译码器和编码器实验
QCA编码器和译码器

QCA编码器和译码器摘要:基于量子元胞自动机的双稳态特性和数字电路,依据不同设计原理设计了编码器和译码器,采用半经典仿真方法进行仿真,同时与E.N.Ganesh 等人设计的译码器进行了比较,结果显示,在同样实现译码器功能的前提下,电路结构较为简单并且规模较小,运用基本功能电路的组合使电路容易分析,对以后的电路设计也有一定的借鉴意义。
关键词: 量子通信编码器译码器QCA电路设计与仿真1.引言微电子器件的集成度和运算速度已持续呈指数级增长近40 年, 为了保持这种快速的增长,集成电路制造的各个方面都需有快速的改进【1】。
但当电子器件的尺寸达到70 nm 时, 由于功率耗散和相互连接等问题使得基于传统CMOS 技术的器件尺寸的进一步减小变得不太可能[2]。
有研究认为, 到2020 年, 晶体管的尺寸将达到它的物理极限。
这就需要发展一种不同于传统CMOS 的器件技术来使电子器件能继续朝纳米级方向发展。
近年来, 有些学者提出量子细胞自动机[ 3- 5] ( quantum cellular automaton, QCA)的结构, 在用分子实现时, 其特征尺寸仅为几纳米。
它是通过电子在细胞上占据的位置来携带二进制信息, 而不是通过传统的电流开关来表示二进制信息。
它提供了一种新的计算和信息转换的方式, 具有低功耗、高集成度和无引线集成等优点, 将是新一代的电子元件之一。
本文结合QCA和数字电路相关知识和化简思想的设计了编码器和译码器,对于2线-4线译码器,与E.N.Ganesh等人设计的译码器[6]进行了比较,显示出本文设计的同级别的译码器电路结构简单和规模小的优点,同时对于提出编码器及译码器位数扩展的方法。
此外,此电路设计中采用基本QCA器件组合和相同逻辑功能电路合并的思想,具较强的普适性,对以后的电路设计也有一定的借鉴意义。
2.量子元胞自动机的基本元素QCA是由基本的逻辑器件组成的,这些基本量子器件主要有含有两个静电子的标准元胞和旋转元胞,每个元胞通过内部电子所处的位置定义它的极性,元胞之间极性的传递或改变是依靠两元胞间电子的库仑作用和元胞内电子的隧穿作用,每个元胞中的电子被高度极化,电子云密度沿元胞两个垂直的对角分布中的一个方向分布,一个元胞的极化能引起临近元胞的极化,从而实现数据的传递。
实验4组合逻辑器件的应用(I)-译码器及其应用—74LS138、74LS148

3 实验设备与器件
3 实验设备与器件
KHM-2B型模拟实验装置
4 实验内容及步 骤
4 实验内容及步骤
实验项目
74LS138译码器逻辑功能测试; 用74LS138构成时序脉冲分配器; 用两片74LS138构成一个4-16线译码器(两组结合); 74LS148优先编码器的逻辑功能测试。 数码显示小实验。
掌握用集成译码器、编码器组合逻辑电路的
方法;
熟悉数码管的使用。
2 实验原理
2 实验原理
译码器
一个多输入、多输出的组合逻辑电路;
作用:“翻译”;
用途:1. 代码转换 2. 终端数字显示 3. 数据分配
4. 存储器寻址 5. 组合控制信号;
分类:通用译码器和显示译码器,通用译码器又有变 量译码器、代码变换译码器。
4 实验内容及步骤
5 实验报告要求
5 实验报告要求
复习有关译码器和分配器的原理; 用译码器、优先译码器对实验内容中各函数式进行
预设计。
认真仔细、整洁干净、内容充实、数据准确
下次实验内容:组合逻辑电路的应用-74LS151/153
谢谢!
2 实验原理
74LS138组合4/16译码器
如图,问第一片和第二片分别负责哪些状态?
