圆的基本性质(一)
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的基本图形之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的性质以及与之相关的一些定理。
一、圆的定义与基本性质圆可以被定义为平面上所有到一个给定点距离相等的点的集合。
这个给定点被称为圆心,而到圆心的距离被称为半径。
圆的基本性质包括以下几点:1. 圆的直径是通过圆心的一条线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍。
2. 圆的周长是圆上任意两点之间的弧长,它等于圆的直径乘以π(pi)。
周长也可以被称为圆的周长。
3. 圆的面积是圆内部所有点的集合。
圆的面积等于半径的平方乘以π。
二、圆的相关定理在圆的研究中,有一些重要的定理被广泛应用。
下面我们将介绍其中几个。
1. 弧长定理弧长定理指出,在同一个圆上,两个弧所对应的圆心角相等时,它们的弧长也相等。
这个定理可以用来求解弧长,也可以用来证明一些与圆有关的性质。
2. 弧度制与角度制弧度制是一种用弧长来度量角度大小的方法。
在弧度制中,一个圆的周长被定义为2π弧度。
而角度制是我们常用的度量角度大小的方法。
两者之间可以通过一定的换算关系进行转换。
3. 切线定理切线定理是指与圆相切的直线与半径所构成的角是直角。
这个定理在解决与圆相关的几何问题时非常有用,可以帮助我们确定切线的位置和方向。
4. 正切定理正切定理指出,与圆相切的半径与切线所构成的角的正切值等于切线上相应弧所对应的角的正切值。
这个定理可以用来求解与切线相关的角度问题。
5. 弦切角定理弦切角定理是指,当一个弦与切线相交时,切线与弦所夹的角等于弦上所对应的弧所对应的角的一半。
这个定理可以用来求解与弦和切线相关的角度问题。
三、圆的应用圆的性质和定理在实际生活中有着广泛的应用。
以下列举几个例子:1. 圆的运动轨迹当一个点以固定的速度绕着另一个点旋转时,它的轨迹是一个圆。
这个性质被广泛应用在天文学中,用来描述行星、卫星等天体的运动。
2. 圆形建筑与设计圆形建筑具有独特的美学效果和结构稳定性。
圆的概念和性质

圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。
无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。
本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。
一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。
这个定点称为圆心,到圆心的距离称为半径。
以圆心为中心、以半径为半径的线段称为圆的半径。
圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。
二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。
直径是圆中最长的线段,并且它的长度等于半径的两倍。
2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。
圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。
根据定义,圆周的长度等于直径乘以π(圆周率)。
3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。
圆的面积也是通过圆的半径与圆周率之间的关系来计算。
根据定义,圆的面积等于半径平方乘以π。
4. 圆的切点两个圆相切时,它们有一个共同的切点。
切点是两个圆相切时,位于两个圆的切线上的点。
5. 圆的切线圆的切线是与圆只有一个公共点的直线。
圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。
三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。
同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。
2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。
例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。
同时,圆也可以与其他几何图形相交,形成复杂的图形结构。
3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。
例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。
在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。
一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。
圆心是圆上所有点的中心位置,通常用字母O表示。
半径是从圆心到圆上的任意点的距离,通常用字母r表示。
2. 直径:直径是通过圆心的任意两点间的线段。
直径的长度等于半径的两倍。
3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。
圆上的弧可以根据其长度分为弧长和弧度。
4. 弦:弦是连接圆上任意两点的线段。
直径是最长的弦。
