线 OA 的斜率为0.725,则 k 3=(
图1
A. 0.75
B. 0.8
D )
图2
C. 0.85
D. 0.9
[解析] 如图,连接 OA ,延长 AA 1与 x 轴交于点 A 2,则 OA 2=4 OD 1.因为 k 1, k 2,
2
k 3成公差为0.1的等差数列,所以 k 1= k 3-0.2, k 2= k 3-0.1,所以tan∠ AOA 2=

2023届高考数学一轮复习圆锥曲线定直线问题 讲义

2023届高考数学一轮复习圆锥曲线定直线问题 讲义

圆锥曲线定直线问题方法提示:先猜后证一、分析定直线的类型:是否与坐标轴垂直 二、特殊化得到答案 三、按常规方法写解题过程典例例1.如图,已知椭圆C :22221(0)y x a b a b+=>>的左、右焦点分别为F 1,F 2,其上顶点为A .已知△F 1AF 2是边长为2的正三角形. (1)求椭圆C 的方程;(2)过点(4,0)Q -任作一动直线l 交椭圆C 于M ,N 两点,记MQ QN λ=⋅.若在线段MN 上取一点R ,使得MR RN λ=-⋅,当直线l 运动时,点R 在某一定直线上运动,求出该定直线的方程.例2.已知双曲线E :()222104y x a a -=>的中心为原点O ,左、右焦点分别为F 1、F 2,离心率为355,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同的两点M 、N ,在线段MN 上去异于点M 、N 的点H ,满足PM MH PNHN=,证明点H 恒在一条定直线上.对点训练1、已知椭圆C :22221x y a b +=(0a b >>)的左右焦点分别为()1,0F c -,()2,0F c ,,M N 分别为左右顶点,直线l :1x ty =+与椭圆C 交于,A B 两点,当3t =-时,A 是椭圆的上顶点,且12AF F 的周长为6. (1)求椭圆C 的方程;(2)设直线,AM BN 交于点Q ,证明:点Q 在定直线上.2、设椭圆()222210x y a b a b+=>>的离心率为12,直线l 过椭圆的右焦点F ,与椭圆交于点M N 、;若l 垂直于x 轴,则3MN =. (1)求椭圆的方程;(2)椭圆的左右顶点分别为12A A 、,直线1A M 与直线2A N 交于点P .求证:点P 在定直线上.3、已知点()2,0A -,()2,0B ,动点(),R x y 满足直线AR 与BR 的斜率之积为14-.记R 的轨迹为曲线C .(1)求曲线C 的方程;(2)设经过点()1,0Q 的直线l 交曲线C 于M ,N 两点,设直线BM ,BN 的斜率为1k ,2k ,直线AM 与直线BN 交于点G .①求12k k 的值; ②求证点G 在定直线上.4、已知抛物线E :24x y =,过x 轴上一点M (不同于原点)的直线l 与E 交于两点11(,)A x y ,22(,)B x y ,与y 轴交于C 点.(1)若MA MC λ=,MB MC μ=,求λμ的值;(2)若(4,0)M ,过A ,B 分别作E 的切线,两切线交于点P ,证明:点P 在定直线方程上,求出此定直线.5、已知,A B 两点在抛物线2C :4x y =上,点()0,4M 满足MA BM λ=. (1)若线段122AB =AB 的方程;(2)设抛物线C 过A B 、两点的切线交于点N .求证:点N 在一条定直线上.6、在平面直角坐标系中,已知椭圆C :22221x y a b+= (a>b>0)的离心率为12,右焦点F 到右准线的距离为3. (1)求椭圆C 的方程;(2)过点F 作直线l (不与x 轴重合)和椭圆C 交于M , N 两点,设点5,02A ⎛⎫ ⎪⎝⎭. ①若AMN 的面积为35,求直线l 方程; ②过点M 作与)轴垂直的直线l "和直线NA 交于点P ,求证:点P 在一条定直线上.7、已知椭圆1C :22221(0)x y a b a b +=>>的离心率为22,且经过点23.2⎛- ⎝⎭ (1)求椭圆1C 的标准方程;(2)已知抛物线2C 的焦点与椭圆1C 的右焦点重合,过点()0,2P -的动直线与抛物线2C 相交于A ,B 两个不同的点,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在定直线上.8、已知椭圆C 的离心率32e =1(2,0)A -,2(2,0)A .(1)求椭圆C 的方程;(2)设直线1x my =+与椭圆C 交于P ,Q 两点,直线A 1P 与A 2Q 交于点S ,试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.9、设椭圆C :22221(0)y x a b a b+=>>过点2,1)M ,且左焦点为1(2,0)F -. (Ⅰ)求椭圆C 的方程;(Ⅰ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点A ,B 时,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某定直线上.圆锥曲线定直线问题解析方法提示:先猜后证四、分析定直线的类型:是否与坐标轴垂直 五、特殊化得到答案 六、按常规方法写解题过程典例例1.如图,已知椭圆C :22221(0)y x a b a b+=>>的左、右焦点分别为F 1,F 2,其上顶点为A .