高考数学知识点集锦高中数学

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

高中数学必考知识点

高中数学必考知识点
高中数学必考知识点
章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用

新高考数学归纳知识点

新高考数学归纳知识点

新高考数学归纳知识点新高考数学的知识点归纳是帮助学生系统地掌握高中数学知识,提高解题能力的重要环节。

以下是对新高考数学知识点的归纳总结:一、集合与函数- 集合的概念:元素、子集、并集、交集、补集等。

- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。

- 函数的表示方法:解析法、图像法、列表法等。

二、数列- 数列的基本概念:通项公式、前n项和等。

- 等差数列与等比数列:通项公式、求和公式。

- 数列的极限:无穷等比数列的极限、单调有界定理等。

三、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角恒等变换:和角公式、差角公式、倍角公式、半角公式等。

四、解析几何- 平面直角坐标系:点的坐标、直线方程、圆的方程等。

- 空间直角坐标系:空间直线与平面的方程。

- 圆锥曲线:椭圆、双曲线、抛物线的性质与方程。

五、立体几何- 空间几何体:柱、锥、台、球等的体积与表面积。

- 空间直线与平面的位置关系:平行、垂直、相交等。

- 空间向量:向量的加减、数乘、点积、叉积等。

六、概率与统计- 随机事件的概率:古典概型、几何概型、条件概率等。

- 统计初步:数据的收集、整理、描述等。

- 离散型随机变量及其分布列:期望、方差等。

七、导数与微分- 导数的概念:导数的定义、几何意义、物理意义等。

- 基本初等函数的导数:幂函数、三角函数、指数函数、对数函数等。

- 导数的应用:函数的单调性、极值、最值等。

八、积分- 不定积分与定积分的概念:原函数、积分区间、积分值等。

- 积分的基本公式与计算方法:换元积分法、分部积分法等。

- 定积分的应用:面积、体积、物理量等。

九、复数- 复数的概念:复平面、复数的四则运算等。

- 复数的代数形式与三角形式:欧拉公式、德摩弗定理等。

- 复数的应用:解析几何、电路分析等。

十、逻辑与推理- 逻辑连接词:与、或、非、蕴含等。

- 推理方法:演绎推理、归纳推理、类比推理等。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。

高考数学108知识点

高考数学108知识点

高考数学108知识点高考数学是每年高中毕业生必须参加的一项重要考试,对于学生而言,掌握数学知识点是迈向高考成功的关键。

本文将为大家详细介绍高考数学中的108个知识点,希望能够帮助大家更好地备考。

1. 代数与函数代数与函数是高考数学的基础,主要包括数的性质、整式的加减乘除、方程与不等式、函数及其性质等内容。

2. 三角函数三角函数是高考数学中的重点,包括三角函数的基本概念、单位圆及其性质、三角恒等变换等内容。

3. 平面向量平面向量是高考数学中的难点,包括向量的基本概念、向量的运算、向量的线性相关性等内容。

4. 空间几何空间几何是高考数学的重要部分,包括点、直线、平面的位置关系、曲线与曲面的方程、空间向量与直线的位置关系等内容。

5. 解析几何解析几何是高考数学中的基础,包括平面直角坐标系、向量表示的直线与平面、二次曲线及其参数方程等内容。

6. 概率与统计概率与统计是高考数学的必考内容,包括事件与概率、随机变量及其分布、统计量与抽样分布等内容。

7. 数列与数学归纳法数列与数学归纳法是高考数学的重要知识点,包括数列的概念、数列的通项公式与分部求和公式、数学归纳法的应用等内容。

8. 导数与微分导数与微分是高考数学的难点,包括函数的极限与连续性、导数与微分的概念与性质、基本初等函数的导数等内容。

9. 不定积分与定积分不定积分与定积分是高考数学的重点,包括不定积分的概念与性质、定积分的概念与性质、定积分的计算等内容。

10. 空间解析几何空间解析几何是高考数学的难点,包括空间直角坐标系、方向余弦与方向角、空间曲线与曲面的方程等内容。

11. 多元函数与偏导数多元函数与偏导数是高考数学的重点,包括多元函数的概念与性质、偏导数的定义与计算、隐函数与参数方程等内容。

12. 微分方程微分方程是高考数学的难点,包括微分方程的基本概念、常微分方程的解法、变量可分离方程与齐次方程等内容。

13. 矩阵与行列式矩阵与行列式是高考数学的重点,包括矩阵的基本概念与运算、行列式的性质与计算、矩阵的初等变换与逆矩阵等内容。

高考数学重难知识点归纳总结

高考数学重难知识点归纳总结

高考数学重难知识点归纳总结一、函数与方程1. 一元二次函数- 定义:形如y=ax²+bx+c,其中a≠0,称为一元二次函数。

- 重点:顶点坐标、对称轴方程、开口方向及判别式的应用。

2. 指数与对数函数- 定义:指数函数为y=aˣ,其中a>0且a≠1;对数函数为y=logₐx,其中a>0且a≠1。

- 重点:指数函数的性质、对数函数的性质、指对关系及换底公式的应用。

3. 三角函数- 定义:正弦、余弦、正切函数等。

- 重点:函数图像、周期性质、辅助角公式及和差化积的应用。

4. 方程与不等式- 重点:二次方程根的性质、应用相关不等式、绝对值等式与不等式的解法。

二、几何与向量1. 相似三角形- 定义:对应角相等,对应边成比例的两个三角形称为相似三角形。

- 重点:相似三角形的判定、比例等分线、相似三角形中角度的性质。

2. 平面向量- 定义:具有大小和方向的量称为向量。

- 重点:向量的加减、数量积、向量共线的判定和平方模长的应用。

3. 圆的性质- 重点:切线与圆的关系、弦长定理、切割定理以及圆锥曲线的相关概念。

4. 空间几何- 重点:平面与直线的位置关系、球的方程及交线性质。

三、概率与统计1. 随机事件与概率- 定义:试验的每个可能结果称为样本点,若试验的样本空间S与每个样本点的结果发生的事件A有一一对应的关系,则称事件A为随机事件。

