三角形的内切圆(教学设计)
青岛版数学九年级上册3.5《三角形的内切圆》教学设计

青岛版数学九年级上册3.5《三角形的内切圆》教学设计一. 教材分析《三角形的内切圆》是青岛版数学九年级上册3.5的内容。
本节课主要让学生掌握三角形的内切圆的定义、性质及求法,并能运用内切圆解决一些与三角形有关的问题。
教材通过实例引入内切圆的概念,引导学生探究内切圆的性质,最后通过例题和练习题巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、圆的性质等知识。
但内切圆是一个较为抽象的概念,学生可能难以理解。
因此,在教学过程中,教师需要善于利用生活中的实例、模型等直观教具,帮助学生建立直观的形象,降低学习难度。
三. 教学目标1.了解三角形的内切圆的定义、性质及求法。
2.能运用内切圆解决一些与三角形有关的问题。
3.培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
四. 教学重难点1.内切圆的定义及其性质。
2.内切圆在解决问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入内切圆的概念,激发学生的学习兴趣。
2.启发式教学法:在探究内切圆性质的过程中,引导学生主动思考、提问。
3.实践操作法:让学生动手操作模型,加深对内切圆的理解。
4.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.准备内切圆的相关模型、图片等直观教具。
2.设计好PPT,展示教学过程和例题。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如花园里的花坛、水果店的苹果摆放等,引导学生思考:为什么这些形状看起来很协调?引入三角形的内切圆的概念,让学生初步了解内切圆。
2.呈现(10分钟)通过PPT展示内切圆的定义、性质及求法。
让学生直观地感受内切圆的特点,并引导学生思考如何求一个三角形的内切圆。
3.操练(10分钟)让学生分组讨论,每组选择一个三角形,尝试求出它的内切圆。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目可以包括求三角形的内切圆半径、判断一个图形是否为某三角形的内切圆等。
浙教版数学九年级下册2.3《三角形的内切圆》教学设计2

浙教版数学九年级下册2.3《三角形的内切圆》教学设计2一. 教材分析浙教版数学九年级下册2.3《三角形的内切圆》是三角形内切圆相关知识的学习,是对三角形内心的深入研究。
本节内容通过探究三角形的内切圆的性质,让学生理解三角形的内心与内切圆的关系,掌握三角形的内切圆圆心、半径的求法,提高学生的几何思维能力。
二. 学情分析学生在学习本节内容前,已经学习了三角形的内心的性质,对三角形内心的概念、性质和判定有一定的了解。
但学生对三角形内切圆的理解可能还存在一定的困难,需要通过实例分析、小组讨论等方式,帮助学生理解和掌握。
三. 教学目标1.让学生理解三角形的内切圆的概念,掌握三角形的内切圆圆心、半径的求法。
2.培养学生的几何思维能力,提高学生解决几何问题的能力。
3.培养学生合作学习的习惯,提高学生的团队协作能力。
四. 教学重难点1.三角形内切圆的概念及其性质。
2.三角形的内切圆圆心、半径的求法。
五. 教学方法1.实例分析法:通过具体的三角形例子,让学生观察、分析,理解三角形的内切圆的性质。
2.小组讨论法:学生进行小组讨论,分享学习心得,互相解答疑问。
3.引导发现法:教师引导学生发现三角形内切圆的性质,培养学生的几何思维能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示三角形内切圆的性质和实例。
2.教学素材:准备一些具体的三角形例子,用于讲解和分析。
3.学生活动材料:准备一些练习题,让学生进行实践操作和巩固知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形内心的性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示三角形内切圆的性质和实例,让学生观察、分析,理解三角形的内切圆的概念。
3.操练(10分钟)教师学生进行小组讨论,让学生分享学习心得,互相解答疑问。
