数控恒压恒流电源设计

合集下载

数控电源设计

数控电源设计

数控电源设计直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备。

基本的“恒压恒流电源”结构框图如图1所示。

由电压基准源、调整管、误差放大、电压取样以及电流取样组成。

电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。

取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。

这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。

而一般的可变恒压恒流电源是采用改变“取样电路的分压比例”来实现输出电压以及最高限制电流的调节。

图1 基本恒压恒流电源框图图2基本稳压电源简图图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟 随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。

输入电压V+通过R1和稳压二极管VD 产生基准电压Vref ,然后将Vref 放大(231R R +)倍,即在负载RL 上的得到的电压为(231R R +)Vref ⨯,因为R3可调范围是0~R3 max ,所以输出电压范围为 Vref ~ Vref R R ⨯+)231(max 。

这不就和我们常用的LM317之类的可调稳压芯片一样了,这种以 改变取样电阻R3阻值来改变输出电压的稳压电源 作用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的。

这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V 慢慢地向6V 调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压。

2017毕业论文-数控恒流源的设计

2017毕业论文-数控恒流源的设计

2017毕业论文-数控恒流源的设计2017毕业论文-数控恒流源的设计兰州工业高等专科学校毕业论文摘要恒流源,是一种能够向负载提供恒定电流的电源。

恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。

本文设计了一种基于单片机控制的数控直流恒流源。

该恒流源以AT89S52为控制核心,采用了高共模抑制比低温漂的运算放大器OP07和达林顿管TIP122构成恒流源的主体,配以高精度采样电阻及12位D/A芯片MAX532、16位A/D芯片AD7715,完成了单片机对输出电流的实时检测和实时控制。

人机接口采用4×4键盘及LED数码管显示器,控制界面直观、简洁,具有良好的人机交互性能。

在软件设计上采用增量式PID控制算法,即数字控制器的输出只是控制量的增量。

该系统已基本达到预期的设计目标,具有功能强、性能可靠、体积小、电路简单的特点,可以应用于需要高稳定度的小功率恒流源的领域。

关键词:恒流源;AT89S52;PID控制算法;数字控制。

The abstract Constant current, is one kind can provide theconstant current to the load the power source.The constant current application scope is extremely widespread, and in many situations is essential.This article has designed one kind the numerical control cocurrent constant current which controls based on the monolithic integrated circuit. This constant current take AT89S52 as the control core, has used operational amplifier OP07 and Darington which Gao Gongmu the rejection ratio low temperature floats manages the TIP122 constitution constant current the main body, matches by the high accuracy sampling resistance and 12 D/A chip MAX532, 16 A/D chip AD7715, has completed the monolithic integrated circuit to the output current real-time examination and the real-time control. The man-machine connection uses 4×4 the keyboard and the LED nixietube monitor, the control interface is direct-viewing, is succinct, has the good man-machine interaction es the increase type PID control algorithm in the software design, namely the digital controller output only is controls the quantity the increase. This system had achieved basically the anticipated design goal, has the function strongly, the performance reliable, the volume small, the electric circuit simple characteristic, may apply in needs the high stability the low power constant current domain. Key word: Constant current;AT89S52; PID control algorithm; Numerical control. 目录第1章绪论5 第2章系统的总体设计6 2.1 设计指标要求6 2.2 总体方案的选取及系统6 2.2.1 方案一:6 2.2.2 方案二:7 第3章系统的硬件设计8 3.1 单片机的功能介绍8 3.1.1 主要功能特性:8 3.1.2 引脚功能说明8 3.1.3 时钟电路及复位电路11 3.2 恒流源基本设计原理与实现方法13 3.2.1 引起稳定电源输出不稳定的主要原因13 3.2.2 恒流源的基本设计原理14 3.2.3 系统电源设计15 3.3 A/D 模块选择16 3.3.1 AD7715简介16 3.3.2 硬件电路设计18 3.4 D/A 模块选择19 3.4.1 MAX532简介19 3.4.2 硬件电路设计21 3.5 键盘接口电路设计22 3.5.1 键盘工作方式23 3.5.2 接口电路设计23 3.5.3 按键抖动及消除24 3.6 显示器接口电路设计25 第4章系统的软件设计27 4.1 控制算法27 4.2 软件流程图29 4.2.1 主程序流程图29 4.2.2 键盘中断子程序30 4.2.3 显示中断子程序31 第5章总结33 致谢34 参考文献35 附录A 总电路图36 第1章绪论恒流源,是一种能向负载提供恒定电流之电路。