5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。
角度是以度为单位的度量,用符号°表示。
二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。
2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。
3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。
4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。
5. 弧长定理:同样大小的圆心角所对应的弧长相等。
6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。
三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。
2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。
3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。
4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。
总结:本文介绍了圆的基本性质和相关定理。
通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。
希望本文对读者有所帮助,并在几何学学习中起到指导作用。
初中数学知识归纳圆的概念和性质

初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。
下面将对圆的概念和性质进行归纳。
一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。
固定点叫做圆心,等距离叫做半径。
圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。
二、圆的性质1. 圆上任意两点的距离都相等。
即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。
2. 圆的直径是圆上任意两点间的最大距离。
直径d等于半径的两倍,即d = 2r。
3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。
4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。
常用弧度符号表示为θ。
5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。
即L = θr。
三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。
π是一个常数,约等于3.14。
2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。
3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。
4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。
即AB * CD = BC * AD。
四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。
2. 计算问题:根据已知条件计算圆的面积、周长等。
3. 推理问题:利用圆的性质进行推理,解决几何问题。
4. 证明问题:根据已知条件进行推导,证明一个几何命题。
5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。
五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。
2. 运用性质:根据圆的性质推导出结论,解决几何问题。
3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计

二、学情分析
九年级学生在学习圆的基本性质这一章节之前,已经掌握了平面几何中直线、三角形、四边形等基本图形的性质和计算方法。他们对几何图形有一定的认识,具备了一定的观察、分析、推理能力。但在圆的性质这一部分,学生可能会遇到以下问题:对圆的基本概念理解不够深入,对圆的性质掌握不够熟练,对圆的相关计算方法不够熟悉。因此,在教学过程中,教师需要关注以下几点:
四、教学内容与过程
(一)导入新课
1.教师出示一枚硬币,让学生观察硬币的形状,并提问:“这个形状是什么?它有什么特点?”
2.学生回答:“这个形状是圆形,它的特点是边缘线条流畅,各点到中心点的距离相等。”
3.教师总结:“今天我们要学习一种新的几何图形——圆,它具有很多独特的性质。接下来,让我们一起来探索圆的世界。”
沪科版九年级数学下册24.2圆的基本性质(第一课时)教学设计
一、教学目标
(一)知识与技能
1.让学生理解圆的基本概念,掌握圆的各个基本性质,如圆的半径、直径、圆周率等,并能运用这些性质解决实际问题。
2.培养学生运用圆的相关性质进行计算和推理的能力,如求圆的周长、面积,判断点与圆的位置关系等。
3.使学生掌握圆的对称性质,并能运用对称性质解决一些几何问题,如求圆的切线、弦的性质等。
(二)过程与方法
1.通过直观演示、实际操作和小组讨论等教学活动,引导学生探索圆的基本性质,培养学生观察、分析、归纳的能力。
