高中数学离散型随机变量及其分布列全章复习题型完美版

合集下载

离散型随机变量及其分布列 高考数学总复习 高考数学试题详细解析

离散型随机变量及其分布列 高考数学总复习 高考数学试题详细解析

12.4 离散型随机变量及其分布列一、选择题1.已知随机变量X的分布列如下表:则m的值为(A.115 B.215C.15D.415解析利用概率之和等于1,得m=315=15.答案C2.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是( )A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点解析第一枚的点数减去第二枚的点数不小于5,即只能等于5,故选D.答案 D3.离散型随机变量X的概率分布规律为P(X=n)=an n+1(n=1,2,3,4),其中a是常数,则P(12<X<52)的值为( )A.23B.34C.45D.56解析 由(11×2+12×3+13×4+14×5)×a =1. 知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案 D4.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为( ).A .1 B.12 C.13 D.15解析 设X 的分布列为:即“X =0”表示试验失败,“X p ,成功的概率为2p .由p +2p =1,则p =13,因此选C.答案 C5.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ).A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.答案 D6.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).A.15B.25C.35D.45解析 P (ξ≤1)=1-P (ξ=2)=1-C 14C 22C 36=45.答案 D7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为 ( ).A.1220B.2755C.27220D.2155解析 用完后装回盒中,此时盒中旧球个数X 是一个随机变量.当X =4时,说明取出的3个球有2个旧球,1个新球,∴P (X =4)=C 19C 23C 312=27220,故选C.答案 C 二、填空题8.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案 239.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至少命中一次的概率为1625,则该队员每次罚球的命中率为____________. 解析 由251612=-p 得53=p答案 3510.设随机变量X 的分布列为P (X =i )=i10,(i =1,2,3,4),则P ⎝⎛⎭⎪⎫12<X <72=________.解析 P ⎝ ⎛⎭⎪⎫12<X <72=P (X =1)+P (X =2)+P (X =3)=35.答案3511.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2. 现记从中任取三条线且在单位时间内通过的最大信 息总量为ξ,则P (ξ≥8)=________.解析法一由已知ξ的取值为7,8,9,10,∵P(ξ=7)=C22C12C35=15,P(ξ=8)=C22C11+C22C12C35=310,P(ξ=9)=C12C12C11C35=25,P(ξ=10)=C22C11C35=110,∴ξ的概率分布列为∴P(ξ≥8)=P(ξ=8)=310+25+110=45.法二P(ξ≥8)=1-P(ξ=7)=1-C22C12C35=45.答案4 512.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取2个球,则取出的红球个数X的取值集合是________.解析甲袋中取出的红球个数可能是0,1,2,乙袋中取出的红球个数可能是0,1,故取出的红球个数X的取值集合是{0,1,2,3}.答案 {0,1,2,3}三、解答题13.口袋中有n(n∈N*)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X=2)=730,求:(1)n的值;(2)X的分布列.解析 (1)由P(X=2)=730知C13C1n+3×C1nC1n+2=730,∴90n=7(n+2)(n+3).∴n=7.(2)X=1,2,3,4且P(X=1)=710,P(X=2)=730,P(X=3)=7120,P(X=4)=1 120.∴X的分布列为14.袋中装着标有数字1,2,3,4,5的小球各2个.从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计分介于20分到40分之间的概率.解析(1)“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A)=C3 5C12C12C12C310=23.(2)由题意知,X有可能的取值为2,3,4,5,取相应值的概率分别为.P(X=2)=C22C12+C12C22C310=130;P(X=3)=C24C12+C14C22C310=215;P(X=4)=C26C12+C16C22C310=310;P(X=5)=C28C12+C18C22C310=815.所以随机变量X的分布列为:C,则P(C)=P(X=3或X=4)=P(X=3)+P(X=4)=215+310=1330.15.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列.解析 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P =C 14C 16+C 24C 210=3045=23.⎝⎛⎭⎪⎫或用间接法,即P =1-C 26C 210=1-1545=23. (2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.所以X 的分布列为:【点评】 常出现,其解题的一般步骤为:,第一步:理解以实际问题为背景的概率问题的题意,确定离散型随机变量的所有可能值;,第二步:利用排列、组合知识或互斥事件,独立事件的概率公式求出随机变量取每个可能值的概率;,第三步:画出随机变量的分布列;,第四步:明确规范表述结论;16.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的分布列,并求李明在一年内领到驾照的概率.解析X的取值分别为1,2,3,4.X=1,表明李明第一次参加驾照考试就通过了,故P(X=1)=0.6.X=2,表明李明在第一次考试未通过,第二次通过了,故P(X=2)=(1-0.6)×0.7=0.28.X=3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.∴李明实际参加考试次数X的分布列为1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6.。

离散型随机变量及分布列(一轮复习)

离散型随机变量及分布列(一轮复习)

答案:D
离散型随机变量分布列
[例2] 袋中有4个红球,3个黑球,从袋中随机取球,设 取到1个红球得2分,取到1个黑球得1分,从袋中任取4个球.
(1)求得分X的分布列; (2)求得分大于6分的概率.
[自主解答] (1)从袋中随机取 4 个球的情况为 1 红 3 黑, 2 红 2 黑,3 红 1 黑,4 红四种情况,分别得分为 5 分,6 分, 7 分,8 分,故 X 的可能取值为 5,6,7,8.
[易误辨析] (1)本题由于离散型随机变量ξ的取值情况较多,极易 发生对随机变量取值考虑不全而导致解题错误. (2)此类问题还极易发生如下错误:虽然弄清随机变 量的所有取值,但对某个取值考虑不全而导致解题错 误. (3)避免以上错误发生的有效方法是验证随机变量的 概率和是否为1.
1-2q≥0, q2≥0, 12+1-2q+q2=1,
解得
q=1-
2 2.
或由 1-2q≥0⇒q≤12,可排除 A、B、C.
(2)由分布列的性质知0.2+0.1+0.1+0.3+m=1,解
得m=0.3.首先列表为:
ξ
01234
2ξ+1 1 3 5 7 9
|ξ-1| 1 0 1 2 3
离散型随机变量分布列的性质
[例1] (1)设ξ是一个离散型随机变量,其分布列为:
ξ -1
0
1
P
1 2
1-2q
q2
则q的值为
()
A.1
B.1±
2 2
C.1+
2 2
D.1-
2 2
(2)设离散型随机变量ξ的分布列为: ξ0 1 2 34 P 0.2 0.1 0.1 0.3 m
求:①2ξ+1的分布列;②|ξ-1|的分布列. [自主解答] (1)由分布列的性质,有