已知△F 1AF 2是边长为2的正三角形. (1)求椭圆C 的方程;(2)过点(4,0)Q -任作一动直线l 交椭圆C 于M ,N 两点,记MQ QN λ=⋅.若在线段MN 上取一点R ,使得MR RN λ=-⋅,当直线l 运动时,点R 在某一定直线上运动,求出该定直线的方程.【答案】(1)22143+=y x (2)1=-x【解析】(1)因为△F 1AF 2是边长为2的正三角形,所以1=c ,2=a ,3=b ,椭圆C 的方程为22143+=y x ;(2)由题意知,直线MN 的斜率必存在,设其方程为(4)=+y k x ,并设11(,)M x y ,22(,)N x y由22(4)143=+⎧⎪⎨+=⎪⎩y k x y x ,消去y 得2222(43)3264120+++-=k x k x k ,则2144(14)0∆=->k ,21223243-+=+k x x k ,212264-1243=+k x x k 由=⋅MQ QN λ得124(4)--=+x x λ,故1244+=-+x x λ设点R 的坐标为00(,)x y ,则由=-⋅MR RN λ得0120()-=--x x x x λ解得:1122122121201122243424()43114()831434+-+⋅-++++=====--+++-+++x x x x x x x x x x k x x x x k x λλ故点R 在定直线1=-x 上.例2.已知双曲线E :()222104y x a a -=>的中心为原点O ,左、右焦点分别为F 1、F 2,离心率为355,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同的两点M 、N ,在线段MN 上去异于点M 、N 的点H ,满足PM MH PNHN=,证明点H 恒在一条定直线上.【答案】(1)5=a (2)定值为45(3)43120--=x y【解析】(1)设双曲线E 的半焦距为c ,由题意可得223554⎧=⎪⎨⎪=+⎩c a c a ,解得5=a . (2)证明:由(1)可知,直线25=33=a x ,点2(3,0)F .设点5(,)3P t ,00(,)Q x y ,因为220⋅=PF QF ,所以005(3,)(3,)03----=t x y ,所以004(3)3=-ty x .因为点00(,)Q x y 在双曲线E 上,所以220054=x y ,即22004(5)5=-y x .所以220000002200000044(5)(3)5345555333-----=⋅===---PQ OQ x x y t y y ty k k x x x x x x ,所以直线PQ 与直线OQ的斜率之积是定值45.(3)证明:设点(,)H x y ,且过点5(,1)3P 的直线l 与双曲线E 的右支交于不同两点11(,)M x y ,22(,)N x y ,则22114520-=x y ,22224520-=x y ,即22114(5)5=-y x ,22224(5)5=-y x .设==PM MH PN HN λ,则⎧=⎪⎨=⎪⎩PM PN MH HNλλ.即1122112255(,1)(,1)33(,)(,)⎧--=--⎪⎨⎪--=--⎩x y x y x x y y x x y y λλ,.整理,得121212125(1)31(1)(1)⎧-=-⎪⎪-=-⎨⎪+=+⎪+=+⎩x x y y x x x y y y λλλλλλλλ,故2222122222125(1)3(1)⎧-=-⎪⎨⎪-=-⎩x x x y y y λλλλ,将22114(5)5=-y x ,22224(5)5=-y x 代入,得221224451-=⨯--x x y λλ.消去λ,1x ,2x ,得443=-y x .所以点H 恒在定直线43120--=x y 上.对点训练1、已知椭圆C :22221x y a b +=(0a b >>)的左右焦点分别为()1,0F c -,()2,0F c ,,M N 分别为左右顶点,直线l :1x ty =+与椭圆C 交于,A B 两点,当3t =-时,A 是椭圆的上顶点,且12AF F 的周长为6. (1)求椭圆C 的方程;(2)设直线,AM BN 交于点Q ,证明:点Q 在定直线上.【答案】(1)22143x y +=(2)证明见解析 【解析】(1)当3t =-时,直线l 为31x y =+,令0x =,得3y =即椭圆的上顶点为(3,所以3b = 又12AF F 的周长为6,即226a c +=,又222a b c =+,解得2,1a c ==,所以椭圆C 的方程为22143x y += . (2)设()()1122,,,A x y B x y ,由221143x ty x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234690t y ty ++-=,所以122122634934t y y t y y t ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,又()()2,0,2,0M N -,所以直线AM 的方程为()1122y y x x =++, 直线BN 的方程为()2222y y x x =--, 联立直线AM 、AN 的方程得()()()()212112212121212332221y x y ty ty y y x x y x y ty ty y y ++++===---- .