2.设计丰富的例题和练习题,让学生在解决实际问题的过程中,掌握圆的性质和计算方法,提高学生的解决问题的能力。
3.引导学生运用数形结合的思想,将圆的性质与几何图形相结合,培养学生的空间想象力和几何直观。
圆的性质与定理

圆的性质与定理圆是一种具有特殊几何性质的几何图形,它由一条曲线组成,这条曲线上的每一点到圆心的距离都相等。
在数学中,关于圆的性质和定理有很多,它们帮助我们深入理解圆的特点和应用。
一、圆的基本性质1. 圆心和半径:圆心是圆上所有点的中心,用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
2. 直径和周长:直径是穿过圆心的两个点之间的距离,等于半径的两倍。
周长是圆的边界长度,等于直径乘以π(圆周率)。
二、圆的重要定理1. 同圆弧定理:如果两条弧所对应的圆心角相等,则这两条弧是同圆弧。
2. 同弦定理:如果两条弦所对应的圆心角相等,则这两条弦是同弦。
3. 弧长定理:圆内任意一段圆弧的长度等于这段圆弧所对应的圆心角的弧度数乘以半径的长度。
即弧长 = 圆心角的弧度数 ×半径。
4. 切线定理:切线与半径垂直。
5. 相切弦定理:从外部一定点引圆的两条切线,这两条切线所夹的弦的长度相等。
6. 弦切角定理:圆内的弦所夹的角等于这条弦所对应的圆心角的一半。
7. 弧切角定理:圆内一条弧与这条弧所对应的切线所夹的角等于这段弧所对应的圆心角的一半。
三、圆的应用1. 圆周率π的计算:π是无理数,它代表了圆的周长与直径的比值。
在计算中常用3.14或22/7作为π的近似值。
2. 圆的面积计算:圆的面积等于半径的平方乘以π。
即面积= π ×半径的平方。
3. 圆的几何画图:在平面几何中,圆的几何画图是重要的基础知识,它包括圆的作图、切线的作图等。
4. 圆与三角形的关系:圆与三角形之间存在着多个重要的性质和定理,如圆内切等著名定理。
综上所述,圆的性质与定理是数学中重要的内容,它们帮助我们更深入地了解圆的特点与应用。
通过学习圆的性质与定理,我们可以解决与圆相关的问题,同时也为进一步学习几何学奠定了坚实基础。
圆的基本性质
圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。
在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。
通过了解这些基本性质,我们可以更好地理解和运用圆形。
1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。
这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。
圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。
2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。
圆的直径是通过圆心,并且两个端点都在圆上的线段。
圆的直径是半径的两倍,也是圆的最长线段。
3. 圆心和弧圆心是圆的中心点。
圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。
圆的弧可以被度量为角度,弧度或弧长。
4. 圆的面积圆的面积是圆内部所包围的空间。
圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。
这个公式表明,圆的面积正比于半径的平方。
5. 圆的周长圆的周长是圆上所有点之间的距离总和。
圆的周长也被称为圆周长或圆的周长。
圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。
6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。
切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。
7. 圆的弦圆上的任意两个点之间的线段被称为弦。
最长的弦是圆的直径。
8. 圆的弧度弧度是一种用于度量圆上弧长的单位。
一个圆的弧长等于半径的弧度数乘以圆心角的弧度。
总结:在几何学中,圆拥有许多独特的性质和特征。
通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。
圆在许多领域中都有广泛的应用,如工程、建筑、数学等。
掌握圆的基本性质对于解决与圆相关的问题非常重要。
通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。
2024-2025学年沪科版初中数学九年级(下)教案第24章圆24.2圆的基本性质(第1课时)