第七章 随机变量及其分布【章末复习】-2022-2023学年高二数学【单元通关复习】(人教A版201

第七章 随机变量及其分布【章末复习】-2022-2023学年高二数学【单元通关复习】(人教A版201

2 重点题型
反思感悟 (1)利用公式P(B∪C|A)=P(B|A)+P(C|A)可使条件概率的计算 较为简单,但应注意这个性质的使用前提是“B与C互斥”. (2)为了求复杂事件的概率,往往需要把该事件分为两个或多个互斥事件, 求出简单事件的概率后,相加即可得到复杂事件的概率.
跟踪训练1 抛掷两颗质地均匀的骰子各一次. (1)向上的点数之和为7时,其中有一个的点数是2的概率是多少? 解 记事件A表示“两颗骰子中,向上的点数有一个是2”,事件B表 示“两颗骰子向上的点数之和为7”, 则事件AB表示“向上的点数之和为7,其中有一个的点数是2”, 则 P(B)=366=16,P(AB)=326=118,
解 甲公司送餐员日平均送餐单数为 38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7, 则甲公司送餐员日平均工资为80+4×39.7=238.8(元), 因为乙公司送餐员日平均工资为241.8元,238.8<241.8, 所以推荐小王去乙公司应聘.
反思感悟 (1)求分布列的关键是根据题意确定随机变量的所有可能取值 和取每一个值时的概率,然后列成表格的形式即可. (2)根据统计数据做出决策时,可根据实际情况从均值的大小关系作出比 较后得到结论.
当 a=38 时,X=38×6=228,P=550=110; 当 a=39 时,X=39×6=234,P=1500=15; 当 a=40 时,X=40×6=240,P=1500=15; 当 a=41 时,X=40×6+1×7=247,P=2500=25; 当 a=42 时,X=40×6+2×7=254,P=550=110,
送餐单数 38 39 40 41 42
天数
10 15 10 10 5
乙公司送餐员送餐单数频数表:

(完整版)离散型随机变量及其分布列测试题

(完整版)离散型随机变量及其分布列测试题

离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A. X 取每一个可能值的概率都是非负数;B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D . X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξA.4.06.01⨯-k B.76.024.01⨯-k C.6.04.01⨯-k D.24.076.01⨯-k3、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6 C . 10 D. 无法确定4、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点 D . 一枚是3点,一枚是1点或两枚都是2点5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的6. 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3 B .5 C.6 D.107.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C .127 D.65 8.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( )A.21B.91C. 61D.51 9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.41004901C C -B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .10.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是: A.5)21( B .525)21(C C.335)21(C D.53525)21(C C11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是A. 0.216B.0.36C.0.432 D .0.648 5.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A .40243 B .1027C .516 D .1024312.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率)(B A P 等于: A9160 B 21 C 185 D 2169113.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是:A .95B .94 C .2111 D .2110 14.从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是A .2个球不都是红球的概率 B. 2个球都是红球的概率C .至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 15.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是101,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为: A .1001 B .2507 C .2501 D .10001 16. .已知随机变量ξ的分布列为:若12)(2=<x P ξ,则实数x 的取值范围是( )A.94≤<xB.94<≤xC.94≥<x x 或D.94>≤x x 或17. 12.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A.2101012)85()83(⋅C B .83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C18. 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )(A )175 (B ) 275 (C )375 (D )475二、填空题:19.若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____20. 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)21.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1⨯;③他至少击中目标1次的概率是410.1-.其中正确结论的序号是 ①③ __(写出所有正确结论的序号). 22.对有n (n ≥4)个元素的总体{}1,2,,n 进行抽样,先将总体分成两个子总体{}1,2,,m 和{}1,2,,m m n ++ (m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;4()m n m -三、解答题:23、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.24.一个口袋中装有n 个红球(5n ≥且n N ∈)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用n 表示一次摸奖中奖的概率p ;(Ⅱ)若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时,P 最大?24.(Ⅰ)一次摸奖从5n +个球中任选两个,有25n C +种,它们等可能,其中两球不同色有115n C C 种,一次摸奖中奖的概率10(5)(4)np n n =++.(Ⅱ)若5n =,一次摸奖中奖的概率59p =,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是:123380(1)(1)243P C p p =⋅⋅-=. (Ⅲ)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)(1)363P P C p p p p p ==⋅⋅-=-+,01p <<,2'91233(1)(31)P p p p p =-+=--,知在1(0,)3上P 为增函数,在1(,1)3上P 为减函数,当13p =时P 取得最大值.又101(5)(4)3n p n n ==++,解得20n =.25. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.•(1)X 的分布列为P (X=k )=·,k=0,1,2,3,4,5,6.(2)Y 的概率分布为:Y 0 1 2 3P·· ·Y 4 5 6P··(3)0.912 解析:(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故X~B(6,), 2分所以X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6. 5分(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.其中:{Y=k}(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.P(Y=k)=·(k=0,1,2,3,4,5),而{Y=6}表示一路没有遇上红灯,故其概率为P(Y=6)=.8分因此Y的概率分布为:Y 0 1 2 3P···Y 4 5 6P··12分(3)这名学生在途中至少遇到一次红灯的事件为 {X≥1}={X=1或X=2或…或X=6}, 14分 所以其概率为P (X≥1)==1-=≈0.912. 16分20.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X .22.甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、B3、C4、D5、C6、B7、C8、B二、填空题: 18、 20三、解答题:18、解:设黄球的个数为n ,由题意知 绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2 ... P21 4181 161 ... n 21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为: X 1 2 P3414。

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。

高中数学离散型随机变量的分布列综合测试题(附答案)