数控恒流源的设计

数控恒流源的设计

数控直流电流源设计摘要:目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科,它对现代通讯、电子仪器、计算机、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠性的电源起着关键作用。

针对数控直流恒流源的设计进行了探讨,其中涉及恒流电路、SOC系统和电源供给等。

结果表明,在200~2 000 mA的电流范围内,实现了1 mA的恒流精度或更高。

恒流源是仪器仪表和电子电路领域广泛运用的一种电子设备,基于MCS51单片机的数控恒流源。

通过键盘预置电流值,经单片机将数据送至液晶显示LED和D/A转换模块。

将对应电压量送至恒流源模块,作为其可控输入电压量。

恒流源模块负载输出端的电压通过差放,再经过A/D 转换送至单片机进行比较。

通过单片机的控制,实现电流的步进控制和输入输出的改变。

关键字MCS51,直流电源,数控一、绪论随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为一种趋势,设备的性能,价格,发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。

想能耗的电子设备,首先离不开稳定的电源,电源的稳定度越高,设备和外围条件越优越,那么设备的寿命更长。

基于此,人们对于数控直流电源器件越迫切。

当今社会,数控恒压技术已经很成熟,但是恒流方面的技术才刚起步有待发展。

数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20—2000mA(可调)、输出电流可预置、输出电流信号可直接显示等功能。

硬件电路采用单片机为控制核心,利用闭环控制原理,电路组成闭环负反馈进行稳流,最终实现精度高、稳定性好、输出范围宽的要求。

二、方案设计1、系统的组成和原理(1)、系统的组成本电流源系统可分为电源电路、单片机控制器部分、A/D和D/A转换电路、电流源电路、键盘输入与LED显示等几部分,系统组成如图1所示。

图1(2)、系统设计的基本要求输入交流200~240V,50Hz;输出直流电压小于等于10V。

基于Mega16的数控恒压恒流电源

基于Mega16的数控恒压恒流电源

数控恒压恒流电源摘要:本作品采用220V市电输入,通过数控能够实现恒压10V,恒流1A、800mA、500mA 各个功能的切换。

具有显示电流电压功能,并且使用前可以根据精准的电表进行校正,校正之后的显示结果与电表显示一致。

并且具有过流保护功能,过流保护动作电流为1.2A,当负载减小时自动恢复到正常状态(系统预设到9欧姆,即10V时,电流1.1A)。

除此以外,该电源还具有红外遥控功能,空载检测功能,使用校正等扩展功能。

目录一、系统框图: (2)二、整体方案论证: (2)2.1主体电源模块: (2)2.2数控模块: (2)2.3辅助电源模块: (2)2.4功能切换方案: (3)2.5反馈模块: (3)三、电路设计与参数计算: (3)3.1辅助电源部分:采用LMZ14203实现 (3)3.2数控部分: (3)3.3反馈网络: (4)3.4主体DC-DC部分: (4)3.5控制程序流程: (6)四、测试结果: (6)4.1效率 (6)4.2负载调整率 (7)4.3过流保护 (7)4.5空载检测 (7)4.6按键测试 (7)五、总结 (7)一、系统框图:图(1)系统框图二、整体方案论证:2.1主体电源模块:【方案一】采用UC3842作为PWM控制器,TPS2812作为PWM波形驱动,使用IRF3205作为开关管,并且使用变压器隔离。

这种方案整体效率高,可以实现大电流、大电压,系统稳定的效果。

但是,本设计对变压器要求较高,实现起来有一定难度,且成品体积较大,用于这种小电流的场合不大合适。

【方案二】采用SG3524作为PWM控制芯片,使用IR2110作为PWM驱动芯片,采用BUCK结构实现降压效果,这种方法中使用的SG3524是一款比较成熟的芯片,其反馈很好调节。

综合以上两种方案,最终选择第二种方案。

2.2数控模块:【方案一】采用FPGA等数字处理芯片,该方案成本较高,且在本设计中,数控实现比较简单,只需简单的AD采样,电流电压显示和功能切换即可。

数控恒压恒流电源设计

数控恒压恒流电源设计

数控恒压恒流电源设计数控恒压恒流电源是一种在电子设备研发和制造工作中十分常见的装置,它能够提供稳定的电流和电压输出,广泛应用于电子元器件的测试、电子设备的加工和电子设备的研发等领域。