教师引导学生发现三角形内切圆的性质,培养学生的几何思维能力。
4.巩固(10分钟)教师发放练习题,让学生进行实践操作,巩固所学知识。
数学教案-三角形的内切圆

数学教案-三角形的内切圆一、教学目标通过本节课的学习,学生将能够: 1. 理解三角形的内切圆的定义; 2. 掌握求解三角形内切圆半径的方法; 3. 利用内切圆性质解决相关问题。
二、教学内容1.三角形的内切圆的定义;2.内切圆的性质;3.求解内切圆半径的方法。
三、教学步骤1. 导入引入问题:你有没有注意到一些三角形中有一个特殊的圆呢?今天我们就来学习一下这个特殊的圆,它叫做三角形的内切圆。
2. 理解三角形的内切圆的定义解释三角形的内切圆的概念:内切圆是可以与三角形的三条边都相切的圆。
它与三角形的三个顶点分别相切于三角形的三个边上。
3. 掌握内切圆的性质讲解内切圆的性质: - 内切圆的圆心与三角形的三个角平分线的交点相同; - 内切圆的半径是三角形的内角平分线的交点到三条边的距离之和的一半。
4. 求解内切圆半径的方法介绍求解内切圆半径的步骤:步骤一:求出三角形的面积。
步骤二:根据三角形的面积和三边长度,利用海伦公式求解半周长。
步骤三:利用半周长和三角形面积求解内切圆半径。
5. 案例演练给出一个具体的三角形,让学生运用所学知识求解内切圆半径,并解释求解的步骤和思路。
6. 拓展应用让学生设计一个问题,利用内切圆的性质解答,并向同学提问,鼓励活动大脑,锻炼解决问题的能力。
7. 总结与展望总结本节课的学习内容,并展望下节课的学习内容:我们通过学习了解了三角形的内切圆的概念和性质,并学会了求解内切圆半径的方法。
下节课将继续学习三角形相关的知识,拓展我们的数学视野。
四、教学反思本节课通过引入问题、讲解概念、讲解性质、演练求解以及拓展应用等环节,全面系统地介绍了三角形的内切圆的相关知识。
在教学过程中,对于重点知识点的讲解要更加详细,让学生逐步理解。
同时,要注重激发学生的思维,鼓励他们运用所学知识解决问题,提高他们的综合能力。
课后可以布置练习作业,巩固学生的学习成果。
三角形的内切圆教案设计

三角形的内切圆教案设计一、教学目标:1.了解三角形的内切圆的概念和性质;2.能够应用相关概念和性质解决与内切圆相关的问题。
二、教学重点:1.三角形内切圆的性质;2.三角形内切圆与三角形的关系。
三、教学难点:三角形内切圆与三角形的关系。
四、教学准备:1.教师准备:教师准备好教材、黑板、彩色粉笔等;2.学生准备:学生准备好教材、作业本等。
五、教学过程:第一节:引入新课1.师生互动:通过提问学生已经了解到的圆的相关知识,让学生回顾。
2.导入新课:将学生回顾的圆的知识引入到三角形的内切圆中,让学生了解三角形内切圆的概念。
第二节:学习新课1.教师讲解:通过示意图和实际物体,教师讲解三角形内切圆的相关概念和性质。
2.示例演练:教师选取一个实际三角形,让学生观察并回答相关问题。
3.学生练习:学生根据教师讲解和示例演练,完成作业本上的相关练习。
第三节:拓展运用1.教师讲解:通过一些与内切圆相关的实际问题,教师讲解如何运用内切圆的概念和性质解决问题。
2.合作探究:将学生分为小组,让学生合作解决一些实际问题,要求学生用内切圆的概念和性质解决问题。
3.学生展示:每个小组选取最佳解答并展示给全班,促进学生之间的交流和合作。
第四节:课堂总结1.教师总结:教师对本节课的学习内容进行总结,并提醒学生记住三角形内切圆的性质和应用方法。
2.学生自主总结:学生回忆本节课的学习内容,将自己的收获和困惑记录在作业本上。
第五节:课后练习和作业布置1.课后练习:教师布置一些与内切圆相关的练习题,要求学生独立完成。
2.作业布置:布置一些与内切圆相关的作业题,要求学生独立思考并完成。
六、教学反思:本节课通过引导和讲解结合的方式,让学生了解和掌握了三角形内切圆的相关概念和性质。
通过示例演练和合作探究,培养了学生的观察能力和解决问题的能力。
但是在教学过程中,可能会遇到学生理解困难和作业完成不及时的情况,需要及时与学生沟通,帮助他们解决问题。
人教版九年级数学下册《三角形的内切圆——内心(培优)》教学设计

人教版九年级数学下册《三角形的内切圆——内心(培优)》教学设计一. 教材分析人教版九年级数学下册《三角形的内切圆——内心(培优)》这一节,主要让学生了解三角形的内切圆及其性质,学会如何求解三角形的内切圆半径。
通过这一节的学习,学生可以更深入地理解三角形的几何性质,提高解决问题的能力。