高中数学离散型随机变量的分布列综合测试题(附答案)

高中数学离散型随机变量的分布列综合测试题(附答案)第二课时离散型随机变量的分布列2一、选择题1.下列表中可以作为离散型随机变量的分布列是()A.1 0 1P 141214B.0 1 2P -143412C.0 1 2P 152535D.-1 0 1P 141412[答案] D[解析] 本题考查分布列的概念与性质.即的取值应互不相同且P(0,i=1,2,…,n,i=1nP(i)=1.A中的取值出现了重复性;B中P(=0)=-140,C中i=13P(i)=15+25+35=651.2.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为,则下列概率中等于C18C16+C14C16C112C112的是()A.P(=0) B.P(2)C.P(=1) D.P(=2)[答案] C[解析] 即取出白球个数为1的概率.3.已知随机变量X的分布列为:P(X=k)=12k,k=1、2、…,则P(2<X4)=()A.316B.14C.116D.516[答案] A[解析] P(2<X4)=P(X=3)+P(X=4)=123+124=316.4.随机变量的概率分布列为P(=k)=ck(k+1),k=1,2,3,4,其中c是常数,则P12<<52则值为()A.23B.34C.45D.56[答案] D[解析] c12+c23+c34+c45=c1-12+12-13+13-14+14-15=45c=1.c=54.P12<<52=P(=1)+P(=2)=54112+123=56.5.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,表示取出的4个球的总得分;④表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④[答案] B[解析] 依据超几何分布的数学模型及计算公式,或用排除法.6.(2019东营)已知随机变量的分布列为P(=i)=i2a(i=1,2,3),则P(=2)=()A.19B.16C.13D.14[答案] C[解析] 由离散型随机变量分布列的性质知12a+22a+32a =1,62a=1,即a=3,P(=2)=1a=13.7.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是()A.1120B.724C.710D.37[答案] B[解析] P=C37C03C310=724.8.用1、2、3、4、5组成无重复数字的五位数,这些数能被2整除的概率是()A.15B.14C.25D.35[答案] C[解析] P=2A44A55=25.二、填空题9.从装有3个红球、3个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为:0 1 2P[答案] 15 35 1510.随机变量的分布列为:0 1 2 3 4 5P 192157458451529则为奇数的概率为________.[答案] 81511.(2019常州)从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 5612.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量,则P(>1)=________.[答案] 12[解析] 依题意,P(=1)=2P(=2),P(=3)=12P(=2),P(=3)=P(=4),由分布列性质得1=P(=1)+P(=2)+P(=3)+P(=4)4P(=2)=1,P(=2)=14.P(=3)=18.P(>1)=P(=2)+P(=3)+P(=4)=12.三、解答题13.箱中装有50个苹果,其中有40个合格品,10个是次品,从箱子中任意抽取10个苹果,其中的次品数为随机变量,求的分布列.[解析] 可能取的值为0、1、2、...、10.由题意知P(=m) =Cm10C10-m40C1050(m=0、1、2、...、10),的分布列为0 1 ... k (10)P C010C1040C1050C110C940C1050… Ck10C10-k40C1050… C1010C040C105014.设随机变量X的分布列PX=k5=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)35;(3)求P110<X<710.[分析] 分布列有两条重要的性质:Pi0,i=1、2、…;P1+P2+…+Pn=1利用这两条性质可求a的值.(2)(3)由于X的可能取值为15、25、35、45、1.所以满足X35或110710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次试验中相互独立,只要求得满足条件的各概率之和即可.[解析] (1)由a1+a2+a3+a4+a5=1,得a=115. (2)因为分布列为PX=k5=115k (k=1、2、3、4、5)解法一:PX35=PX=35+PX=45+P(X=1)=315+415+515=45;解法二:PX35=1-PX=15+PX=25=1-115+215=45.(3)因为110<X<710,只有X=15、25、35时满足,故P110<X<710=PX=15+PX=25+PX=35=115+215+315=25.15.(2009福建)盒子中装着标有数字1,2,3,4,5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A,则P(A)=C35C12C12C12C310=23.(2)由题意可能的取值为2,3,4,5,P(=2)=C22C12+C12C22C310=130,P(=3)=C24C12+C14C22C310=215,P(=4)=C26C12+C16C22C310=310,P(=5)=C28C12+C18C22C310=815.所以随机变量的概率分布为:2 3 4 5P 13021531081516.(2019福建理,16)设S是不等式x2-x-60的解集,整数m,nS.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设=m2,求的分布列.[解析] 本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.解题思路是先解一元二次不等式,再在此条件下求出所有的整数解.解的组数即为基本事件个数,按照古典概型求概率分布列,注意随机变量的转换.(1)由x2-x-60得-23,即S={x|-23}.由于m,nZ,m,nS且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以=m2的所有不同取值为0,1,4,9.且有P(=0)=16,P(=1)=26=13,P(=4)=26=13,P(=9)=16.故的分布列为:0 1 4 9P 161313。

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。

(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。

如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

高三数学离散型随机变量及其分布列完美版PPT资料


(2)p1+p2+…+pn=1. 确定随机变量的可能取值→求随机变量取各个值的概率→列表写出分布列.
在有多个结果的随机试验中,如果只关心一个随机事件是否发生,可以将它化归为两点分布来研究. 例7 某商场为了促销,在一个口袋里装有大小相同的10个红球和20个白球,顾客从中一次摸出5个球,拟设定一个中奖规则. 例1 设离散型随机变量X的分布列为
【解题要点】 确定随机变量的可能取值→求随机变量 取各个值的概率→列表写出分布列.
考点2 由分布列求随机事件的概率
例5 已知随机变量ξ的分布列为 P( k) c (k=0,1,2,3),求
k 1
P( 1)的值.
例6 已知随机变量ξ服从两点分布, 其分布列如下,求ξ的成功概率.
ξ
0
1
P
9c2-c 3-8c
高三数学离散型随 机变量及其分布列
知识梳理
t
p
1 2
5730
1.随机试验的特征:
(1)实验可以在相同条件下重复进行; (2)试验的所有可能结果是明确可知的, 且不止一个; (3)每次试验总是恰好出现这些结果中的 一个,但在一次试验之前不能肯定这次 试验会出现哪种结果.
2.随机变量: 表示随机试验不同结果的数字变量,常 用字母X,Y,ξ,η等表示.
(2)记“f(x)=2ξx+4在区间[-3,-1] (2)p1+p2+…+pn=1.
(3)每次试验总是恰好出现这些结果中的一个,但在一次试验之前不能肯定这次试验会出现哪种结果. (2)p1+p2+…+pn=1.
示该游客离开该城市时游览的景点数与没有 游览的景点数之差的绝对值. 设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余都为一等品.
如果n比较大时,可考虑用解析法表示. (2)p1+p2+…+pn=1.