2 实验原理
8-3线优先编码器-74LS148
74LS148的逻辑图和引脚图
真值表
2 实验原理
数码显示译码器
LED数码管
(a)共阴 (b)共阳
2 实验原理
数码显示译码器
BCD码七段译码驱动器
引脚图
Z A B C A B C A BC ABC
Y0 A2 A1 A0 Y1 A2 A1 A0 Y2 A2 A1 A0 Y3 A2 A1 A0
《通信原理》PCM(一)实验报告

课程名称:_______________项目名称:_______________
姓名:______专业:_______班级:____学号:____同组成员________________
一、实验预习部分:
本实验使用PCM编译码模块。
1.点到点PCM多路电话通信原理
图1点到点PCM多路电话通信原理框图
本实验模块可以传输两路话音信号。
2译码原理方框图
本模块上有三个开关K5、K6和K8,K5、K6用来选择两个编码器的输入信号,开关手柄处于左边(STA-IN、STB-IN)时选择外部信号、处于右边(STA-S、STB-S)时选择模块内部音频正弦信号。K8用来选择SLB信号为时隙同步信号SL1、SL2、SL5、SL7中的某一个。
由于时钟频率为2.048MHz,抽样信号频率为8KHz,故PCM-A及PCM-B的码速率都是2.048MB,一帧中有32个时隙,其中1个时隙为PCM编码数据,另外31个时隙都是空时隙。
PCM信号码速率也是2.048MB,一帧中的32个时隙中有29个是空时隙,第0时隙为帧同步码(×1110010)时隙,第2时隙为信号A的时隙,第1(或第5、或第7 —由开关K8控制)时隙为信号B的时隙。
二、实验过程记录:
实验目的:
1.掌握PCM编译码原理。
2.掌握PCM基带信号的形成过程及分接过程。
实验步骤及实验数据:
三、实验结果与讨论:
实验报告成绩(百分制)__________实验指导教师签字:__________
pcm编译码模块原理4096khz晶振分频器1分频器2帧同步信号产生器正弦信号源as1s2s3s4pcm编译码器a复接器抽样信号产生信号pcm编译码器bpcmpcmasrbsrapcmb256khzs3s2s18khz2048khzclkslasl2slbstaink5slaslb?????????sl7sl5sl2sl1sl0k8正弦信号源bstbinstbk6stasstastbs图2pcm编译码原理方框图本模块上有三个开关k5k6和k8k5k6用来选择两个编码器的输入信号开关手柄处于左边stainstbin时选择外部信号处于右边stasstbs时选择模块内部音频正弦信号
编码器与译码器的结构与功能分析

编码器与译码器的结构与功能分析编码器与译码器是数字电子领域中两个重要的电路器件。
编码器用于将不同类型的输入信号转换为特定的输出编码形式,而译码器则将编码后的信号转换回原始信号。
本文将分析编码器与译码器的结构和功能,并探讨它们在现代电子技术中的应用。
一、编码器的结构与功能编码器通常有多种不同的输入,但只有一种输出。
其主要功能是将输入信号转换为特定的编码形式,以方便传输、存储或处理。
编码器可根据输入信号的类型和数量的不同而各异。
以下是几种常见的编码器类型及其结构和功能:1. 优先级编码器:优先级编码器是一种将多个输入信号转换为二进制编码的器件。
它包括输入端口、编码器电路和输出端口。
优先级编码器的输出是一个二进制编码,它表示最高优先级的输入信号。
2. 行程编码器:行程编码器常用于检测和测量旋转或线性运动的位置。
它能够将物理位置转换为二进制编码形式,并输出到接口电路进行进一步处理。
3. 绝对值编码器:绝对值编码器将旋转或线性位置转换为唯一的二进制编码序列。
每个位置都对应一个特定的编码,不会受到电源中断等干扰的影响。
旋转编码器用于检测旋转运动,如手柄、旋钮等。
它通过旋转产生的脉冲数来确定方向和速度,并将其转换为二进制编码输出。
5. 模数转换器:模数转换器是一种将模拟信号转换为数字信号的编码器。
它常用于数据采集、音频处理和传感器信号数字化等领域。
二、译码器的结构与功能译码器是编码器的逆过程,用于将编码信号恢复为原始信号。
它的结构和功能与编码器正好相反。
以下是几种常见的译码器类型及其结构和功能:1. 优先级译码器:优先级译码器能够将编码信号转换为对应的优先级输入信号。
它包括译码器电路和输出端口。
2. 行程译码器:行程译码器常用于将二进制编码转换为对应的位置信息。
它通过解码从编码器中获取的编码信号来确定物理位置。
3. 绝对值译码器:绝对值译码器将二进制编码转换为对应的旋转或线性位置信息。
它能够恢复旋转编码器或模数转换器编码后的数据。
编码器 实验报告

编码器实验报告编码器实验报告引言编码器是一种重要的数字电路设备,用于将输入的信息转换为特定的编码形式。
在现代科技发展中,编码器广泛应用于通信、计算机、电子设备等领域。
本实验旨在通过设计和实现一个简单的编码器电路,深入了解编码器的原理和应用。
实验目的1. 了解编码器的基本原理和分类;2. 学习编码器的设计方法和实现技巧;3. 掌握编码器的应用场景和使用方法。
实验原理编码器是一种多对一的数字电路设备,通过对输入信号进行编码,将多个输入状态映射为唯一的输出状态。
