函数定义域 教案

合集下载

函数的定义域学案

函数的定义域学案

1.2.2 函数的定义域及区间表示【学习目标】1.能举例说明区间的几种形式的意义,能准确运用区间或集合表述什么是函数的定义域;2.会求分式型、根式型函数的定义域;3.逐步树立解决函数问题时定义域优先的意识.【学习重点】 区间的概念, 求分式型、根式型函数的定义域.【难点提示】求较为复杂的混合型、复合型的函数的定义域【学法提示】1.请同学们课前将学案与教材1718P -结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题及解答、阅读与思考、小结等,都要仔细阅读)、小组讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.在学习过程中用好“九字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达.【学习过程】一、学习准备前面我们已经学习了函数概念,我们知道,函数的定义域是什么概念中的一个十分重要的因素(链接1),本节课让我们一起来研究函数的定义域问题.为此,先回忆以下知识:1.什么是函数的定义域?2.求函数的定义域是求哪个变量的取值范围?3.根据初中所学我们知道求函数定义域有些什么方法?(链接2)预备演练:解下列不等式(组)3442(2)63(1)2(21)(1);(2)3143;(4).3143653234x x x x x x x x x x x x -≤+--->+⎧⎧>--≥-⎨⎨-≤-+≥+⎩⎩;(3) 问:你能用几种方式来表示上面不等式(组)的解集?还有其它的方式吗?二、学习探究阅读思考 请同学们阅读教材第16页的内容,思考:1.教材区间定义有几种类型?加上还可拓展出几种形式?“∞”是一个数吗?它表示什么含义?2.请用区间表示预备演练中不等式的解集;3143x x -≥-的解集能写成]2,⎡+∞⎣吗?三、典例赏析例1.求函数f (x )= 12x +的定义域. 思路启迪:该函数的结构是怎样的?使各项有意义的变量x 的取值范围怎样?使函数式有意义的x 的范围怎样确定?解:●解后反思 (1)本例中定义域可以表示出哪些形式?(2)求函数定义域的本质是什么?入手点在哪里?易错点在哪里?●变式练习 请求以下函数的定义域.(1)y =(2)y = (3)y =解:●反思归纳 如果f (x )是分式形式时,其定义域的约束条件是什么?如果f (x )是根式形式时,其定义域的约束条件是什么?如果只给出了解析式f (x ),而没有指明定义域,那么函数的定义域是指什么?; 如果f (x )是由多个式子的和、差、积、商构成时,其定义域是应满足什么条件? 例2、已知函数y =R ,求实数m 的取值范围.思路启迪:从函数的结构出发,联想“三个二次”的关系,再思考一下m 是否可以为0. 解:●解后反思 (1)该题的入手点在哪里?易错点又在哪里?(2)解题中体现了怎样的数学思想?●变式练习(1)已知函数y =R ,求实数m 的取值范围.解:(2)已知函数211y ax x =++定义域为R ,求实数a 的取值范围. 解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,实现了我们的学习目标吗?如:求函数f (x )的定义域,即求使函数解析式 的自变量的取值范围;变式练习中的反思归纳都清楚了吗?分类讨论思想在求定义域的作用?2.对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与方法的美在哪里?(链接3)五、学习评价1.函数y x =的定义域为( )A .[]4,1-B .[)4,0-C .[]0,1D .[)(]4,00,1-⋃2.函数y =的定义域为 ; 3.若函数y =R ,则实数a 的取值范围是 ;4.求下列函数的定义域: 3(1)();4x f x x =-(2)()f x =26(3)();32f x x x =-+(4)()1f x x =-(5)1y x =-1(6);222y x =++ 解:5.已知函数()f x ={}24,x x x R ≤≤∈,求m 、n 的值.解:6.已知函数212y x x a =-+的定义域和值域都为[]1,b (b >1),求a 、b 的值. 解:◆承前启后 我们学习了函数的概念、定义域的求法,函数还有哪些表示法呢?函数1,0,Rx Q y x Q ∈⎧=⎨∈⎩ð的表达式有什么特点?你能给它取个名字吗? 六、学习链接链接1. 函数三大要素的重要地位:定义域是灵魂、对应法则是核心、值域是结果; 链接2. 初中学习函数的定义域的概念是:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域,确定函数定义域的方法是:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