由122634t y y t +=-+得122634ty y t =--+代入上式,得222212212122222993332343439632343434t ty y ty y y x t t t t t x ty y y y y t t t --++++++====----++++++,解得4x =,所以点Q 在定直线4x =上.2、设椭圆()222210x y a b a b+=>>的离心率为12,直线l 过椭圆的右焦点F ,与椭圆交于点M N 、;若l 垂直于x 轴,则3MN =. (1)求椭圆的方程;(2)椭圆的左右顶点分别为12A A 、,直线1A M 与直线2A N 交于点P .求证:点P 在定直线上.【答案】(1)22143x y +=(2)见解析【解析】(1)由已知得22312b ac a ⎧=⎪⎪⎨⎪=⎪⎩,所以231a b c =⎧⎪=⎨⎪=⎩22143x y +=;(2)设()11,M x y ,()()2212,N x y y y >,:1MN l x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=,所以122122634934m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩,可得()111:22A M y l y x x =++,()222:22A N yl y x x =--, 所以()()()122121122121222P x y x y y y x x y x y y y ++-=-++()()()12212121212222my y y y y y y y y y +++-=-++,又因为()121223my y y y =+, 所以()()()()2121212124242P y y y y x y y y y ++-==-++;所以点P 在直线4x =上.3、已知点()2,0A -,()2,0B ,动点(),R x y 满足直线AR 与BR 的斜率之积为14-.记R 的轨迹为曲线C .(1)求曲线C 的方程;(2)设经过点()1,0Q 的直线l 交曲线C 于M ,N 两点,设直线BM ,BN 的斜率为1k ,2k ,直线AM 与直线BN 交于点G .①求12k k 的值; ②求证点G 在定直线上.【答案】(1)221,(2)4x y x +=≠±,(2)1234k k =-,点G 在直线4x =上,证明见解析【解析】(1)因为直线AR 与BR 的斜率之积为14-,所以1224y y x x ⋅=-+-,即221,(2)4x y x +=≠± 故曲线C 221,(2)4x y x +=≠±(2)易知直线l 的斜率不为0,设直线l 的方程为1x my =+由22141x y x my ⎧+=⎪⎨⎪=+⎩可得,()224230m y my ++-= 设()()1122,,,M x y N x y ,则12224m y y m +=-+,12234y y m -=+ ()12122824x x m y y m +=++=+,()2212121224414m x x m y y m y y m -+=+++=+ ()2121212212121222334441622244444y y y y m k k m x x x x x x m m -+=⋅===--+---++-+++设121200(2),(2)22AM BNy y l y x l y x x x --==+==-+-,记直线AM 与BN 的交点()00,G x y则()()120012002222y y x x x x --+=-+-, 即()()()()12210122222y x y x x x x --+⋅+-()()()()211221222222y x y x x x ⎡⎤++-=-⎢⎥-+⎣⎦,()()()()()()211221120122112212222212(2)13)23(y x y x y my y my x y x y x y my y my +-+-=-=---+-++-+()()212122122122221122882864232244424y my y y y y my y y mm m m y y y y y y y =-+-+++-+-++++=+==,故04x =即点G 在直线4x =上.4、已知抛物线E :24x y =,过x 轴上一点M (不同于原点)的直线l 与E 交于两点11(,)A x y ,22(,)B x y ,与y 轴交于C 点.(1)若MA MC λ=,MB MC μ=,求λμ的值;(2)若(4,0)M ,过A ,B 分别作E 的切线,两切线交于点P ,证明:点P 在定直线方程上,求出此定直线.【答案】(1)1(2)交点P 在直线2y x =上【解析】(1)设(),0M n ,()0,C C y ,()11,A x y ,()22,B x y ,由MA MC λ=,MB MC μ=得,()()11,,C x n y n y λ-=-,()()22,,C x n y n y μ-=-,所以1n x n λ-=,2n x nμ-=, 设l :()y k x n =-, 联立()24y k x n x y⎧=-⎨=⎩,则2440x kx kn -+=,()24440k kn ∆=-⨯>,所以20k kn ->,则124x x k +=,124x x kn =, 所以()22121222441n n x x x x n nk knn nλμ-++-+===. (2)设(),P x y ,24x y =,即2y 4x =,有x y'2=.