第24章圆24.2 圆的基本性质第1课时圆的定义及与圆有关的概念教学目标教学反思1.认识圆,理解圆的本质属性.2.理解弦、弧、直径、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.会判断点与圆的位置关系,并应用这一关系进行解题.教学重难点重点:认识圆,理解圆的本质属性.难点:理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.教学过程导入新课问题情境:观察下列图片,从图片中找出共同的图形.教师追问:你还能举出生活中的圆形吗?师生活动:学生列举生活中的圆形,教师适当引导.思考:车轮为什么做成圆形? 做成三角形、正方形可以吗?师生活动:如果把车轮做成圆形,车轴安装在圆心上,当车轮在地面滚动的时候,车轴离开地面的距离总是等于车轮半径长.因此车厢里坐的人都将平稳地被车子拉着走.假设车轮是个破的,已经不成圆形了,轮缘上高一块低一块的,也就是说从轮缘到轮子圆心的距离不相等,那么这种车子行驶起来一定很颠簸.同样道理,如果车轮设计成三角形或是正方形,因为其中心点到周边各点的距离不等长,所以行驶起来也一定会很颠簸!探究新知1.圆的定义教师提问:同学们,你们知道怎样画一个圆吗?你有哪些方法?师生活动:学生畅所欲言,教师圆规演示画圆的过程,总结圆的定义.1.定好半径长(即圆规两脚间的距离);2.固定圆心(即把有针尖的脚固定在一点);教学反思3.旋转一圈(使铅笔在纸上画出封闭曲线);4.用字母表示圆心、半径、直径.【归纳总结】圆的旋转定义:在一个平面内,线段OP绕它固定的一个端点O旋转一周,另一个端点P所形成的图形叫做圆.以点O为圆心的圆,记作“⊙O”,读作“圆O”.问题情境:1.以1 cm为半径能画几个圆,以点O为圆心能画几个圆?2.如何画一个确定的圆?师生活动:学生独立思考并回答,教师引导.教师追问:从画圆的过程可以看出什么呢?【归纳总结】①圆上各点到定点(圆心O)的距离都等于半径.②平面内到定点的距离等于定长的所有点都在同一个圆上.【归纳总结】圆的集合定义:平面内到定点(圆心O )的距离等于定长(半径r)的所有点组成的图形.探究:确定一个圆的要素.教师提问:当圆的圆心确定时,这个圆唯一确定吗?当圆的半径确定时,这个圆唯一确定吗?师生活动:学生小组讨论,举出反例,思考确定圆的要素,教师引导.①②【解】如图①,圆心相同,半径不同,能画出无数个同心圆;如图②,半径相同,圆心不同,能画出无数个等圆.【归纳总结】确定一个圆的要素一是圆心,圆心确定其位置;二是半径,半径确定其大小.圆的基本性质:同圆的半径相等.【新知应用】例1 如图,矩形ABCD 的对角线AC ,BD 相交于点O .求证:A ,B ,C ,D 四个点在以点O 为圆心的同一个圆上.师生活动:(学生思考,教师引导)要使A ,B ,C ,D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,点A ,B ,C ,D 与点O 的距离有什么关系?【证明】∵ 四边形ABCD 为矩形, ∴ OA =OC =12AC ,OB =OD =12BD ,AC =BD ,∴ OA =OB =OC =OD ,∴ A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上.【归纳总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ). 2.点与圆的位置关系圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合.请你用集合的语言描述下面的两个概念:(1)圆的内部是到圆心的距离小于圆的半径r 的所有点的集合; (2)圆的外部是到圆心的距离大于圆的半径r 的所有点的集合. 【新知讲解】点与圆的位置关系: 1.点P 在圆上⇔OP =r (如图①). 2.点P 在圆内⇔OP <r (如图②). 3.点③练一练:1.正方形ABCD 的边长为3 cm ,以A 为圆心,3cm 长为半径作⊙A ,则点A 在⊙A ,点B 在⊙A ,点C 在⊙A ,点D 在⊙A .2.一点和⊙O 上的最近点距离为4 cm ,最远距离为10 cm ,则这个圆的半径是 cm.3.与圆有关的概念 (1)弦连接圆上任意两点的线段(如图中的AB )叫做弦.图中的弦还有 .经过圆心的弦(如图中的AC )叫做直径.注意:①弦和直径都是线段.②直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径. (2)弧圆上任意两点间的部分叫做圆弧,简称弧.以A ,B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”. (3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.教学反思(4)劣弧与优弧小于半圆的弧叫做劣弧,如图中的AC .大于半圆的弧叫做优弧,如图中的ABC .(5)等圆能够重合的两个圆叫做等圆.等圆是两个半径相等的圆. (6)等弧在同圆或等圆中,能够互相重合的弧叫做等弧. 3.概念辨析(1)长度相等的弧是等弧吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)长度相等的弧不一定是等弧,只有在同圆或等圆中,长度相等的弧才是等弧.(2)直径是弦吗?弦是直径吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)直径是弦,但弦不一定是直径,只有在弦经过圆心时,这条弦才叫直径,因此直径是圆中最长的弦.(3)半圆是弧吗?弧是半圆吗?师生活动:学生思考并回答,说明理由,教师引导归纳总结.【归纳总结】(学生总结,老师点评)半圆是弧,但弧不一定是半圆,只有直径的两个端点把圆分成的两条弧才是半圆.【新知应用】例2 下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦.其中正确的是________.(填序号)师生活动:(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【归纳总结】(学生总结,老师点评)由圆的有关概念可知,连接圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.例3 如图.