第二章第二节函数的定义域教案

第二章第二节函数的定义域教案

城东蜊市阳光实验学校第二章第二节函数的定义域教案教学目的:1.由函数表达式可以求出定义域.2.会求较简单的复合函数的定义域.3.函数的定义域,会讨论求解其中参数的取值范围.教学重点:求函数的定义域的各种方法。

教学难点:抽象函数的定义域。

教学方法:讲练结合。

学法指导:通过例题,结合练习,掌握方法。

教学过程:一、知识点复习:〔1〕给定函数的解析式,求函数的定义域的根据是根本代数式的意义.如分式的、对数的真数大于零且底数为不等于1的正数以及三角函数的意义等.〔2〕求给定函数解析式的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助于数轴,并且要注意端点值或者者边界值的取舍.〔3〕求复合函数的定义域①复合函数的定义域是先由y=成立的条件确定u的取值范围,再由u的取值范围来确定u=g(x)中x的范围,即为的定义域.②的定义域。

求的定义域,即求u=g(x)的值域.〔3〕一些函数的定义域①分式函数的分母不等于零;②偶次方根的被开方数不小于零;③指数函数和对数函数的底数必须大于零且不等于1;④三角函数的定义域。

二、例题选讲:〔一〕根底知识扫描1.函数的定义域是〔〕A.[-2,2]B.{-2,2}C.(-∞,-2)∪(2,+∞)D.(-2,2)2.函数的定义域是()A.(-3,+∞)B.[-2,+∞)C.(-3,-2)D.(-∞,-2]3.函数的定义域为F,函数的定义域为G,那么()A.F∩G= B.F=GC.F GD.G F5.函数的定义域是{x∣0≤x≤2},那么的定义域为()A.[0,2]B.[2,4]C.[-2,0]D.无法确定6.函数的定义域为A,函数的定义域为B,那么以下正确的结论是()A.A∪B=BB.A BC.A=BD.A∩B=B7.函数的定义域为。

〔二〕题型分析:题型一:求详细函数的定义域例1:求以下函数的定义域:(1)(2) (3)分析观察所给函数解析式的构造特征,联想根本初等函数的定义域.布列不等式组,解之即得. 例2:函数)1(+=x f y 的定义域是[-2,3],那么的定义域是()A.B .[-1,4]C .[-5,5]D .[-3,7]分析:例3:的定义域为[-1,1],求的定义域.分析深化理解函数的定义域是对自变量x 而言的,绝非其它形式。

高中数学教学备课教案函数的定义域与值域

高中数学教学备课教案函数的定义域与值域

高中数学教学备课教案函数的定义域与值域高中数学教学备课教案函数的定义域与值域介绍:函数是数学中的重要概念,对于高中数学教学来说,理解函数的定义域与值域是非常关键的。