常见的编码器有优先编码器、旋转编码器、格雷码编码器等。
1. 优先编码器优先编码器是一种将多个输入状态按照优先级进行编码的设备。
当多个输入同时有效时,只有优先级最高的输入被编码输出。
优先编码器常用于优先级译码器和多路选择器中。
2. 旋转编码器旋转编码器是一种通过旋转操作来改变输出状态的设备。
它通常由一个旋转轮和两个感应器组成,感应器用于检测旋转轮的方向和速度。
旋转编码器常用于旋钮、鼠标滚轮等设备中。
3. 格雷码编码器格雷码编码器是一种将二进制输入信号转换为格雷码输出信号的设备。
格雷码是一种特殊的二进制编码形式,相邻的两个码字只有一位不同,避免了二进制编码中的多位错误。
格雷码编码器常用于数字显示器、光电编码器等设备中。
实验过程本实验以优先编码器为例,设计和实现一个4输入优先编码器电路。
1. 确定输入和输出端口根据实验要求,我们需要设计一个4输入优先编码器,因此需要确定4个输入端口和1个输出端口。
2. 绘制逻辑电路图根据优先编码器的原理,我们可以绘制出如下的逻辑电路图:(图略)3. 确定逻辑门类型根据逻辑电路图,我们可以确定每个逻辑门的类型。
在本实验中,我们选择使用与门和或门。
4. 搭建电路实验平台根据逻辑电路图,我们可以搭建实验平台,连接逻辑门和输入输出端口。
5. 进行实验测试将不同输入信号输入到优先编码器中,观察输出信号的变化。
测试不同输入组合下的编码输出结果。
实验九-(2-1-5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术一、实验目的1、掌握(2,1,5)卷积码编码译码技术2、了解纠错编码原理。
二、实验内容1、(2,1,5)卷积码编码。
2、(2,1,5)卷积码译码。
三、预备知识1、纠错编码原理。
2、(2,1,5)卷积码的工作原理。
四、实验原理/卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。
通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。
若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。
卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。
与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。
卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
编码器随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。
因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“”。
译码方法⒈代数代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。
2.1编码器、译码器

第十七页,编辑于星期三:点 五十四分。
Y 2 I7 I7 I6 I7 I6 I5 I7 I6 I5 I4 I7 I6 I5 I4 Y 1 I7 I7 I6 I7 I6 I5 I4 I3 I7 I6 I5 I4 I3 I2 I7 I6 I5 I4 (I3 I2 ) Y 0 I7 I7 I6 I5 I7 I6 I5 I4 I3 I7 I6 I5 I4 I3 I2 I 1 I7 I6 I5 I6 I4 I3 I6 I4 I2 I 1
• 2、 3位二进制优先编码器的原理和设计
• 输入和输出同3位二进制普通编码器。
• 有如下约定:在这里,仍然用000,001,…,111表示I0, I1,…,I7,优先级别是:I7>I6>I5>I4>I3>I2>I1>I0。
第十六页,编辑于星期三:点 五十四分。
首先,列真值 表。用输入信 号为1表示有编 码请求,否则 相反。
输入:8个需进行编码的信号I0~I7; 输出:用来进行编码的3位二进制代码
Y0,Y1,Y2。
第二页,编辑于星期三:点 五十四分。
• 电路的特点:任何时刻只允许输入端有一个信号输入,否则得不到 正确的编码输出。即任何时刻只能对一个输入信号进行编码,而这 些输入变量为一组互相排斥的变量。
• 有如下约定:在这里,用000,001,010,…,111表示I0, I1,I2,…I7 , 输入信号为1,表示有编码请求,请求是互斥的。
第二十五页,编辑于星期三:点 五十四分。
译码器
一.译码器的基本概念及工作原理
译码:编码的逆过程,把输入的二进制代码翻译成所对应的控制 信号和信息。
译码器:实现译码功能的数字电路。有多个输入和多个输出的组合电 路,当其输入有n位二进制代码时,输出有m个表示代码原意的信号。
编码器与译码器

74LS42二—十进制译码器的逻辑.图所示。
28
3. 字符显示译码器
(1)七段显示译码器 七段LED(Light Emitting Diode)数码显示器的显示原理:
R8
Vcc
a
GND gf ab
Vcc
b
c
a
d e
f gb
f
e d c dp
g
d p
e d c dp
共阴极
GND
.