过A 的切线方程为()1112x y y x x -=-,即21124x x x y =-,所以过B 的切线方程为22224x x x y =-两方程联立得122x x x +=,124x x y =,由(1)知124x x k +=,1216x x k =,所以2x k =,4y k =, 所以2y x =,即交点P 在直线2y x =上.5、已知,A B 两点在抛物线2C :4x y =上,点()0,4M 满足MA BM λ=. (1)若线段122AB =AB 的方程;(2)设抛物线C 过A B 、两点的切线交于点N .求证:点N 在一条定直线上. 【答案】(1)24y x =+;(2)见解析 【解析】(1)设()()1122,,,A x y B x y ,:4AB l y kx =+与24x y =联立得24160x kx --=,()()22441616640k k ∆=---=+>, 12124,16x x k x x +==-,()222212121?41?4+4AB k x x x x k k =++-=+,又122AB =221?44122k k ++=解得:222,7k k ==-(舍),所以直线的方程24y x =+ (2)证明:过点A 的切线:()211111111224y x x x y x x x =-+=-,①, 过点B 的切线:2221124y x x x =-,②,联立①②得点12,42x x N +⎛⎫- ⎪⎝⎭,所以点N 在定直线4y =-上.6、在平面直角坐标系中,已知椭圆C :22221x y a b+= (a>b>0)的离心率为12,右焦点F 到右准线的距离为3. (1)求椭圆C 的方程;(2)过点F 作直线l (不与x 轴重合)和椭圆C 交于M , N 两点,设点5,02A ⎛⎫ ⎪⎝⎭. ①若AMN 的面积为35,求直线l 方程;②过点M 作与)轴垂直的直线l "和直线NA 交于点P ,求证:点P 在一条定直线上.【答案】(1)22143x y +=;(2)①3(1)y x =-,②见解析 【解析】(1)由题意:2222123c a a c c a b c ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩解得:23a b =⎧⎪⎨=⎪⎩C 的方程为22143x y +=(2)①当直线l 斜率不存在时,方程为1x =,此时331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,不合题意;当直线l 斜率存在时,设方程为(1)y k x =-.由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 得:()22223484120k x k x k +-+-=.设()()1122,,,M x y N x y .由题意,>0∆, 且221212228412,3434k k x x x x k k-+=⋅=++ 所以()()2212121212212||1||434k k y y k x x k x x x x k +-=-=⋅+-=+因为5,02A ⎛⎫⎪⎝⎭, AMN ∆的面积为635所以1215631225y y ⎛⎫⨯-⨯-= ⎪⎝⎭,即2212||13345k k k +=+,解得3k =所以直线l 的方程为3(1)y x =-.②当直线l 的斜率不存在时,直线NA 的方程为:2250x y --=.令32y =,得4x =,所以直线NA 与l '的交点坐标3(4,)2.当直线l 的斜率存在时,由①知,221212228412,3434k k x x x x k k-+=⋅=++ 由直线NA 的方程为:225522y y x x ⎛⎫=- ⎪⎝⎭- 令1y y =,得()()()121222255511522221y x k x x k x x y k x ⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭=+=- ()()()121222544121kx x x x k k x k x -+++-=-()()33222241258441342341k k k k k x k k k x --⋅++-++=- ()()()()33222222412584414134234411k k k k k x k x k k k x k x --⋅++--++===--所以直线NA 与l '的交点P 的坐标为1(4,)P y , 综上所述,点P 在一条定直线4x =上,7、已知椭圆1C :22221(0)x y a b a b +=>>的离心率为22,且经过点23.2⎛- ⎝⎭ (1)求椭圆1C 的标准方程;(2)已知抛物线2C 的焦点与椭圆1C 的右焦点重合,过点()0,2P -的动直线与抛物线2C 相交于A ,B 两个不同的点,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在定直线上.【答案】(1)2212x y +=;(2)详见解析. 