本教案将围绕函数的定义域与值域展开,旨在帮助学生深入理解函数的特性和应用。

一、函数的基本概念1.1 函数的定义函数是两个集合之间的对应关系,其中一个集合称为定义域,另一个集合称为值域。

在数学中,我们常以字母f表示函数,用x表示定义域中的元素。

1.2 定义域的确定定义域是函数中可以取得实际意义的自变量的取值范围。

它由函数的解析式、图像、实际问题和常识共同确定。

1.3 值域的确定值域是函数在定义域上所有可能的取值的集合。

通过函数的解析式、图像以及实际问题,我们可以较为准确地确定函数的值域。

二、定义域的常见类型有理函数是指可以表示为两个多项式的比值的函数。

有理函数的定义域通常由其分母的零点确定。

2.2 幂函数及其定义域幂函数是指以x为底数的指数函数,形如f(x) = x^a。

对于幂函数,定义域为实数集。

2.3 指数函数及其定义域指数函数是以一个正实数为底的指数函数,形如f(x) = a^x。

对于指数函数,定义域为实数集。

2.4 对数函数及其定义域对数函数是指以一个正实数为底的对数函数,形如f(x) = loga(x)。

对于对数函数,定义域为正实数集。

三、值域的常见类型3.1 有界函数及其值域有界函数是指在定义域上,函数的值上下都有限制的函数。

值域是一个有限的区间。

3.2 无界函数及其值域无界函数是指函数在定义域上,函数的值没有上下限的函数。

值域为整个实数集。

单调递增函数是指在定义域上,随着自变量的增大,函数值也随之增大的函数。

值域为一个区间。

3.4 单调递减函数及其值域单调递减函数是指在定义域上,随着自变量的增大,函数值反而减小的函数。

值域为一个区间。

结论:通过本教案,我们对高中数学中函数的定义域和值域有了更深入的理解。

定义域是函数自变量的取值范围,它由函数的解析式、图像、实际问题和常识共同确定。

函数的定义域与值域教案

函数的定义域与值域教案

函数的定义域与值域教学设计课题:函数的定义域和值域学科:数学授课教师: 数理19.4胡家华教材:高中必修1第一章第2节一、教学目标:1、知识目标:了解函数定义域和值域的定义,熟悉掌握简单函数定文域和值域的求法,会求抽象函数的定义域2、能力目标提高学生对函数工定义域、值域及相关问题的解题能力和运算能力,使学生准确而快速地求出函数定义域和值域3、情感目标通过由易到难的知识点层层递进和对各类题解题思路解法的不断运用掌握来提高学生的信心,二、教学重难点:求函数的定义域和值域,求抽象函数的定义域三、教学方法1.通过知识回顾引出新课,用学生熟悉的知识快速将学生的思绪从课间带回到课堂上来,同时也便于同学们更快的接受新知识,理解新概念。

2.通过提问和互动,使学生集中注意力,跟上老师的思路在思考和回答的过程中更好的理解和掌握新知识。

3.通过竞赛式随堂练习题,促进学生积极思考问题在解题的过程中不断巩固新知,并且让学生主动回答问题,加深同学的印象,同时提升学生的自信心。

四、教学过程1.知识回顾函数的概念:设A、B为非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A B为从集合A到集合B的一个函数记作:y=f(x),x∈A(其中X叫做函数的:自变量y叫做函数的函数值)2.新课引入定义域的概念:使函数有意义的自变量的取值范围,叫做函数的定义域。

值域的概念:函数值的集合,就叫做值域(明确“域”即集合,求函数的定义域值域时要表示成集合的形式)思考:上述函数y=f(x)的定义域是多少?f 那么值域呢?是否为B ?讨论得出,定义域为A ,值域不一定为B例: A B A C通过这个例子得出;f :A →B ,也可以表示成 : f :A →C即:函数:定义域 值域进而得出结论:(同时更好的理解定义域与值域的概率)函数的三要素:定义域、对应关系、值域俩个函数相等即:俩个函数的定义域相同,并且对应关系完全一致。

函数及定义域、值域求法教案

函数及定义域、值域求法教案

龙文教育一对一个性化辅导教案
学生学校年级高一次数第次科目数学教师侯忠职日期时段
课题函数及定义域、值域求法
教学重点1、理解并掌握函数和映射的概念和它们的异同点
2、理解定义域的概念,会求一些函数的定义域
3、理解值域的概念,会求一些函数的值域
教学难点1、函数与映射的异同点
2、求解函数的定义域和值域
教学目标1、掌握函数与映射的异同点
2、掌握函数定义域和值域的求法
教学步骤及教学内容一、教学衔接:
1、检查学生的作业,及时指点;
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。

二、内容讲解:
知识点一:函数与映射
知识点二:函数的定义域
知识点三:函数的值域
拓展提升:高考真题
三、课堂总结与反思:
带领学生对本次课授课内容进行回顾、总结
四、作业布置:
复习教案所讲知识点,完成教案上的作业
管理人员签字:日期:年月日
作业布置1、学生上次作业评价:○好○较好○一般○差
备注:
2、本次课后作业:
见教案