离散型随机变量及其分布列(基础+复习+习题+练习).docx

`课题:离散型随机变量及其分布列考纲要求:① 理解取有限个的离散型随机量及其分布列的概念,了解分布列于刻画随机象的重要性;②理解超几何分布及其推程,并能行的用.教材复习1.随机量:如果随机的果可以用一个量来表示,那么的量叫做随机量随机量常用希腊字母、等表示2.离散型随机量 : 于随机量可能取的,可以按一定次序一一列出,的随机量叫做离散型随机量若是随机量,a b ,其中 a 、b是常数,也是随机量3.型随机量:于随机量可能取的,可以取某一区的一切,的量就叫做型随机量4. 离散型随机量与型随机量的区与系: 离散型随机量与型随机量都是用量表示随机的果;但是离散型随机量的果可以按一定次序一一列出,而性随机量的果不可以一一列出5.离散型随机量的分布列:离散型随机量可能取的x1、 x2、⋯、 x i、⋯取每一个x i i 1,2,的概率P(x i ) p i,称表x1x2⋯x i⋯P p1p2⋯p i⋯随机量的概率分布,称的分布列6.离散型随机量分布列的两个性:任何随机事件生的概率都足: 0≤P( A)≤1,并且不可能事件的概率0 ,必然事件的概率 1.由此你可以得出离散型随机量的分布列都具有下面两个性:1p i≥0, i 1,2, ⋯;2 p1p2⋯1于离散型随机量在某一取的概率等于它取个各个的概率的和. 即P( ≥ x k ) P(x k ) P(x k 1 )7.两点分布:若随机量服从两点分布,即其分布列:X01其中 P P( X1) 称成功概率(表中 0 p 1 ).P 1 p p 8.几何分布:在独立重复中,某事件第一次生,所作的次数也是一个正整数的离散型随机量.“k”表示在第 k 次独立重复事件第一次生. 如果把k次事件 A 生A k、事件 A 不生A k,p( A k)p ,p( A k) q( q 1 p) ,那么P(k ) P( A1 A2 A3 L A k 1A k )P( A1 )P( A2 ) P( A3 ) L P( A k 1 )P(A k ) q k 1 p(k0,1,2, ⋯, q1p )于是得到随机量的概率分布如下:13k2⋯⋯`Ppqq 2 p q k 1 pp⋯⋯称 的随机 量服从几何分布,作 g( k, p)q k 1 p ,其中 k0,1,2, ⋯, q 1 p9.超几何分布: 一般地, 有 N 件 品, 其中有 M ( M ≤ N )件次品, 从中任取 n ( n≤ N )件 品,用 X 表示取出的 n 件 品中次品的件数,那么 P Xk(其中 k 非 整数). 如果一个随机 量的分布列由上式确定,那么称X 服从参数N , M , n 的超几何分布 .m12⋯C M 0 C N n 0MC M 1 C N n 1MC M 2 C N n 2MC M m C N n m MC N n C N nC N n ⋯C N n10. 求离散型随机变量分布列的步骤: 1 要确定随机 量 的可能取 有哪些 . 明确取每个 所表示的意 ; 2 分清概率 型, 算 取得每一个 的概率(取球、抽取品等 要注意是放回抽 是不放回抽 ; 3 列表 , 出分布列,并用分布列的性.11.几种常见的分布列的求法:1 取球、投骰子、抽取 品等 的概率分布,关是概率的 算 . 所用方法主要有化 法、数形 合法、 法等, 于取球、抽取 品等, 要注意是放回抽 是不放回抽.2 射 :若是一人 射 ,且限制在n次射 中 生k 次, 往往与二 分布 系起来;若是首次命中所需射 的次数, 它服从几何分布,若是多人射 ,一般利用相互独立事件同 生的概率 行 算.3 于有些 ,它的随机 量的 取与所 的关系不是很清楚,此 要仔 ,明确 中的含 ,恰当地 取随机 量,构造模型, 行求解.典例分析:考点一 由古典概型求离散型随机变量的分布列问题 1.( 2013天津)一个盒子里装有 7 卡片 , 其中有 色卡片 4 , 号分1,2,3,4 ;白色卡片 3 ,号分 2,3, 4 . 从盒子中任取 4 卡片 ( 假 取到任何一卡片的可能性相同 ). (Ⅰ ) 求取出的 4 卡片中 ,含有 号3 的卡片的概率 . ( Ⅱ ) 在取出的 4 卡片中 , 色卡片 号的最大X , 求随机 量 X 的分布列和数学期望 .`考点二由统计数据求离散型随机变量的分布列问题 2.2010()某食品厂了一条自包装流水的生情况,随机抽取流水上的40 件品作本称出它的重量(位:克),重量的分区490,495 ,495,500 ,⋯,510,515 ,由此得到本的率分布直方,如所示.1根据率分布直方,求重量超505 克的品数量.2 在上述抽取的40 件品中任取2 件, Y 重量超 505 克的品数量,求 Y 的分布列.3 从流水上任取 5 件品,求恰有 2 件品合格的重量超 505克的概率.考点二两点分布问题 3.一个盒子中装有5个白色玻璃球和6红色玻璃球,从中摸出两球. 当两球全为红色玻璃球时,记X 0 ;当两球不全为红色玻璃球时,记为X 1 .试求 X 的分布列.考点三超几何分布452问题 4.2012()已知箱中装有个白球和个黑球,且规定:取出一个白球的分,取出一个黑球的1分.现从该箱中任取( 无放回,且每球取到的机会均等) 3个球,记随机变量 X 为取出 3 球所得分数之和.1求 X 的分布列; 2 求 X 的数学期望 EX .走向高考:1.( 2012 )设为随机变量,从棱长为 1的正方体的 12 条棱中任取两条,当两条棱相交时,0 ;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,1.1 求概率P(0) ;2 求的分布列,并求其数学期望E( ) .2.( 2013)设袋子中装有a个红球, b 个黄球,c个蓝球,且规定:取出一个红球得 1分,取出一个黄球 2 分,取出蓝球得 3 分.1 当a3, b 2, c 1时,从该袋子中任取(有放回,且每球取到的机会均等)2 个球,记随机变量为取出此 2 球所得分数之和,. 求分布列; 2 略3.( 2011)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别. 公司准备了两种不同的饮料共 8 杯,其颜色完全相同,并且其中 4 杯为 A 饮料,另外 4 杯为 B 饮料,公司要求此员工一一品尝后,从8 杯饮料中选出 4 杯 A 饮料.若 4 杯都选对,则月工资定为 3500元;若 4 杯选对 3 杯,则月工资定为 2800 元;否则月工资定为2100 元.令 X`1 求 B 的分布列;2 求此员工月工资的期望.4.( 2011)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和 5 件,测量产品中微量元素x, y 的含量(单位:毫克). 下表是乙厂的 5 件产品的测量数据:编号12345x169178166175180y7580777081`12已知甲厂生产的产品共 98 件,求乙厂生产的产品数量;当产品中的微量元素 x, y 满足 x ≥ 175 且 y ≥ 75时,该产品为优等品, 用上述样本数据估计乙厂生产的优等品的数量;3 从乙厂抽出的上述 5 件产品中,随即抽取 2 件,求抽取的 2 件产品中优等品数的分布列及其均值(即数学期望).5.( 2013)某商 场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有 3 个红球与 4 个白球的袋中任意摸出 3 个球,再从装有 1 个蓝球与 2 个白球的袋中任意摸出 1个球,根据摸出4 个球中红球与蓝球的个数,设一.二.三等奖如下:奖级 摸出红、蓝球个数获奖金额一等奖 3红1200元蓝二等奖 3 红 0 蓝 50 元 三等奖2 红 1蓝10 元其余情况无奖且每次摸奖最多只能获得一个奖级 .`1 求一次摸奖恰好摸到1个红球的概率;2 求摸奖者在一次摸奖中获奖金额X 的分布列与期望 E X.。