【解析】(1)由题意可知222222231,44c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得22a =,21b =,故椭圆的方程为2212x y +=. (2)证明:由已知可得抛物线2C 的标准方程为24y x =,设点Q ,A ,B 的坐标分别为(),x y ,()11,x y ,()22,x y , 由题意知B PA PB AQQ=,不妨设A 在P ,Q 之间,设PA AQ λ=,(0)λ>,又点Q 在P ,B 之间,故PB BQ λ=-,PB BQ >,1λ∴>,由PA AQ λ=可得()()1111,2,x y x x y y λ+=--解得11xx λλ=+,121yy λλ-+=+,点A 在抛物线上,22()411y x λλλλ-+∴=⨯++,即()2(2)41y x λλλ-=+,()1λ≠-,①由PB BQ λ=-可得()()2222,2,x y x x y y λ+=---解得21xx λλ=-,221y y λλ+=-, 点B 在抛物线上,22()411y xλλλλ+∴=⨯--, 即()2(2)41y x λλλ+=-,()1λ≠,②. 由-②①可得()842y x λλ=-,0λ≠,0x y ∴+=,∴点Q 总在定直线0x y +=上8、已知椭圆C 的离心率3e =1(2,0)A -,2(2,0)A .(1)求椭圆C 的方程;(2)设直线1x my =+与椭圆C 交于P ,Q 两点,直线A 1P 与A 2Q 交于点S ,试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.【答案】(1)2214+=x y (2)4=x【解析】(1)设椭圆C 的方程为22221(0)+=>>y x a b a b, ∵ 2=a ,3=e ∴3=c 21=b , ∴椭圆C 的方程为2214+=x y .(2)取0=m ,得3P ,3(1,)Q , 直线A 1P 的方程是3363=+y x ,直线A 2Q 的方程是332=y x 它们交点为13)S .若3(1,P ,3(1,Q ,由对称性可知2(4,3)-S ,若点S 在同一条直线上,由直线只能为l :4=x .以下证明对于任意的m ,直线A 1P 与A 2Q 的交点S 均在直线l :4=x 上,事实上,由22114=+⎧⎪⎨+=⎪⎩x my x y ,得22(4)230++-=m y my , 记11(,)P x y ,22(,)Q x y ,则12224-+=+m y y m ,12234-⋅=+y y m ,记A 1P 与l 交于点00(4,)S y ,由011422=++y y x ,得10162=+y y x ,设A 2Q 与l 交于点''0(4,)S y ,由022422=--’y y x ,得'20222=-y y x ,∵'121221121200121212626(1)2(3)46()22(2)(2)(2)(2)--+-+-=-==+-+-+-y y y my y my my y y y y y x x x x x x 2212121244=0(2)(2)---++=+-m mm m x x , ∴'00=y y ,即00(4,)S y 与''00(4,)S y 重合,这说明,当m 变化时,点S 恒在定直线l :4=x 上.9、设椭圆C :22221(0)y x a b a b+=>>过点2,1)M ,且左焦点为1(2,0)F -. (Ⅰ)求椭圆C 的方程;(Ⅰ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点A ,B 时,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某定直线上.【答案】(1)22142=y x , (2)220+-=x y【解析】(1)由题意:2222222211⎧=⎪⎪+=⎨⎪⎪=-⎩c a b c a b,解得24=a ,22=b .所求的求椭圆C 的方程22142+=y x . (2)方法一:设点(,)Q x y ,11(,)A x y ,22(,)B x y ,由题设,||PA 、||PB 、||AQ 、||QB 均不为0,且⋅=⋅AP QB AQ PB , 又P 、A 、Q 、B 四点共线,可设=-PA AQ λ,(0,1)=≠±PB BQ λλ,于是141-=-x x λλ,141-=-yy λλ①241+=+x x λλ,241+=+yy λλ②由于11(,)A x y ,22(,)B x y 在椭圆上,将①②分别带入C 的方程22142+=y x , 整理得:222(24)4(22)140+--+-+=x y x y λλ ③222(24)4(22)140+-++-+=x y x y λλ ④由④-③得8(22)0+-=x y λ.∵0≠λ,∴220+-=x y .即点(,)Q x y 总在直线220+-=x y 上. 方法二:设点(,)Q x y ,11(,)A x y ,22(,)B x y , 由题设,||PA 、||PB 、||AQ 、||QB 均不为0,又P 、A 、Q 、B 四点共线,可设=-PA AQ λ,(0,1)=≠±PB BQ λλ, 于是:1241-=-x x λλ,1211-=-y y λλ;121+=+x x x λλ,121+=+y y y λλ.从而2212241-=-x x x λλ ① 221221-=-y y y λλ ②又点A ,B 在椭圆上,即221124+=x y ③ 222224+=x y④①+2×②并结合③,④得220+-=x y ,即点(,)Q x y 总在直线220+-=x y 上.。