- 重点:事件的概率、概率的运算及组合与排列的概率计算。

2. 统计与抽样- 重点:统计的基本概念、频率分布、抽样调查、误差分析等。

四、解析几何1. 直线与圆的方程- 重点:直线的一般式、点斜式、两点式、圆的标准式、一般式及与其他几何图形的方程关系。

2. 参数方程与极坐标- 重点:参数方程与直线、圆、曲线的关系、极坐标基本概念与坐标变换。

五、数列与数学归纳法- 重点:等差数列与等比数列的概念、通项公式、前n项和及数列的应用。

六、解题方法与技巧1. 倒着解题法2. 反设法3. 插值法4. 巧用画图法5. 分解因式法6. 枚举法7. 特殊取值法以上是高考数学中的重难知识点的归纳总结,希望对你的复习有所帮助。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、集合与常用逻辑 二、函数概念与性质 三、基本初等函数 四、函数图像与方程 五、导数及其应用 六、三角函数 七、数 列 八、不等式九、复数与推理证明 十、算法初步 十一、平面向量 十二、立体几何 十三、直线与圆 十四、圆锥曲线 十五、计数原理 十六、概率与统计十七、随机变量的概率分布一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为:M, )(X p ⌝二、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x f f(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0三、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0四、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”)()(hxfyxfy+=→=伸缩:)1()(xfyxfyϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(xfyxfyxfyxfyxfyxfyyx--=−−→−=-=−→−=-=−→−=原点轴轴注:)(xfy=ax=→直线)2(xafy-=翻折:→=)(xfy|()|y f x=保留x轴上方部分,并将下方部分沿x轴翻折到上方y=f(x)cba oyxy=|f(x)|cba oyx →=)(xfy(||)y f x=保留y轴右边部分,并将右边部分沿y轴翻折到左边y=f(x)cba oyxy=f(|x|)cba oyx 3.零点定理若0)()(<bfaf,则)(xfy=在),(ba内有零点(条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?五、导数及其应用1.导数几何意义)(x f 在点x 0处导数)(0'x f :指点x 0处切线斜率2.导数公式0)(='C (C 为常数) 1)(-⋅='n n x n x x x cos )(sin =' x x sin )(cos -='x x e e =')( x x /1)(ln ='.)('''v u v u ±=± .)('''uv v u uv += .)(''Cu Cu =/⎪⎭⎫ ⎝⎛v u =2''v uv v u - 'x y ='u y .'x u 3.导数应用单调性:如果0)('>x f ,则)(x f 为增函数如果0)('<x f ,则)(x f 为减函数极大值点:在x 0附近)(x f “左增右减↗↘” 极小值点:在x 0附近)(x f “左减右增↘↗”注0)(0'=x f求极值:)(x f 定义域→)('x f →)('x f 零点→列表:x 范围、)('x f 符号、)(x f 增减、)(x f 极值求[a ,b]上最值:)(x f 在(a ,b)内极值与ƒ(a)、ƒ(b)比较4.三次函数d cx bx ax x f +++=23)( c bx ax x f ++=23)(2/图象特征:“↗↘↗” “↘↗↘”0,0>∆>a 0,0>∆<a极值情况:)(0x f ⇔>∆有极值)(0x f ⇔≤∆无极值5.定积分定理:)()()(a F b F dx x f ba -=⎰其中)()('x f x F = 性质:⎰⎰=ba ba dx x f k dx x kf )()((k 为常数)⎰⎰⎰±=±bab abadx x g dx x f dx x g x f )()()()(应用:② 直线x =a ,x =b ,x 轴及曲线y =f(x)(f(x)≥0)围成曲边梯形面积⎰=badx x f S )(②如图,曲线y 1=f 1(x),y 2=f 2(x)在[a ,b]上围成图形的面积S =S曲边梯形AMNB-S曲边梯形DMNC=⎰⎰-babadxx f dx x f )()(21六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.α6π4π 3π 2π π23π sin α21 22 23 11-cos α123 22 21 01- 0tg α0 33 13/ 0 /7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕy=sinxy=cosxy=tanx图象单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”4.平面区域与线性规划不等式表示的平面区域判断:①在直线0Ax By C ++=一侧取一个特殊点00(,)x y(通常是原点) ②由00Ax By C ++的正负,判断0Ax By C ++>表示直线哪一侧的平面区域注:直线同侧所有点的坐标代入Ax By C ++,得到实数的符号都相同 线性规划问题的一般步骤:①设所求未知数;②列约束条件(不等式组); ③ 立目标函数;④作可行域;⑤求最优解例:设,x y 满足4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩求2z x y =+最值当l 过(5,2)A 时,z 最大, 当l 过(1,1)B 时,z 最小九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=?除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni r rk i i =+43.合情推理类比:特殊推出特殊OyxA CB430x y -+=1x = 35250x y +-=归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A为真,只要证B为真,即证……,这只要证C为真,而已知C为真,故A必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k∈N* ,k≥1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、算法初步二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2 v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十一、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 ⋅θcos ⋅=2121y y x x +注:①,夹角:00≤θ≤1800②b a ,同向: b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //λ=⇔1221y x y x =(≠) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a =22y x + =+=+2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅c b =⇒(消去律)不成立十二、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

相关文档
最新文档