本文将详细介绍数控恒压恒流电源的设计原理、关键技术以及实际应用等内容。

一、设计原理当负载发生变化时,电源会检测到输出端的电压和电流的变化,然后通过反馈回路根据设定值进行调整,使输出端的电压和电流保持在设定值附近的范围内。

通过不断的反馈和调整,可以实现输出电压和电流的精确控制。

二、关键技术1.电压检测技术:设计电压检测电路,通过传感器或电路来实时检测输出端的电压。

可以使用电压分压器和运算放大器等电路来进行电压检测。

2.电流检测技术:设计电流检测电路,通过传感器或电路来实时检测输出端的电流。

可以使用电流采样电路和运算放大器等电路来进行电流检测。

3.反馈控制技术:通过比较检测到的电压和电流与设定值的差异,设计控制回路来实现恒压和恒流的输出控制。

可以使用控制芯片和电路来进行反馈控制。

4.保护技术:设计过流保护和过压保护电路,当输出端的电流或电压超过设定值时,能够及时切断输出,保护负载和电源设备的安全。

5.数控技术:设计数字控制电路,通过微处理器或可编程逻辑器件等实现对电源的数字控制和参数设定。

三、实际应用在电子设备测试中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于测试电路的工作状态、负载能力等。

在电子设备加工中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于控制电子设备的加工过程,确保电子设备的质量和性能。

在电子设备研发中,数控恒压恒流电源可以提供稳定的电流和电压输出,用于电路原型的调试、电路参数的测量和电路性能的验证等。

总结:数控恒压恒流电源是一种在电子设备研发和制造工作中常见的装置。

其设计原理基于电压和电流的控制回路,通过反馈控制实现稳定的恒压和恒流输出。

数控恒压恒流电源的设计涉及到多个关键技术,如电压检测、电流检测、反馈控制等。

优秀毕业设计数控恒流源设计

优秀毕业设计数控恒流源设计

毕业设计数控恒流源设计目录摘要 (1)前言 (1)1系统原理及理论分析 (2)1.1单片机最小系统构成 (2)1.2系统性能要点 (2)1.3恒流原理 (3)2总体方案论证与比较 (5)3模块电路设计与比较 (5)3.1恒流源方案选择 (5)3.2反馈闭环方案选择 (7)3.3控制单元方案选择 (7)3.4电源方案选择 (7)3.5过压报警功能设计 (8)4软件设计 (9)4.1主程序模块 (9)4.2闭环比较子程序模块 (9)4.3电流设立子程序模块 (9)4.4键盘中断子程序模块 (9)4.5显示中断子程序模块 (9)5数据测试及分析 (14)5.1输出电流测试 (14)5.2步进电流测试 (15)5.3工作时间测试 (15)5.4负载阻值变化测试 (16)5.5纹波电流测试 (16)6结束语 (17)7道谢 (17)参照文献 (17)数控恒流源摘要:本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设立直流电源旳输出电流,设立步进级别可达1mA,并可由数码管显示实际输出电流值和电流设定值。

本系统由单片机程控输出数字信号,通过D/A转换器(AD7543)输出模拟量,再通过运算放大器隔离放大,控制输出功率管旳基极,随着功率管基极电压旳变化而输出不同旳电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流通过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析解决,通过数据形式旳反馈环节,使电流更加稳定,这样构成稳定旳压控电流源。

实际测试成果表白,本系统实际应用于需要高稳定度小功率恒流源旳领域。

核心词:压控恒流源智能化电源闭环控制The Digital Controlled Direct Current SourceAbstract: In this system the DC source is center and 89S52 version single chip microcomputer (SCM) is main controller, output current of DC power can be set by a keyboard which step level reaches 1mA, while the real output current and the set value can be displayed by LED. In the system, the digitally programmable signal from SCM is converted to analog value by DAC (AD7543), then the analog value which is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. On the other hand, The constant current source can be monitored by the SCM system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by SCM so that output current is more stable, so a stable voltage-controlled constant current power is designed.The test results have showed that it can be applied in need areas of constant current source with high stability and low power.Keywords: voltage-controlled constant current source, intelligent power; closed loop control前言随着电子技术旳发展,数字电路应用领域旳扩展,现今社会,产品智能化、数字化已成为人们追求旳一种趋势,设备旳性能,价格,发展空间等备受人们旳关注,特别对电子设备旳精密度和稳定度最为关注。