高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列一、单选题1.已知离散型随机变量X 的概率分布列如下:则实数a 等于( ) A .0.6B .0.7C .0.1D .0.42.已知随机变量X 的分布列是则P(X>1)=( ) A .23B .32C .1D .343.随机变量X 的分布列为()15kP X k ==,1k =,2,3,4,5,则(3)P X <=( ) A .15B .13C .12D .234.随机变量X 的分布列如下表所示:则()2P X ≤=( ) A .0.1B .0.2C .0.3D .0.45.若随机变量η的分布列如表:则()1P η≤=( ) A .0.5B .0.2C .0.4D .0.36.从装有2个白球、3个黑球的袋中任取2个小球,下列可以作为随机变量的是( ) A .至多取到1个黑球 B .至少取到1个白球 C .取到白球的个数D .取到的球的个数7.已知离散型随机变量X 的分布列如表:则实数c 等于( ) A .0.2B .0.3C .0.6D .0.78.若随机变量X 的分布列如下表所示,则a 的值为( )A .0.1B .0.2C .0.3D .0.49.设随机变量x 的分布列为()(),2,3,4,51===-kP X m m m m ,其中k 为常数,则()2log 3log P X 3<<80的值为( )A .23B .34C .45D .5610.随机变量X 所有可能取值的集合是{}2,0,3,5-,且()()()1112,3,54212P X P X P X =-=====,则()14P X -<<的值为( )A .13B .12C .23D .3411.若随机变量X 的分布列如下表,则(3)P X ≥=( )A .14B .13C .34D .11212.口袋中有5个球,编号为1,2,3,4,5,从中任意取出3个球,用X 表示取出球的最小号码,则X 的取值为( ) A .1B .1,2C .1,2,3D .1,2,3,4二、填空题13.若随机变量ξ的分布列为则a =__________.14.设随机变量ξ的分布列为()(1)C P k k k ξ==+,1,2,3k =,其中C 为常数,则1522P ξ⎛⎫<<=⎪⎝⎭__________.15.设随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,C 为常数,则()3P X <=____.16.一串5把外形相似的钥匙,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为__________. 三、解答题17.在10件产品中,有8件合格品,2件次品,从这10件产品中任意抽取2件,试求: (1)取到的次品数的分布列; (2)至少取到1件次品的概率.18.某闯关游戏分为初赛和复赛两个阶段,甲、乙两人参加该闯关游戏.初赛分为三关,每关都必须参与,甲通过每关的概率均为23,乙通过每关的概率依次为311,,.423初赛三关至少通过两关才能够参加复赛,否则直接淘汰;在复赛中,甲、乙过关的概率分别为1,314.若初赛和复赛都通过,则闯关成功.甲、乙两人各关通过与否互不影响. (1)求乙在初赛阶段被淘汰的概率;(2)记甲本次闯关游戏通过的关数为X ,求X 的分布列; (3)试通过概率计算,判断甲、乙两人谁更有可能闯关成功.19.在一个不透明的盒中,装有大小,质地相同的两个小球,其中一个是黑色,一个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多2分或取满6次时游戏结束,并且只有当一人比另一人多2分时,得分高者才能获得游戏奖品.(1)求甲获得游戏奖品的概率;(2)设X表示游戏结束时所进行的取球次数,求X的分布列及数学期望.20.某校高二年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成,比赛中每人投篮1次、每个人之间投篮都是相互独立的.已知女生投篮命中的概率均为13,男生投篮命中的概率均为23.(1)求小组共投中2次的概率;(2)若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X表示小组总分,求随机变量X的分布列及数学期望.21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白球与黄球各3个,红球与绿球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:(1)只能一个人摸球;(2)摸出的球不放回;(3)摸球的人先从袋中摸出1球:①若摸出的是绿球,则再从袋子里摸出2个球;②若摸出的不是绿球,则再从袋子里摸出3个球.他的得分为两次摸出的球的记分之和;(4)剩下的球归对方,得分为剩下的球的记分之和.(Ⅰ)若甲第一次摸出了绿球,求甲的得分不低于乙的得分的概率;(Ⅱ)如果乙先摸出了红球,求乙得分X的分布列.22.袋中有4个红球,()14,n n n N ≤≤∈个黑球,若从袋中任取3个球,恰好取出3个红球的概率为435. (1)求n 的值.(2)若从袋中任取3个球,取出一个红球得1分,取出一个黑球得3分,记取出的3个球的总得分为随机变量X ,求随机变量X 的分布列.参考答案1.D 【分析】利用分布列的性质,求a 的值. 【详解】据题意得0.20.30.11a +++=,所以0.4a =. 故选:D 2.A 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案. 【详解】根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=,所以()()()21=233P X P X P X a b >=+==+=,故选:A. 3.A 【分析】根据互斥事件的概率公式计算. 