二. 学情分析九年级的学生已经掌握了基本的几何知识,对三角形有了一定的了解。
但是,对于三角形的内切圆及其性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已知的三角形性质出发,逐步探索内切圆的性质。
三. 教学目标1.知识与技能:让学生掌握三角形的内切圆的性质,学会求解三角形的内切圆半径。
2.过程与方法:通过观察、操作、推理等过程,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。
四. 教学重难点1.重点:三角形的内切圆的性质,求解三角形的内切圆半径。
2.难点:理解并证明三角形的内切圆半径与三角形边长、角度的关系。
五. 教学方法1.引导发现法:通过问题引导,让学生发现内切圆的性质。
2.几何画板辅助教学:利用几何画板展示内切圆的形成过程,增强学生的直观感受。
3.小组合作学习:引导学生分组讨论,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示内切圆的性质和求解方法。
2.几何画板:准备几何画板,展示内切圆的形成过程。
3.练习题:准备相关的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一个三角形,引导学生思考:如何求解这个三角形的内切圆半径?从而引出本节课题。
2.呈现(10分钟)利用几何画板展示三角形的内切圆形成过程,引导学生观察并总结内切圆的性质。
3.操练(10分钟)让学生分组讨论,如何求解三角形的内切圆半径。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
教师选答部分题目,讲解解题思路。
5.拓展(10分钟)引导学生思考:内切圆的性质还可以应用到其他几何问题中吗?举例说明。
人教版九年级数学上册24.2.2切线长定理及三角形的内切圆(教案)

(1)对于切线长定理的证明,教师可以采用构造辅助线、利用相似三角形等方法,逐步引导学生理解证明过程,降低难度。
(2)在讲解内切圆半径计算时,可以针对不同类型的三角形,给出具体的计算步骤和方法,让学生通过练习逐步掌握。
(3)针对解决实际问题时思路的拓展,教师可以设置一些具有挑战性的题目,引导学生运用所学知识,培养学生的问题分析和解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理及内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题的能力培养:通过典型例题,重点训练学生运用切线长定理和内切圆性质解决实际问题的能力。
举例解释:
(1)在讲解切线长定理时,可以通过图形演示和实际测量,让学生直观地理解切线长的概念,并掌握切线长的计算方法。
(2)对于三角形内切圆的性质,通过构造具体的三角形模型,让学生观察内切圆与三角形各边的关系,理解并掌握内切圆半径的计算方法。
2.教学难点
-切线长定理的证明:对于定理的证明过程,学生可能难以理解,需要教师通过直观演示和逐步引导,帮助学生突破这一难点。
-内切圆半径的计算:学生在计算内切圆半径时,可能会对涉及到的几何关系和代数运算感到困惑,需要教师详细讲解并举例说明。
-解决实际问题时思路的拓展:学生在面对复杂的几何问题时,可能会缺乏解题思路,教师需要指导学生如何将问题转化为切线长定理和内切圆性质的应用。
四、教学流程
沪科版数学九年级下册24.5《三角形的内切圆》教学设计

沪科版数学九年级下册24.5《三角形的内切圆》教学设计一. 教材分析《三角形的内切圆》是沪科版数学九年级下册第24.5节的内容。
本节内容主要介绍三角形的内切圆的概念、性质及其在几何中的应用。
通过本节的学习,学生能够理解三角形的内切圆的定义,掌握其基本性质,并能运用内切圆的知识解决一些几何问题。
二. 学情分析九年级的学生已经学习了三角形的相关知识,对三角形的性质有一定的了解。
但是,对于三角形的内切圆这一概念,学生可能比较陌生。
因此,在教学过程中,需要引导学生从已知的三角形性质出发,逐步引入内切圆的概念,并引导学生探索内切圆的性质。
三. 说教学目标1.知识与技能:学生能够理解三角形的内切圆的概念,掌握其基本性质,并能运用内切圆的知识解决一些几何问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,学生能够培养自己的空间想象能力和几何思维能力。