(高效)数控恒流电源

(高效)数控恒流电源

高效数控恒流电源一、任务设计并制作以DC-DC变换器为核心的数控恒流电源,电路框图如图1所示。

图1 电路框图二、要求在输入电压U i为15V/DC(波动范围12V~18V)及电阻负载条件下,使电源满足:1.基本要求(1)输出电流I o可调范围:200mA~2000mA;最大输出电压U omax:10V;(2)U i从12V变到18V时,电流调整率S I ≤4%(I o=1000mA,负载为5Ω的条件下测试);(3)改变负载电阻,输出电压在10V以内变化时,负载调整率S R≤4%(U i=15V, I o=1000mA,负载在1Ω~5Ω条件下测试);(4)输出噪声纹波电流≤30mA(U i =15V,U o=10V,I o=2000mA);(5)整机效率 ≥70%(U i=15V,U o=10V,I o=2000mA);(6)具有过压保护功能,动作电压U oth=11±0.5 V(U i=15V,I o=1000mA);2.发挥部分(1)能数字设定并控制输出电流,步进≤10mA,要求输出电流与给定值的相对误差≤±2%;(2)输出噪声纹波电流≤15mA(U i =15V,U o=10V,I o=2000mA);(3)整机效率η≥80%(U i=15V,U o=10V,I o=2000mA);(4)排除过压故障后,电源能自动恢复为正常状态;(5)具有输出电流的测量和数字显示功能;(6)其它(如:扩大输入电压波动范围为8V~20V;具有上电前输出开路检测并报警显示功能等。

)。

三、评分标准四、说明1.图1中DC-DC变换器不允许使用成品模块,但可使用开关电源控制芯片。

2. DC-DC 变换器、控制、显示电路只能由U i 供电,不得另加辅助电源,但控制器电源允许使用DC-DC 成品模块。

3. 本题中的输出噪声纹波电流是指输出电流中的所有非直流成分,要求用毫伏表测量输出纹波电压,再换算成输出纹波电流值。

高效数控恒流源设计报告

高效数控恒流源设计报告

高效数控恒流源设计报告一、引言数控恒流源(Numerical Control Constant Current Source)是一种广泛应用于电子设备和工业生产中的电源设备,主要用于稳定输出恒定的电流信号。

在很多应用场景中,对电流的精确控制和稳定性要求较高。

本文将介绍一种高效数控恒流源的设计方案,并详细讨论其工作原理、电路结构和性能指标。

二、设计方案2.1 工作原理数控恒流源的工作原理基于负反馈机制,通过对输出电流进行监测并与设定值进行比较,调整反馈回路中的控制信号,使输出电流保持在设定值附近。

典型的数控恒流源由四个主要部分组成:直流电源、电流检测电路、比较器和功率调节器。

2.2 电路结构本设计方案采用基本的电流控制回路,电路结构如下:电路示意图电路示意图主要组成部分包括:•直流电源:提供基准电压以供电路工作。

•电流检测电路:通过高精度电流传感器对输出电流进行实时监测,并输出检测信号。

•参考电流源:提供设定值参考电流作为比较器的输入。

•比较器:将检测信号与设定值参考电流进行比较,并产生误差信号。

•误差放大器:对比较器输出的误差信号进行放大,以提供足够的调节信号给功率调节器。

•功率调节器:根据误差信号的大小和方向,控制输出电流的大小和稳定性。

2.3 性能指标为了评估数控恒流源的性能,我们需要考虑以下指标:•稳定性:输出电流的稳定性是衡量数控恒流源性能的重要指标,要求输出电流在设定值附近波动幅度小。

•精度:指数控恒流源输出的电流与设定值之间的偏差程度,要求尽可能小。

•响应速度:数控恒流源对于设定值的改变能够快速响应并调整输出电流,要求响应速度较快。

•效率:数控恒流源的电能转换效率,要求尽可能高。

三、实验步骤3.1 集成电路选择和布局设计为了实现高效的数控恒流源设计,我们首先需要选择适合的集成电路并进行布局设计。

考虑到稳定性和性能需求,我们选择了XXX型号的集成电路,并根据电路结构进行布局设计。

3.2 元器件选型和连接根据设计方案,选择适合的元器件,并根据电路结构进行连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。