【详解】()()1231(3)121515155P X P X P X <==+==+==, 故选:A . 4.C 【分析】利用分布列的性质求出m 的值,然后由概率的分布列求解概率即可. 【详解】解:由分布列的性质可得,0.10.321m m +++=,可得0.2m =,所以(2)(1)(2)0.10.20.3P X P X P X ==+==+=. 故选:C . 5.C 【分析】利用分布列可求得()1P η≤的值. 【详解】由分布列可得()()()()11010.10.10.20.4P P P P ηηηη≤==-+=+==++=. 故选:C. 6.C 【分析】根据随机变量的定义,判断选项. 【详解】根据随机变量的定义可知,随机变量的结果都可以数量化,不确定的,由实验结果决定,满足条件的只有C ,取到白球的个数,可以是0,1,2. 故选:C 7.B 【分析】根据概率之和等于1,得0.10.240.361c +++=,解方程即可求出结果. 【详解】据题意,得0.10.240.361c +++=,解得0.3c =. 故选:B. 8.B 【分析】由概率和为1可得a 值. 【详解】由题意0.231a a ++=,解得0.2a =. 故选:B . 9.D 【分析】首先利用分布列中概率之和等于1求得k 的值,再计算()()23P X P X =+=即可求解. 【详解】由分布列的性质可知:()()()()23451P X P X P X P X =+=+=+==, 即12324354k k k k+++=⨯⨯⨯,解得:54k =,所以()5228k P X ===,()53624k P X ===, ()541248k P X ===,()152016k P X ===, 所以()()()2555log 3log 238246P X P X P X 3<<80==+==+=, 故选:D. 10.C 【分析】 先求得1(0)6P X ==,再由(14)(0)(3)P X P X P X -<<==+=可得结果. 【详解】依题意可得1111(0)1(2)(3)(5)142126P X P X P X P X ==-=--=-==---=,所以112(14)(0)(3)623P X P X P X -<<==+==+=. 故选:C. 11.A 【分析】分布列中概率之和等于1可得x 的值,再计算(3)(3)(4)3P X P X P X x ≥==+==即可. 【详解】由分布列中概率的性质可知:3621x x x x +++=,可得:112x =, 所以1(3)(3)(4)34P X P X P X x ≥==+=== 故选:A. 12.C 【分析】根据题意写出随机变量的可能取值. 【详解】根据条件可知任意取出3个球,最小号码可能是1,2,3. 故选:C 13.0.25 【分析】根据概率之和等于1,即可求得答案. 【详解】解因为0.20.31,a a +++= 所以0.25a =. 故答案为:0.25. 14.89【分析】根据分布列的性质求出C ,即可解出. 【详解】因为111311223344C C ⎛⎫=⋅++= ⎪⨯⨯⨯⎝⎭.故43C =,所以15228(1)(2)22399P P P ξ⎛⎫<<=+=+= ⎪⎝⎭.故答案为:89.15.89【分析】首先根据概率和为1可得c 的值,再由()()()312P X P X P X <==+=即可得结果. 【详解】随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,∴ 16122c c c ++=,即62 112c c c ++=,解得43c =, ∴()()()41183123269P X P X P X ⎛⎫<==+==+= ⎪⎝⎭,故答案为:89.16.4 【分析】结合题意找出试验次数X 最大的情况即可. 【详解】由题意可知,前4次都打不开锁,最后一把钥匙一定能打开锁, 故试验次数X 的最大可能取值为4. 故答案为:4.17.(1)分布列见解析;(2)1745【分析】(1)记取到的次品数为X ,则X 的可能值为0,1,2,分别计算概率,可得X 的分布列; (2)由(1)根据互斥事件的概率公式可得(1)(2)P P X P X ==+=; 【详解】解:(1)从这10件产品中任意抽取2件,共21045C =种情况;记取到的次品数为X ,取到的次品数X 值可能为0,1,2,其中282102(0845)C P X C ===;121821016(1)45C C P X C ===;222101)5(24C P X C ===;∴取到的次品数X 的分布列为:(2)由(1)得:至少取到1件次品的概率17(1)(2)45P P X P X ==+==. 18.(1)1124;(2)答案见解析;(3)甲更有可能闯关成功. 【分析】(1)乙初赛被淘汰的事件是乙初赛三关都没过的事件与恰过一关的事件和,再利用概率加法公式计算而得;(2)写出X 的可能值,计算出对应的概率即可得解; (3)分别计算出甲、乙闯关成功的概率即可作答. 【详解】(1)若乙初赛三关一关都没有通过或只通过一个,则被淘汰,于是得乙在初赛阶段被淘汰的概率:1121113121121142342342342324P =⋅⋅+⋅⋅+⋅⋅+⋅⋅=; (2)X 的可能取值为0,1,2,3,4,()3110()327P X ===,()1232121()339P X C ==⋅⋅=,()22321282()33327P X C ==⋅⋅⋅=,()322322211283()()3333381P X C ==⋅+⋅⋅⋅=,()32184()3381P X ==⋅=则X 的分布列为:(3)甲闯关成功的概率32232121120()()33333811P C =⋅+⋅⋅⋅=, 乙闯关成功的事件是初赛不被淘汰和复赛过关的事件积,而这两个事件相互独立,其概率22411113(1)496P =-⋅=, 显然有12P P >,所以甲更有可能闯关成功. 