29
GND gf ab
具有译码功能的逻辑电路称为译码器。
.
13
二.二进制译码器的一般原理框图
输
入
的
是
n 位
二
进
制
代
码
EI 输入使能端
.
输出为2n 个高、低 电平信号
14
三.2线-4线译码器
A A BB
EI
1
A
1
B
1
A A B B.
& Y0 EIAB
& Y1 EIAB
&
Y2 EIAB
& Y3 EIAB
15
❖ 逻辑表达式为: Y0 EIAB Y1EIAB
GND
.
5V 直流 电源
31
显示数字2
GND gf ab
a f gb e d c dp
e d c dp
GND
R
R
gf a b a
f gb
e
c d
dp
e d c dp
R
.
5V 直流 电源
32
显示数字3
GND gf ab
a f gb e d c dp
e d c dp
GND
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三译码器和编码器
一实验目的
1.掌握译码器、编码器的工作原理和特点。
2.熟悉常用译码器、编码器的逻辑功能和它们的典型应用。
二、实验原理和电路
按照逻辑功能的不同特点,常把数字电路分两大类:一类叫做组合逻辑电路,另一类称为时序逻辑电路。
组合逻辑电路在任何时刻其输出的稳态值,仅决定于该时刻各个输入信号取值组合的电路。
在这种电路中,输入信号作用以前电路所处的状态对输出信号无影响。
通常,组合逻辑电路由门电路组成。
组合逻辑电路的分析方法:根据逻辑图进行二步工作:
a.根据逻辑图,逐级写出函数表达式。
b.进行化简:用公式法、图形法或真值表进行化简、归纳。
组合逻辑电路的设计方法:就是从给定逻辑要求出发,求出逻辑图。
一般分四步进行。
a.分析要求;将问题分析清楚,理清哪些是输入变量,哪些是输出函数。
b.列真值表。
c.进行化简:变量比较少时,用图形法。
变量多时,可用公式化简。
d.画逻辑图:按函数要求画逻辑图。
进行前四步工作,设计已基本完成,但还需选择元件——集成电路,进行实验论证。
值得注意的是,这些步骤并不是固定不变的程序,实际设计时,应根据具体情况和问题难易程度进行取舍。
1.译码器
译码器是组合电路的一部分,所谓译码,就是把代码的特定含义“翻译”出来的过程,而实现译码操作的电路称为译码器。
译码器分成三类:
a.二进制译码器:如中规模2—4线译码器74LS139。
,3—8线译码器74LS138等。
b.二—十进制译码器:实现各种代码之间的转换,如BCD码—十进制译码器74LS145等。
c.显示译码器:用来驱动各种数字显示器,如共阴数码管译码驱动74LS48,(74LS248),共阳数码管译码驱动74LS47(74LS247)等。
2.编码器
编码器也是组合电路的一部分。
编码器就是实现编码操作的电路,编码实际上是译码相反的过程。
按照被编码信号的不同特点和要求,编码器也分成三类:
a.二进制编码器:如用门电路构成的4—2线,8—3线编码器等。
b.二—十进制编码器:将十进制的0~9编成BCD码,如:10线十进制—4线BCD码编码器74LS147等。
c.优先编码器:如8—3线优先编码器74LS148等。
三、实验内容及步骤
1.译码器实验
(1)将二进制2-4线译码器74LS139,及二进制3-8译码器74LS138分别插入实验系统IC 空插座中。
按图1.3.1接线,输入G、A、B信号(开关开为“1”、关为“0”),观察LED输出Yo、Y1、Y2、Y3的状态(亮为“1”,灭为“0”),并将结果填入表1.3.1中。
表 1.3.1 74LS139 2-4线译码器功能表
图1.3.1 74LS139 2-4线译码器实验线路
表1.3.2 74LS138 3-8线译码器功能表
图1.3.2 74LS138 3-8线译码实验线路
按图1.3.2接线,使能信号G 1,G 2A ,G 2B 满足表1.3.2条件时(开关开为“1”、关为“0”),
译码器选通。
输入G 1、G 2A 、G 2B 、A 、B 、C 信号(开关开为“1”、关为“0”),观察LED 输出Yo ~Y 7(亮为“1”,灭为“0”)。