直线的方程课件-2025届高三数学一轮复习

直线的方程课件-2025届高三数学一轮复习

=

,



=
.所以



=
=


= +

≥ ,当且仅当


.所以直线的倾斜角为



=
时取等号,又 ∈ , ,所以 =





− = ,所以的斜率为 = −,又直线过点
2.斜率公式
(1)定义式:直线的倾斜角为 ≠ ,则斜率= .
(2)坐标式:设 , , , 在直线上,且 ≠ ,
率= − − .
如果 = 且 ≠ ,则直线与 轴平行或重合,斜率等于0;
当 = 时,直线方程为 = ,即 − = ;
当 = −时,直线方程为 − + = .
方法二:当直线过原点时,满足题意,此时直线方程为 = ,即
− = ;

当直线不过原点时,设直线方程为

+


= ≠ ,
因为直线过点 ,

,所以


,

= ∈ [, ].设直线的倾斜角为 ,则有
∈ [, ].又 ∈ [, ),所以 ∈

[ , ].故选B.


D.[ , ]


.由于 ∈ [ , ],所以


[ , ],即倾斜角的取值范围是

(2)已知直线过点 , ,且与以 , , , 为端点的线段有公


+ = .

高三数学第一轮复习直线中的最值问题及简单的线性规划通用版

高三数学第一轮复习直线中的最值问题及简单的线性规划通用版

高三数学第一轮复习:直线中的最值问题及简单的线性规划通用版【本讲主要内容】直线中的最值问题及简单的线性规划二元一次不等式(组)表示平面区域、线性规划的意义及应用。

【知识掌握】 【知识点精析】1. 二元一次不等式表示的平面区域:(1)在平面直角坐标系中,已知直线0Ax By C ++=,坐标平面内的点()00,P x y 。

①若0,000>++>C By Ax B ,则点()00,P x y 在直线的上方; ②若0,000<++>C By Ax B ,则点()00,P x y 在直线的下方。

(2)对于任意的二元一次不等式)0(0<>++或C By Ax ,无论B 为正值还是负值,我们都可以把y 项的系数变形为正数。

当B>0时,①Ax+By+C>0表示直线0Ax By C ++=上方的区域; ②Ax+By+C<0表示直线0Ax By C ++=下方的区域。

(3)判断二元一次不等式表示的平面区域的方法:①点定域法:画二元一次不等式表示的平面区域常采用直线定界,点定域(原点不在边界上时,用原点定域最简单);不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。