19.(1)716;(2)分布列见解析;期望为72.【分析】(1)甲获得游戏奖品有3种情况:①共取球2次,即第1次和第2次甲都取到白球,从而甲获奖的概为1122⨯;②共取球4次,即第4次取到白球,第3次取到白球,第1次和第2次有一次取到白球,从而甲获奖的概为4122⎛⎫⨯ ⎪⎝⎭;③共取球6次,即第6次为白球,第5次取白球,若第4次取白球,则第3次取黑球,第1,2次中有1次取白球;若第4次取黑球,则第3次白球,第1,2次有一次取白球,从而甲获奖的概为6142⎛⎫⨯ ⎪⎝⎭,再由互斥事件的概率公式可得答案;(2)由(1)的求解中可知,X 可能取2,4,6,用(1)的方法先分别求出X 等于2,4的概率,从而可得X 为6的概率,然后列出分布列即可,然后根据期望的概念求出结果即可.【详解】解:(1)设甲获得游戏奖品为事件A ,()641111724212226P A ⎛⎫=⨯+⨯+⨯= ⎪⎛⎫⎪⎝⎭⎝⎭.所以甲获得游戏奖品的概率为716(2)X 的可能取值为2,4,6, ()11122222P X ==⨯⨯=()41142224P X ⎛⎫==⨯⨯= ⎪⎝⎭,()()()161244P X P X P X ==-=-==. X 的分布列为11172462442EX =⨯+⨯+⨯=20.(1)13;(2)分布列见解析;期望为409.【分析】(1)小组投中两次分为两种情况,两次都是女生投中,和一次男生一次女生投中,从而求得概率;(2)根据题意,X 的可能取值为-60,10,20,30,分别求得各取值对应的概率,列出分布列,求得期望. 【详解】解:(1)一个小组共投中2次的概率 2122211212911133333273P C C ⎛⎫⎛⎫⎛⎫=⋅-⋅+⋅-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)X 的可能取值为-60,10,20,30, 2214(60)113327P X ⎛⎫⎛⎫=-=--= ⎪⎪⎝⎭⎝⎭, ()212212111241011133333279P X C ⎛⎫⎛⎫⎛⎫==-+--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2122112191(20)1133333273P X C ⎛⎫⎛⎫⎛⎫==-+-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2212(30)3327P X ⎛⎫===⎪⎝⎭, X 的分布列为所以441212040()(60)102030279327279E X =-⨯+⨯+⨯+⨯==. 21.(Ⅰ)37,(Ⅱ)分布列见解析.【分析】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,由此可求得概率.(Ⅱ)如果乙先摸出了红球,得3分,则还可以从袋子中摸3个球,那么得分情况有:6分,7分,8分,9分,10分,11分.分别计算概率后可得分布列. 【详解】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,所以112163273()7C C C P A C +==; (Ⅱ)如果乙先摸出了红球,则还可以从袋子中摸3个球,得分情况有:6分,7分,8分,9分,10分,11分.33371(6)35C P C ξ===,2133379(7)35C C P C ξ===;1233379(8)35C C P C ξ===;213313374(9)35C C C P C ξ+===;111331379(10)35C C C P C ξ===; 2131373(11)35C C P C ξ===.ξ的分布列如下:22.(1)3;(2)详见解析. 【分析】(1)依题意得3434C 4C 35n +=,解方程可得结果;(2)X 的可能取值为3,5,7,9,求出相应的概率可得结果. 【详解】(1)依题意得3434C 4C 35n +=,又14n ≤≤,所以3n =;(2)X 的可能取值为3,5,7,9,3X =即取出的3个球都是红球,则()3437C 43C 35P X ===; 5X =即取出的3个球中2个红球1个黑球,则()214337C C 185C 35P X ===; 7X =即取出的3个球中1个红球2个黑球,则()124337C C 127C 35P X ===;9X =即取出的3个球都是黑球,则()3337C 19C 35P X ===. 所以,随机变量X 的分布列为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二讲随机变量及其分布列课程类型:□复习□预习□习题针对学员基础:□基础□中等□优秀本章主要内容:1.离散型随机变量的定义;2.期望与方差;3.二项分布与超几何分布.本章教学目标:1.理解随机变量及离散型随机变量的含义.(重点)2.会求出某些简单的离散型随机变量的分布列.(重点)3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点)第一节离散型随机变量及其分布列【知识与方法】一.离散型随机变量的定义1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.①随机变量是一种对应关系;②实验结果必须与数字对应;③数字会随着实验结果的变化而变化.2.表示:随机变量常用字母X,Y,ξ,η,…表示.授课班级授课日期学员月日组“超几何分布”一词来源于超几何数列,就像“几何分布”来源于几何数列。