3.情感态度与价值观:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神。
四. 说教学重难点1.教学重点:三角形的内切圆的概念及其性质。
2.教学难点:内切圆的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等教学方法,引导学生主动参与课堂讨论,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、几何画板等教学手段,直观地展示三角形的内切圆的性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习三角形的相关知识,引导学生回顾已学的三角形性质,为新课的学习做好铺垫。
2.探究内切圆的概念:通过展示几何画板上的三角形,引导学生观察和操作,让学生自己发现三角形的内切圆的性质,并引导学生总结出内切圆的定义。
3.证明内切圆的性质:引导学生运用已学的三角形性质,证明内切圆的性质,如切线定理、角平分线定理等。
4.运用内切圆的知识解决几何问题:通过一些具体的例题,引导学生运用内切圆的知识解决一些几何问题,如求三角形的面积、证明几何定理等。
青岛版数学九年级上册《3.5三角形的内切圆》教学设计3

青岛版数学九年级上册《3.5 三角形的内切圆》教学设计3一. 教材分析《3.5 三角形的内切圆》是青岛版数学九年级上册的一章,主要介绍了三角形的内切圆的概念、性质和计算方法。
本节课的内容对于学生来说比较抽象,需要学生具备一定的几何想象能力和逻辑思维能力。
教材通过具体的例题和练习题,帮助学生理解和掌握三角形的内切圆的相关知识。
二. 学情分析九年级的学生已经学习过相似三角形、平行线等基础知识,具备一定的几何素养和逻辑思维能力。
但是,对于三角形的内切圆这一概念,学生可能较为抽象,难以理解。
因此,在教学过程中,需要教师通过生动的实例和形象的图形,帮助学生建立直观的认识,引导学生积极参与,培养学生的几何想象能力和逻辑思维能力。
三. 教学目标1.了解三角形的内切圆的概念和性质。
2.学会计算三角形的内切圆的半径。
3.能够运用三角形的内切圆的相关知识解决实际问题。
四. 教学重难点1.三角形的内切圆的概念和性质。
2.计算三角形的内切圆的半径的方法。
3.运用三角形的内切圆的相关知识解决实际问题。
五. 教学方法1.采用直观演示法,通过展示三角形内切圆的图形,帮助学生建立直观的认识。
2.采用问题驱动法,通过提出问题,引导学生思考和探索,培养学生的逻辑思维能力。
3.采用案例教学法,通过分析具体的例题和练习题,引导学生运用所学知识解决实际问题。
六. 教学准备1.PPT课件:包括三角形的内切圆的图形、例题和练习题等。
2.黑板:用于板书重要的概念和公式。
3.三角板:用于画图和演示。
七. 教学过程1.导入(5分钟)通过提问方式复习之前学习过的相似三角形和平行线的相关知识,引导学生进入本节课的学习。
2.呈现(10分钟)展示三角形内切圆的图形,引导学生观察和思考,引出三角形的内切圆的概念。
3.操练(10分钟)解释三角形的内切圆的性质,引导学生通过观察和推理,理解三角形的内切圆的性质。
4.巩固(10分钟)讲解计算三角形的内切圆半径的方法,引导学生通过具体的例题,掌握计算三角形的内切圆半径的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
C
B
4.7三角形的内切圆
【教师寄语】真正的聪明是能够忍辱负重。
真正的智慧是懂得蓄势待发。
真正的成功是最后掌声四起。
真
正的阶梯是永远拼搏! 【学习目标】
1.理解三角形内切圆的概念,掌握三角形内切圆的性质,能准确辨析内心和外心的不同
2.掌握画三角形的内切圆的方法,能借助三角形内切圆的性质解决有关几何问题。
3.应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;通过获得成功的经验和克服困难的经历,增进学生数学学习的信心。
【学习过程】 一、情境创设
试一试:
一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮。
分析:①让学生展开讨论,教师指导学生发现,实际上是作一个圆,使它和已
知三角形铁皮的各边都相切.