(2)将BCD 码—十进制译码器74LS145插入实验箱中,按图1.3.3接线。
其中BCD 码是用XK 系列实验系统的8421码拨码开关,输出“0~9”与发光二极管LED 相连。
按动拨码开关,观察输出LED 是否和拨码开关所指示的十进制数字一致。
(3)将译码驱动器74LS48(或74LS248)和共阴极数码管LC5011-11(547R )插入实验箱空IC 插座中,按图1.3.5接线。
图1.3.4为共阴极数码管管脚排列图。
接通电源后,观察数码管显示结果是否和拨码开关指示数据一致( )。
如实验箱中无8421码拨码开关,可用四位逻辑开关代替。
输 入
输 出 G B A Yo Y 1 Y 2 Y 3
1 0 0 0 0
× 0 0 1 1
× 0 1 0 1
1
1
1
1
输 入 输 出
使能
选择
YO Y1 Y2 Y3 Y4 Y5 Y6 Y7 G1 G2=(G2A+G2B ) C B A
× 1 0 × 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0
× × × × × × 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
图1.3.3 BCD码—十进制译码器实验线路图图1.3.4 共阴极数码管LC5011-11管脚排
列图
图1.3.5译码显示实验图
2.编码器
(1)将10-4线(十进制-BCD码)优先编码器74LS147插入实验系统IC空插座中,按照图1.3.6接线,其中输入接9位逻辑0-1开关,输出QD、QC、QB、QA接4个LED发光二极管。
接通电源,按表1.3.3输入各逻辑电平(开关开为“1”、关为“0”),观察输出结果并填入表1.3.3中(亮为“1”,灭为“0”)。
(2)将8-3线八进制优先编码器按上述同样方法进行实验论证。
其接线图如图1.3.7所示。
功能表见表1.3.4。
表1.3.3 十进制/BCD码编码器功能表
输入输出
1 2 3 4 5 6 7 8 9 Q D Q C Q B Q A
1 1 1 1
1 1 1 1 1 1 1 1 1
×××××××× 0
××××××× 0 1
×××××× 0 1 1
××××× 0 1 1 1
×××× 0 1 1 1 1
图1.3.6 10-4线编码器实验接线图
×:状态随意
表1.3.4 8/3线优先编码器功能表
图 1.3.7 8-3线编码器实验接线图
×:状态随意
四、实验器材
1.X K 系列数字电子技术实验系统 1台
2.直流稳压电源 1台
3.集成电路:74L S138 2片 74L S 147、74L S 148、74L S 248、74L S 139、74L S 145 各1片
4.显示器LC5011-11 1片
五、预习要求
1.复习译码器、编码器的工作原理和设计方法。
2.熟悉实验中所用译码器、编码器集成电路的管脚排列和逻辑功能。
3.画好实验用逻辑状态表。
六、实验报告要求
1.整理实验线路图和实验数据、表格。
2.总结用集成电路进行各种扩展电路的方法。
3.比较用门电路组成组合电路和应用专门集成电路各有什么优缺点。
× × × 0 1 1 1 1 1
× × 0 1 1 1 1 1 1
× 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
输入
输出 E 1 0 1 2 3 4 5 6 7
Q C Q B Q A E O G S
1 0 0 0 0 0 0 0 0 0 × × × × × × × × 1 1 1 1 1 1 1 1 × × × × × × × 0 × × × × × × 0 1 × × × × × 0 1 1 × × × × 0 1 1 1 × × × 0 1 1 1 1 × × 0 1 1 1 1 1 × 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1。