对于一个电子爱好者来说,直流稳压电源也是必不可少的。

要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。

很显然这篇文章不是教你如何去选购一台直流稳压电源……基本的恒压恒流电源结构框图如图1所示。

由电压基准源、调整管、误差放大、电压取样以及电流取样组成。

电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。

取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。

这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。

而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。

图1 基本恒压恒流电源框图图2 基本稳压电源简图图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。

输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。

这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。

图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。

扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。

这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

图4 常用的稳压电源图5 Agilent E3640A数控稳压电源所以更高端的电源如图5所示的Agilent E3640A采用数字控制的方法来实现电压以及电流调节的,使用按键或旋转编码器进行设定,这样就根除了调节环节的隐患。

然而一切事物都不可能完美,因为数控电源的输出电压都是以最小步进电压值为间隔的离散的电压点,所以不能像模拟控制的电源那样输出连续的电压。

但这个缺点对我们平时的实验基本没有影响,所以这样的电源在我们看来还是“完美”的。

这篇文章要讲的就是制作一个这样“完美”的数控恒压恒流电源。

图6就是这台电源的实物照片。

图6 本文所讲述的数控稳压电源图7 面板特写本文所讲的数控恒压恒流电源特性如下:1.输出电压设定:0~20V/0.05V步进2.电压输出误差:整个输出范围内实测小于±10mV(FLUKE 8808A五位半数字万用表测试);3.输出电流设定:0~3A/0.01A步进;4.电流显示误差:小于±5mA(FLUKE 8808A五位半数字万用表测试);5.输出纹波峰峰值小于8mV@2A(Agilent 54641D示波器测试);6.具有关闭设定参数记忆功能;7.具有输出使能功能;8.三个常用电压值直接设置(3.3V、5V、12V)(可通过程序修改);9.使用12864液晶显示器,实时显示设定的电压值、电流值,当前通过测试得到的电压值、电流值以及输出状态(图7所示)。

先做一下原理简析,电源部分的原理图见图8所示。

这是个恒压恒流电源,所以它的结构和图1框图中所示结构的就不会有太大的差异。

首先220V的交流市电经过变压器T1变压后得到交流双12V输出,即有中间抽头的交流24V,VD1~VD4组成了桥式整流电路,这个相信大家不会陌生。

在这个桥式整流的上方还多了两只可控硅VT1、VT2,方向和VD1、VD2相同,这两个可控硅的作用是进行电压档位切换的。

当电源的设定输出电压在8V以内时,P4端口的第4脚HI/LOW为低电平(该电平由单片机控制提供),IC1、IC2两只光电耦合器不工作,所以可控硅VT1、VT2断开,此时的整流桥由VD1、VD2、VD3和VD4组成,这时进入整流桥的是交流12V。

当电源的设定输出电压高于8V时,P4端口的第4脚HI/LOW为高电平,这时IC1、IC2两只光电耦合器上电工作,VT1、VT2工作,交流24V被加到了VT1、VT2上,VD1和VD2此时被反偏而截至,交流12V断开,所以此时的整流桥由VT1、VT2、VD3和VD4组成,对交流24V进行整流。

这样就实现了电压档位的切换,以代替传统以继电器切换的方式,因为没有机械部件所以寿命更长、可靠性更高。

图8 原理图1(电源部分)与图1中的结构图相比这个电源的电压电流值都是可以调节的,所以不是取样电路可调就是基准电压可调。

这里我们使用了调基准电压的方法,因为取样电路的调整一般是通过改变两个分压电阻的阻值来调整,要数字控制不容易实现,虽然现在有数控电阻但大多只有8位,精度太低不能满足要求。

在这里调节基准电压是使用了一只12位的双通道电压输出型DA转换器TLV5618(IC5),关于这个芯片使用可以参考2010年1月份《无线电》杂志中我写的数字示波表的文章,其中有详细的描述这理解不多说了。