(1)请写出以点B 为端点的劣弧及优弧; (2)请写出以点B 为端点的弦及直径; (3)请任选一条弦,写出这条弦所对的弧.师生活动:发对优弧、劣弧概念的思考.【解】(1)劣弧:BD ,BF ,BC ,BE .优弧:BFE ,BFC ,BCD ,BCF .(2)弦BD , AB , BE .其中弦AB 又是直径.(3)答案不唯一.如:弦DF ,它所对的弧是DF 和DEF . 【归纳总结】大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.要按照一定的顺序书写,不要遗漏.【拓展延伸】 例4 下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3 cm ,且经过点P 的圆有无数个;④以点P 为圆心,以3 cm 为半径的圆有无数个.其中错误的有( )A .1个 B.2个 C.3个 D.4个师生活动:(引发学生思考)结合圆的定义分析怎样确定一个圆?确定一个圆的条件有哪些?【答案】A教学反思【归纳总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.例5A,B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10师生活动:(引发学生思考)连接圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连接圆上任意两点构成的最长线段和最短线段分别是什么.【答案】D【归纳总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.课堂练习1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)如图所示,图中有条直径,条非直径的弦.2.一点和⊙O上的点最近距离为6 cm,最远距离为12 cm,则这个圆的半径是 .3.判断下列说法的正误.(1)弦是直径. ()(2)过圆心的线段是直径. ()(3)半圆是弧. ()(4)过圆心的直线是直径. ()(5)直径是最长的弦. ()(6)半圆是最长的弧. ()(7)长度相等的弧是等弧. ()(8)同心圆也是等圆. ()4.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是.(填序号)5.如图,点A,B,C,E在⊙O上,点A,O,D与点B,O,C分别在同一直线上,图中有几条弦?分别是哪些?第5题图6.如图,点A,N在半圆O上,四边形ABOC和四边形DNMO均为矩形,求证:BC=MD.参考答案1.(1)直径半径(2)两三2.9 cm或3 cm3.(1)×(2)×(3)√(4)×(5)√(6)×(7)×(8)×4.①5.解:图中有3条弦,分别是弦AB,BC,CE.6.证明:如图,连接ON,OA.∵点A,N在半圆O上,∴ON=OA.∵四边形ABOC和四边形DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD. 教学反思第6题答图课堂小结学生独立思考,进行总结,教师补充概括. ⎧⎧⎪⎪⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩圆的旋转定义圆的定义圆的集合定义弦—直径劣弧圆弧半圆圆的有关概念优弧等圆等弧 布置作业教材第14页练习板书设计24.2 圆的基本性质第1课时 圆的定义及与圆有关的概念1.圆的定义(1)圆的旋转定义 (2)圆的集合定义2.与圆有关的概念:弦;直径;弧;半圆;等圆;等弧.3.点与圆的位置关系: 点P 在圆上⇔OP =r ; 点P 在圆内⇔OP <r ; 点P 在圆外⇔OP >r. 教学反思。
圆的基本概念与性质
圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。
本文将对圆的基本概念和一些重要性质进行详细介绍。
一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。
这个固定点被称为圆心,而这个距离被称为半径。
二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。
因此,一个圆可以用符号“O(r)”表示。
三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。
任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。
2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。
3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。
圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。
4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。
切线与半径构成的夹角为90度。
法线是与切线垂直的直线,它通过切点并与切线垂直相交。
5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。
一个圆的弧长等于半径的弧度数。
度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。
四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。