家长签字:日期:年月日。

2函数的定义域和值域(教学案)

2函数的定义域和值域(教学案)
小结.求简___________________________
(2)偶次根式函数中__________________________________
(3)一次函数、二次函数(多项式函数)的定义域为________________(4)实际应用问题的定义域:就是要使得有意义的自变量的取值集合.
例4.已知函数 , 分别由下表给出
1
2
3
4
2
3
4
1
1
2
3
4
2
1
4
3
(1)函数的 定义域为___________值域为______________
(2)函数的定义域为 ___________值域为______________
(3)f(f(3))=_____, g(g(2))=_______, =;g((f(2))=_______
自我纠错
本节内容个人掌握情况反思:
(5)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是____________________________集合.
典例探究
例1、下列哪个函数与函数y=x相同?
(1)y=()2;(2)y=;
(3)u=;(4)y=.
例2、求函数 的定义域.
例3.用长为40cm的铁丝围成矩形,试将矩形面积S( )表示为矩形一边长x(cm)的函数,并求函数的定义域。
(4)当 时, 当f(g(y)=4时,y=
例5.求下列两个函数的定义域与值域:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f(x)=(x-1)2+1.
思想方法总结
课堂练习
1、若 ,则 =
2、已知一个函数的解析式为 它的值域为{1,4},求此函数的定义域。

函数的定义域和值域教案

函数的定义域和值域教案

函数的定义域和值域教案【教案】一、教学目标:1.了解函数的定义域和值域的概念;2.掌握求函数的定义域的方法;3.掌握求函数的值域的方法;4.能够应用所学知识解决实际问题。

二、教学内容:1.函数的定义域和值域的概念;2.求函数的定义域的方法;3.求函数的值域的方法;4.实际问题的应用。

三、教学过程:1.引入(1)复习巩固:复习一元一次方程和二元一次方程的求解方法。

(2)引入新知:通过实际问题引入函数的概念。

比如:某老师设置的体测项目中,小明的体重与身高呈正比关系,我们可以用函数的方式来表达这个关系。

2.教学展开(1)定义域- 介绍函数的定义域的概念:函数的定义域是指使函数有意义的自变量的取值集合。

- 通过例题讲解:比如给出函数f(x) = √(x + 2),问函数 f(x) 的定义域是什么?我们可以解方程x + 2 ≥ 0,得到x ≥ -2,所以函数的定义域为 [-2, +∞)。

(2)值域- 介绍函数的值域的概念:函数的值域是指因变量可能取到的值的集合。

- 通过例题讲解:比如给出函数 f(x) = x^2,问函数 f(x) 的值域是什么?我们可以通过计算函数的图像或者利用二次函数的性质知道,该函数的值域为[0, +∞)。

(3)求解定义域和值域的方法总结:- 定义域的求解方法:根据函数中涉及到的有限性、无理数和分式的限制条件,来确定定义域的范围。

- 值域的求解方法:根据函数的图像或者利用函数的性质来判断函数的取值范围。

3.实践应用通过实际问题的应用来巩固所学内容:(1)例题一:某物体下落的高度与时间的关系可以表示为函数 h(t) = 9.8t^2/2,其中 t 为时间,单位为秒。

请问该函数的定义域和值域分别是什么?- 解答:根据物理知识,时间 t 为正值,所以函数的定义域为 [0,+∞);而高度 h(t) 不会是负值,所以函数的值域为[0, +∞)。