②让学生展开充分的讨论,如何确定这个圆的圆心及半径? ③在此基础上,由学生形成作图题的完整过程。
二、探求新知 ⒈本课知识点:
⑴和三角形各边都相切的圆叫做 , 叫做三角形的内心,这个三角形叫做 . ⑵分别画出直角三角形和钝角三角形的内切圆.
小结:①一个三角形的内切圆是唯一的;
②内心与外心类比:
例1、如图,△ABC 中,内切圆I 和边BC 、CA 、AB 分别相 切于点D 、E 、F,∠B=60°,∠C=70°.求∠EDF 的度数。
C
三.再攀高峰
探究活动一 问题:如图,有一张三角形纸片,其中BC=6cm ,AC=8cm ,∠C =90°.今需在△ABC 中剪出一个半圆,使得此半圆直径在三角形一边上,并且与另两边都相切,请设计出所有可能方案,并通过计算说明如何设计使得此半圆面积最大,最大为多少?
探究活动二问题:如图1,有一张四边形ABCD 纸片,且AB=AD=6cm ,CB=CD=8cm ,∠B=90°.
(1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径;
(2)计算出最大的圆形纸片的半径(要求精确值).
四、达标测试
1.如图1,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么
∠EDF 等于( )
A .40°
B .55°
C .
65°
D .
70°
图1 图2 图3
2.如图2,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A=50°,∠C=60°则∠DOE=( ) A .70° B .110° C .120° D .130°
3.如图3,△ABC 中,∠A=45°,I 是内心,则∠BIC=( ) A .112.5° B .112° C .125° D .55° 4.下列命题正确的是( )
A .三角形的内心到三角形三个顶点的距离相等
B .三角形的内心不一定在三角形的内部
C .等边三角形的内心,外心重合
D .一个圆一定有唯一一个外切三角形 5.在Rt △ABC 中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( ) A .1.5,2.5 B .2,5 C .1,2.5 D .2,2.5
6.如图,在△ABC 中,AB=AC ,内切圆O 与边BC ,AC ,AB 分别切于D ,E ,F . (1)求证:BF=CE ;
(2)若∠C=30°,AC 的长.
7.如图,⊙I 切△ABC 的边分别为D ,E ,F ,∠B=70°,∠C=60°,M
是
D
EF 上的动点(与D ,E 不重合),∠DMF 的大小一定吗?若一定,求出∠DMF 的大小;若不一定,请说明理由.
五、非常演练
1.如图,在半径为R 的圆内作一个内接正方形,•然后作这个正方形的
内切圆,又
在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )
A .(
2
)n R B .(
12
)n R C .(
12
)n -1R D .(
2
)
2.阅读材料:如图(1),△ABC 的周长为L ,内切圆O 的半径为r ,连结OA ,OB ,△
ABC 被划分为三个小三角形,用S △ABC 表示△ABC 的面积. ∵S △ABC =S △OAB +S △OBC +S △OCA 又∵S △OAB =12
AB ·r ,S △OBC =
12
BC ·r ,S △OCA =12
AC ·r
∴S △ABC =12AB ·r+12
BC ·r+
12
CA ·r
=
12
L ·r (可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD 存在内切圆(与各边都相切的圆,如图(2)•且面积为S ,各边长分别为a ,b ,c ,d ,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n 边形(n 为不小于3的整数)存在内切圆,且面积为S ,各边长分别为a 1,a 2,a 3,…a n ,合理猜想其内切圆半径公式(不需说明理由).
六、课堂小结
通过本节课的学习,
你认为要重点掌握的知识是_____________________________________________________,在学习的过程中你的困惑有_____________________________________________________,你对自己本节课的表现满意的地方是_____________________________________________。