它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。
2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。
切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。
圆的性质和定理
圆的性质和定理圆是几何中的重要概念之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的基本性质以及一些与圆相关的重要定理。
一、圆的性质1. 定义:圆是由平面上与一定点的距离相等的所有点组成的集合。
圆心是圆上所有点的中心,半径是从圆心到圆上任意一点的距离。
2. 圆周率:圆的周长与直径的比值被定义为圆周率π(pi),它是一个无理数,约等于3.14159。
根据这个定义,圆的周长C可以表示为C = 2πr,其中r是圆的半径。
3. 直径和半径的关系:直径是一条通过圆心的线段,它的长度等于半径的两倍。
换句话说,d = 2r,其中d代表直径,r代表半径。
4. 弧和弦:在圆上,弧是圆上的一段弯曲的部分,而弦则是连接圆上两个点的线段。
任何一条弦对应的弧都是唯一确定的,且弦总是小于或等于圆的直径。
5. 弦的性质:如果两条弦互相垂直,则它们所对应的弧互补。
二、圆的定理1. 弧度制和角度制:在计量角度时,常见的有两种制度,一种是弧度制,另一种是角度制。
弧度制是以圆的半径为单位,角度制是以度为单位。
两者之间的转换关系是2π弧度等于360度。
2. 弧度与圆周角的关系:一条弧所对应的圆周角的弧度数等于这条弧所对应的圆心角的弧度数。
这个定理揭示了圆弧度的重要性,为许多相关问题的解决提供了便利。
3. 切线定理:与圆相切的直线(切线)与半径的相交点处的角是一个直角。
4. 弧长和扇形面积:弧长是弧上的一部分的长度,可以由弧度数乘以半径得到。
扇形面积是由相邻两条半径和其所夹的弧组成的图形的面积,它可以通过半径和所夹的圆心角的弧度数计算得出。
5. 割线定理:在与圆相交的直线上,两个相交点分割的弦的乘积等于这条直线外部线段与这条直线在圆上的切点分割的弦的乘积。
总结:圆具有许多独特的性质和定理,对于几何学的研究和应用有着重要的意义。
掌握了圆的性质和定理,我们可以更好地理解和解决与圆相关的问题。
在实际应用中,圆的性质和定理也被广泛应用于建筑、机械、地理等领域,为问题的解决提供了有效的方法和准确的计算依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A
圆的基本性质(一)
A 组
1、 已知:在直角三角ABC 中,0
90=∠A ,AB=3cm,AC=4cm,AD 是CB 边上的高,则D 在
以A 为圆心,AC 为半径的( )
6、如图,四边形ABCD 中,∠A=130°,∠B=90°,∠C =50°,则过四点A 、B 、C 、D
能否画一个圆?若能,请画出这个圆,请简单说明理由。
(6分)
7、如图,点C 是AB 上的点,CD ⊥OA 于D ,CE ⊥OB 于E ,若CD=CE 。
求证:点C 是
AB 的中点。
(6分)
⌒ ⌒
8、如图,AB 是⊙O 的直径,且AD ∥OC ,若
AD 的度数为80°。
求CD 的度数。
(6分)
9.如图所示,已知:⊙O 的弦AB,E 、F 是弧AB 上两点,弧AE 与弧BF 相等,OE 、OF 分别交AB 。
10、如图所示,BC 为⊙O 的直径,弦AD ⊥BC 于E ,0
60=∠C ,求证:ABD ∆为等边三角形。
11、 如图,弦CD 长为________。
12、 在⊙O 中,弦弦CD 的弦心距
13、 矩形ABCD CD 与⊙O ⊙O 的直径等于B
F
E
A
C D
B
14、 ⊙O 的半径为10cm ,两平行弦AC ,BD 的长分别为12cm ,16cm ,则两弦间的距离是( ) A. 2cm B. 14cm C. 6cm
15、.弓形的半径为10cm ,弦长为
16、已知扇形面积为12cm 2,半径为17、 如图,⊙O 是∆ABC
的外接圆,
E 是BA 延长线上一点,∠=DAE 114 A. 57° B. 38° C. 33°18、已知AB 、CD
19. 如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B, 点A 的坐标为(0, 4 ) , M 是圆上一点,∠BMO=1200.求:⊙C 的半径和圆心C 的坐标.。
20. 如图,在△ABC 中,∠B = Rt ∠,∠A = 600,以点B 为圆心,AB 为半径画圆,交AC 于点D,交BC 于点E .求证: (1) AD = 2ED: ( 2 ) D 是AC 的中点.
C 组
21、如图15,BC 是圆O 的直径,AD 垂直BC 于D ,弧BA 等于弧AF ,BF 与AD 交于E ,求证:(1)AE =BE ,(2)若A ,F 把半圆三等分,BC =12,求AE 的长。
B
A
C
D
E
F
图15
22、△ABC 内接于⊙O ,CE ⊥AB 于E ,交⊙O 于F ,AD ⊥BC ,求证:∠FAO=∠BAC 。
24、如图,有四个矩形(长,宽均为b a ,),在图(1)中将线段21A A 向右平移1个单位到
21B B ,得到封闭图形1221B B A A ,在图(2)中将折线321A A A 向右平移1个单位到321B B B ,
图(4)中,在一块矩形的草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示草地面积是多少?。