(2)例题二:某商品的销售价格与销售数量的关系可以表示为函数 p(x) = 100 - 2x,其中 x 为销售数量,单位为件。

学案2函数的定义域与值域2

学案2函数的定义域与值域2

1(t≥0),
2
2
2
∴y∈
-
,
1 2
.
解法二:∵1-2x≥0,∴x≤ , 1
2
∴定义域为-,1 2.∵函数y=x,y=-
12x 在
-
,
1 2
上均为单调递增,
∴y≤
1 1 2 1 1,∴y∈
2
22
-
,
12.
(3)解法一:当x>0时,y=x+ 4≥2
x
取等号;
x 4 =4,当且仅当x=2时,
∴t∈[0,4], t∈[0,2],
从而,当x=1时,ymin=2;
当x=-1或x=3时,ymax=4.
故值域为[2,4].
(2)∵ y 2x 1 2(x - 3) 7 2 7 , 其中 7 ≠0,
x-3 x-3
x-3
x-3
∴y= 2x 1 的值域是(-∞,2)∪(2,+∞).
x-3
(3)将函数变形为
1.当函数是由解析式给出时,其定义域是使解析式有 意义的自变量的取值集合.
2.当函数是由实际问题给出时,其定义域的确定不 仅要考虑解析式有意义,还要有实际意义(如长度、面 积必须大于零、人数必须为自然数等).
3.要记住各种基本函数的值域;要记住具有什么结 构特点的函数用什么样的方法求值域.
求函数值域没有通用的方法和固定的模式,要靠 在学习过程中不断积累,掌握规律,所以要记住各种 基本函数的值域;要记住什么结构特点的函数用什么 样的方法求值域,即熟悉求函数值域的几种常用方法 ,但在解决求值域问题时要注意选择最优解法.
1 2
,
1
D.(0,+∞) +lg(1+x)的定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:函数定义域
教学目的:
1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法;
2.培养抽象概括能力和分析解决问题的能力;
教学重点:“区间”、“无穷大”的概念,定义域的求法
教学难点:正确求分式函数、根式函数定义域
授课类型:新授课
教学过程:
一、复习引入:
函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x 和y 之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定
二、讲解新课:
求函数定义域的基本方法
我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x 的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合.
例1 求下列函数的定义域:
① 21)(-=x x f ;② 23)(+=x x f ;③ x
x x f -++=211)(. 分析:函数的定义域通常由问题的实际背景确定如果只给出解析式)(x f y =,而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数x 的集合
解:①∵x-2=0,即x=2时,分式
21-x 无意义, 而2≠x 时,分式2
1-x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3
2时,根式23+x 无意义, 而023≥+x ,即3
2-≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3
2-≥x }.
③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式
x -21 同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }
另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥2
1x x ∴这个函数的定义域是: {x |1-≥x 且2≠x }
强调:解题时要注意书写过程,注意紧扣函数定义域的含义.由本例可知,求函数的定义域就是根据使函数式有意义的条件,布列自变量应满足的不等式或不等式组,解不等式或不等式组就得到所求的函数的定义域.
例2 求下列函数的定义域: ①14)(2--=x x f ②214
3)(2-+--=x x x x f
解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x
∴函数14)(2--=x x f 的定义域为: [3,3-] ②要使函数有意义,必须:⎩⎨⎧≠-≠-≤-≥⇒⎩⎨⎧≠-+≥--131
40210432x x x x x x x 且或
4133≥-≤<-->⇒x x x 或或
∴定义域为:{ x|4133≥-≤<-->x x x 或或}
例3 若函数a ax ax y 1
2+-=的定义域是R ,求实数a 的取值范围
解:∵定义域是R,∴恒成立,01
2≥+-a ax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001
40
2a a a a a 等价于
例4已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).
解:f(3)=3×23-5×3+2=14; f(-2)=3×(-2)2-5×(-2)+2=8+52;
f(a+1)=3(a+1) 2-5(a+1)+2=3a 2+a.
例5已知f (x )=x 2-1 g (x )=1+x 求f [g (x )]
解:f [g (x )]=(1+x )2-1=x +2x
例6 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域
解:要使函数有意义,必须:
4343454
3434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41
(+=x f y )41(-⋅x f 的定义域为:⎭
⎬⎫⎩⎨⎧≤≤-4343|x x 求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
①若f(x)是整式,则函数的定义域是实数集R ;
②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;
③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;
④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.
四、小结 本节课学习了以下内容:求函数定义域的基本方法,
五、课后作业:课本第52页习题。

相关文档
最新文档