例如:画不等式x-2y+4>0表示的平面区域时,可先画直线240x y -+=(虚线),取原点()00,代入原不等式成立,所以不等式x-2y+4>0表示的区域如图所示。

②符号判断法:当B>0时,Ax+By+C>0表示直线0Ax By C ++=上方的区域,Ax+By+C<0表示直线0Ax By C ++=下方的区域;一般的若B<0时,可先把y 项系数变为正数再判断。

例如:3x-2y+6>0表示直线3260x y -+=下方区域;-3x+y+3<0表示直线330x y --=下方区域。

2. 线性规划:(1)有关概念:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲定直线
定直线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.
考向一求定直线
【例3】已知两点在抛物线上,点满足.
(1)若线段,求直线的方程;
(2)设抛物线过、两点的切线交于点.求证:点在一条定直线上.
【举一反三】
1.已知抛物线:的焦点为,点在抛物线上,且.
(1)求抛物线的方程;
(2)若点为抛物线上任意一点,过该点的切线为,过点作切线的垂线,垂足为,则点是否在定直线上,若是,求定直线的方程;若不是,说明理由.
考向二证明点在定直线上
【例2】如图,菱形的面积为,斜率为的直线交轴于点,且,以线段为长轴,为短轴的椭圆与直线相交于两点(与在轴同侧).
(1)求椭圆的方程;
(2)求证:与的交点在定直线上.
【举一反三】
1.已知点,都在椭圆:上.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,(异于顶点),记椭圆与轴的两个交点分别为,,若直线与交于点,证明:点恒在直线上.
1.已知点,的两顶点,且点满足
(1)求动点的轨迹方程;
(2)设′,求动点′的轨迹方程;
(3)过点的动直线与曲线′交于不同两点,过点作轴垂线′,试判断直线′与直线的交点是否恒在一条定直线上?若是,求该定直线的方程,否则,说明理由.
2.已知椭圆和抛物线,在,上各取两个点,这四个点的坐标为,,,
(Ⅰ)求,的方程;
(Ⅱ)设是在第一象限上的点,在点处的切线与交于两点,线段的中点为,过原点的直线与过点且垂直于轴的直线交于点,证明:点在定直线上.
3.已知抛物线:,过轴上一点(不同于原点)的直线与交于两点,,与轴交于点.
(1)若,,求的值;
(2)若,过,分别作的切线,两切线交于点,证明:点在定直线方程上,求出此定直线.
4.已知椭圆:的长轴长为4,左、右顶点分别为 ,经过点的动直线与椭圆相交于不同的两点 (不与点 重合).
(1)求椭圆的方程及离心率;
(2)求四边形面积的最大值;
(3)若直线与直线相交于点,判断点是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
5.已知抛物线 ,过点 的直线与抛物线 相切,设第一象限的切点为 . (1)求点 的坐标;
(2)若过点 的直线 与抛物线 相交于两点 ,圆 是以线段 为直径的圆过点 ,求直线 的方程.
6.已知F 是抛物线2
:4C x y =的焦点, ()()1122,,,A x y B x y 为抛物线C 上不同的两点, 12,l l 分别是抛
物线C 在点A 、点B 处的切线, ()00,P x y 是12,l l 的交点. (1)当直线AB 经过焦点F 时,求证:点P 在定直线上; (2)若2PF =,求·AF BF 的值.
7.已知动圆过定点,且与直线相切.
(1)求动圆的圆心的轨迹的方程;
(2)若曲线上一点,是否存在直线与抛物线相交于两不同的点,使的垂心为.若存在,求直线的方程;若不存在,说明理由.
8.已知椭圆的长轴长为4,离心率为.
(1)求椭圆的标准方程;
(2)过作动直线交椭圆于两点,为平面上一点,直线 的斜率分别为,且满足,问点是否在某定直线上运动,若存在,求出该直线方程;若不存在,请说明理由.。

相关文档
最新文档