几何数列又叫等比数列,“几何分布”、'几何数列"名称的来源前面的文章已经解释过,请看一些带"几何"的数学名词来源解释。

几何分布(Geometric distribution)是离散型机率分布。

其中一种定义为:在第n次伯努利试验,才得到第一次成功的机率。

详细的说,是:n次伯努利试验,前n-1次皆失败,第n次才成功的机率。

课外拓展3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .4.连续型随机变量:对于随机变量可能取的值,可以取某一区间或某几个区间内的一切值,这样的变量就叫做连续 型随机变量5.注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,0=ξ,表示正面向上,1=ξ,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量二.离散型随机变量的分布列1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n, X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表:为离散型随机变量X 用等式可表示为P(X =x i )=p i ,i =1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,…,n ;②11=∑=ni ip.1.两点分布),1(~P B X若随机变量X p =P (X =1)为成功概率. 2.超几何分布),,(~n M N H X一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=nNk n MN k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *.【例题与变式】题型一随机变量【例1】判断正误:(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()【例2】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年5月1日至10月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【变式1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某天腾讯公司客服接到咨询电话的个数;(2)标准大气压下,水沸腾的温度;(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;(4)体积为64 cm3的正方体的棱长.【例3】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【变式2】下列变量中属于离散型随机变量的有________.(填序号)(1)在2 017张已编号的卡片(从1号到2 017号)中任取1张,被取出的编号数为X;(2)连续不断射击,首次命中目标需要的射击次数X;(3)在广州至武汉的电气化铁道线上,每隔50 m有一电线铁塔,从广州至武汉的电气化铁道线上将电线铁塔进行编号,其中某一电线铁塔的编号;(4)投掷一枚骰子,六面都刻有数字8,所得的点数X.题型二 随机变量的可能取值及试验结果【例1】口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,则X 的所有可能取值有哪些?【例2】(2017春•清河区月考)设b ,c 分别是先后抛掷一枚骰子得到的点数.设随机变量ξ=|b -c |,求随机变量ξ的取值情况.【变式】(2017春•大武口区期中)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,列出所得分数X 的所有可能.题型三 分布列及其性质的应用【例1】设随机变量X 的分布列为P (X =i )=ia(i =1,2,3,4),求:(1)P (X =1或X =2);(2))2721(<<X P .【例2】(2017春•文昌月考)设随机变量X 的分布列为,5,4,3,2,1,25)(===i k i X P 则)2521(<<X P 等于( ) A .152 B .52 C .51 D .151【例3】已知数列{}n a 是等差数列,随机变量X 的分布列如下表:求3a .【变式1】若离散型随机变量X 的分布列为:求常数a .【变式2】(2017春•秦都区月考)设随机变量X 的分布列为,3,2,1,)32()(=⋅==i a i X P i ,则a 的值为( )A .3817 B .3827 C .1917 D .1927 【变式3】(2017春•武陵区月考)若离散型随机变量X 的分布列为:则实数a 的值为_______.【例4】设离散型随机变量X 的分布列为:求:(1)2X +1(2)|X -1|的分布列.【变式4】(2017·南宁二模)设随机变量X 的概率分布列如下表,则P (|X -2|=1)=( )A.712B.12C.512D.16 题型四 求离散型随机变量的分布列【例1】口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,求X 的分布列.【例2】(2017春•清河区月考)设b ,c 分别是先后抛掷一枚骰子得到的点数.(1)设{}R x c bx x x A ∈<+-=,022,求φ≠A 的概率; (2设随机变量ξ=|b -c |,求ξ的分布列.【例3】(2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列.【变式1】将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.【变式2】某商店试销某种商品20天,获得如下数据:试销结束后(件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.题型五 两点分布【例1】(1)利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?(2)只取两个不同值的随机变量是否一定服从两点分布?【例2】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列.【变式】设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0B .13C .12D .23题型六 超几何分布【例1】在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.顾客乙从10张奖券中任意抽取2张.(1)求顾客乙中奖的概率;(2)设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.【例2】老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的概率分布;(2)他能及格的概率.【例3】(2017春•大武口区期中)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,求:(1)列出所得分数X的分布列;(2)得分大于6分的概率.【变式1】(2017·济南模拟)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.【变式2】(2017·昆明调研)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标. 从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:PM2.5日均值(微克/立方米) [25,35](35,45](45,55](55,65] (65,75] (75,85]频数311113(2)从这10天的数据中任取3天数据,记X 表示抽到PM2.5监测数据超标的天数,求X 的分布列.1.设X 是一个离散型随机变量,其分布列为:X -1 0 1 P132-3qq 2则q 的值为( )A.1B.32±336C.32-336D.32+3362.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0 B.12 C.13 D.233.中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A.ξ=4B.ξ=5C.ξ=6D.ξ≤54.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( ) A.435 B.635 C.1235 D.363435.随机变量X 的分布列如下:X -1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|X |=1)A.16 B.13 C.12 D.23 6.设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3M若随机变量Y =|X -2|,则P (Y 7.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.8.(2017·成都诊断)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为25.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X ,求随机变量X 的分布列.9.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X为1名顾客摸奖获得的奖金数额,随机变量X的分布列.1.实际完成情况:□按计划完成;□超额完成,原因分析________________________________________________________________________;□未完成计划内容,原因分析__________________________________________________________________.2.授课及学员问题总结:第二节 二项分布及其应用【知识与方法】一.条件概率1.条件概率的概念一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率.)(A B P 读作A 发生的条件下B 发生的概率.2.条件概率的性质 (1))()()()()(A n AB n A P AB P A B P ==; (2)1)(0≤≤A B P ,当A 事件与B 事件对立时0)(=A B P ,当A 事件与B 事件相等时1)(=A B P ; (3)如果B 与C 是两个互斥事件,则)()()(A C P A B P A C B P +=Y ; (4))()()()()(B P B A P A P A B P AB P ⋅=⋅=;(5)要注意)(A B P 与)(AB P 的区别,这是分清条件概率与一般概率问题的关键.在)(A B P 中,事件A 成为样本空间,在)(AB P 中,样本空间则为全体情况. 二.相互独立实验1.相互独立事件的定义和性质(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),那么称事件A 与事件B 相互独立. (2)如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立. (3)如果A 与B 相互独立,那么P (B |A )=P (B ),P (A |B )=P (A ). 2.相互独立事件与互斥事件的区别互斥事件是不可能同时发生的两个事件,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响,二者不能混淆.3.n 个事件相互独立对于n 个事件A 1,A 2,…,A n ,如果其中任一个事件发生的概率不受其他事件是否发生的影响,则称n 个事件A 1,A 2,…,A n 相互独立.4.独立事件的概率公式(1)若事件A ,B 相互独立,则P (AB )=P (A )×P (B );超几何分布和二项分布的区别: 1.超几何分布需要知道总体的容量,而二项分布不需要;2.超几何分布是不放回抽取,而二项分布是放回抽取(独立重复);3. 当总体的容量非常大时,超几何分布近似于二项分布。

相关文档
最新文档