TLV5618是双通道12位的DA转换器,A通道用于最高输出电流的设定,B通道用于输出电压的设定。

使用REF191E (IC6)作为TLV5618的电压基准,这也就是整个电源的电压基准,基准电压为2.048V,因为REF191E的温度系数为5ppm,负载调整率为4ppm,而且输出电流高达30mA所以完全满足稳压电源对基准的需求,属于“高配”。

TLV5618使用2.048V的基准,输出电压0~4.095V时对应的输入数据为0~4095,我们在这里只取其0~4.000V的输出电压范围,步进1mV。

对其进行5倍放大就得到了0~20.00V的输出电压,步进5mV,而我们的电源所采用的步进是50mV,这样就有足够的余量对DA转换器的输出带内误差进行修正,但实际使用中不经修正也是满足要求的。

图9 原理图2(控制部分)误差放大器使用了高精度双运算放大器OPA2277P(IC9),因为它有着超低的失调电压和超低的温度漂移系数,以对提高电源的精度和稳定度有着至关重要的作用。

TLV5618的B通道输出电压用于设定输出电压,该电压送到IC9A的同相输入端,反相输入端输入通过R8、R9和R10组成的1/5分压电路分压后的输出电压,两者进行比较输出误差电压用以控制调整管进行输出电压的调整,进而实现稳压的目的。

对输出电压和电流的测量为了能和输出DA转换器对应,所以使用了一片12位4通道的AD转换器ADS7841E,一通道用于输出电压的测量,二通道用于输出电流的测量。

ADS7841E需要一片4.096V的电压基准,所以使用REF198E(IC7)为其提供,REF198E和REF191E是同系列芯片,就不多说了。

输出电压经过1/5分压后一路送入电压误差放大器IC9A,而另一路送到了ADS7841E(IC8)的第2脚,即ADS7841E的第一模拟输入单通道进行AD转换,ADS7841E的输入范围是0~4095V,对应的输出数据为0~4095,测试转换的电压分辨率为1mV,但是输入电压是经过1/5分压的,所以转换后的数值再乘以5才能得到输出电压值,所以电压测量的最小分辨率为5mV。

为了提高输出电流取样的精度,所以输出电流取样使用了一只DALE产的0.04Ω3W 1%精度的低阻值电阻R5,流过1A的电流可以产生40mV的压降,然后使用仪表放大器AD620(IC10)对R5两端的压降进行25倍放大,可以得到1V/1A的电流取样关系,0~3A的输出电流对应0~3V的取样输出电压,可以同时满足DA转换器和AD转换器的要求。

电流取样所得到的电压一路送到IC9B进行误差放大,另一路送到AD转换器的第二输入通道进行AD转换,测量输出电流。

因为ADS7841E的输入范围是0~4095V,对应的输出数据为0~4095,所以电流测量的最小分辨率为1mA。

AD620的放大倍数由R6和R7的并联值决定,计算公式为Rg=49.4kΩ/(G-1),其中G为放大倍数,带入G=25可得,Rg=2.058kΩ,因为2.058kΩ不是标准阻值,故而使用多圈电位器调整得到,为了提高电路的可靠性,所以使用3kΩ的固定电阻和10kΩ的电位器并联使用,即使电位器失效,也不致使电路参数发生巨大变化而损坏。

TLV5618的A通道的输出电压送到IC9B 的同相输入端,IC9B的反相输入端输入电流取样的电压,由IC9B进行误差放大输出控制调整管。

因为有VD7和VD8的存在,当输出电流小于限制电流时IC9B的同相输入端的电压高于反相输入端的电压,此时IC9B 输出达到饱和,IC9B的输出电压高于IC9A的输出电压,所以IC9B的输出电压被VD8隔离,此时由IC9A 控制调整管,电路工作在分压状态。

当输出电流超过最高输出电流时IC9B反相输入端的电压高于同相输入端的电压,此时IC9B的输出电压低于IC9A,于是接管调整管以实现输出电流的恒流,电路工作在恒流状态。

因为电源输出电压的最小值是0V,所以IC9和IC10必须工作在双电源下,而IC9和IC10对负电源电流的需求很小(低于10m A),所以使用一片有100mA电流输出能力的电荷泵芯片MAX660(IC3)将+5V电压镜像成-5V为IC9和IC10提供负电压,L1和C8组成LC滤波器以滤除纹波,使产生-5V电压更纯净。

相关文档
最新文档