12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)

合集下载

概率与统计教案

概率与统计教案

概率与统计教案一、引言概率与统计是数学中重要的分支,其应用广泛,涵盖了许多领域。

本教案将介绍概率与统计的基本概念、原理和方法,旨在帮助学生掌握这一知识领域。

二、教学目标1. 理解概率与统计的基本概念和应用场景。

2. 掌握概率计算的方法和统计分析的步骤。

3. 培养学生的数学思维和问题解决能力。

三、教学内容1. 概率1.1 概率的基本概念- 样本空间和事件- 随机试验和随机事件- 定义域和取值1.2 概率的计算方法- 频率和古典概型- 条件概率- 乘法规则和加法规则1.3 概率应用- 排列与组合- 几何概型和几何概率- 概率分布和概率密度函数2. 统计2.1 统计的基本概念- 总体和样本- 参数和统计量- 数据类型和收集方法2.2 统计分析的步骤- 数据处理和整理- 描述统计和图表分析- 探索性数据分析- 推断统计和假设检验2.3 统计模型和回归分析- 回归方程和相关系数- 模型检验和预测四、教学方法1. 理论授课:通过讲解概率与统计的基本概念和方法来帮助学生建立基础知识框架。

2. 实例演练:通过真实案例和练习题,引导学生运用概率和统计方法解决问题。

3. 讨论交流:组织学生进行小组讨论和互动,促进彼此之间的学习和思考。

4. 实践应用:设计实践任务,让学生将概率和统计知识应用到实际问题中。

五、教学资源1. 教科书:提供概率与统计的基本理论和实例分析。

2. 计算工具:使用计算机软件或统计软件,如Excel、SPSS等,进行数据处理和分析。

六、教学评估1. 课堂表现:学生参与度、思维活跃度和合作交流能力。

2. 作业评定:作业的准确性、完整性和解题思路的合理性。

3. 考试评分:对学生对概率与统计知识的掌握程度进行综合评定。

七、教学拓展1. 概率与统计在现实生活中的应用:介绍概率与统计在金融、医学、环境科学等领域的具体应用案例。

2. 深入研究:鼓励学生继续深入学习概率与统计,探索更多高级知识和方法。

八、总结通过本教案的教学,学生将能够理解概率与统计的概念和原理,掌握概率计算和统计分析的方法,培养数学思维和问题解决能力。

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

概率与统计题型归纳总结

概率与统计题型归纳总结

概率与统计题型归纳总结在学习概率与统计的过程中,我们不可避免地要接触到各种各样的题型。

在这些题型中,有的看似简单却需要一定思考,有的则需要我们具备一定的数学基础。

本文将围绕这些题型展开,帮助大家更好地总结归纳概率与统计中的题型。

一、基本概率基本概率是概率学习中最基础的部分,要求我们计算某一事件发生的可能性,其公式为:P(A)=n(A)/n(S)。

其中,P(A)表示事件A发生的概率,n(A)表示事件A出现的次数,n(S)表示总体出现的次数。

二、条件概率条件概率是建立在基本概率之上的,要求我们在已知某一事件发生的情况下,计算其他事件发生的概率。

其公式为:P(A|B)=P(B∩A)/P(B)。

其中,P(A|B)表示在B发生的前提下,A发生的概率,P(B∩A)表示A与B同时发生的概率,P(B)表示B发生的概率。

三、贝叶斯定理贝叶斯定理是一种利用先验信息来更新后验概率的方法。

其公式为:P(A|B)=P(B|A)P(A)/P(B)。

其中,P(A)为先验概率,P(B|A)为A发生的情况下,B发生的概率,P(B)为后验概率。

四、独立事件独立事件是指两个或多个事件,其中任意一个事件的发生与其他事件的发生无关。

其公式为:P(A∩B)=P(A)P(B)。

其中,P(A)和P(B)分别表示事件A和事件B各自发生的概率,P(A∩B)表示A和B同时发生的概率。

五、全概率公式全概率公式是用来计算某一事件在多种情况下的概率的公式。

其公式为:P(A)=∑(i=1)^(n)P(A|B_i)P(B_i)。

其中,B_1,B_2...B_n是一组互不相交的事件,且它们包含了所有可能的情况。

P(A)表示事件A的概率,P(A|B_i)表示在B_i发生的前提下,A发生的概率,P(B_i)表示B_i 发生的概率。

六、随机变量随机变量是指某一随机事件在其过程中所反映的变量。

在统计学中,我们常常会用随机变量来描述概率分布。

常见的随机变量有离散随机变量和连续随机变量。

概率与统计知识点

概率与统计知识点

概率与统计知识点在我们的日常生活和许多学科领域中,概率与统计扮演着十分重要的角色。

从预测天气变化到评估投资风险,从医学研究到市场调研,概率与统计的应用无处不在。

接下来,让我们一起深入了解一些关键的概率与统计知识点。

一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的数值。

它的取值范围在 0 到 1 之间。

如果一个事件完全不可能发生,其概率为 0;如果必然会发生,概率则为 1。

例如,投掷一枚均匀的硬币,正面朝上的概率是 05,因为硬币只有正反两面,且出现正面和反面的可能性是相等的。

概率的计算方法有多种。

对于等可能事件,我们可以通过事件所包含的基本结果数除以总的基本结果数来计算概率。

二、随机事件与样本空间随机事件是指在一定条件下,可能出现也可能不出现的事件。

而样本空间则是指某个随机试验中所有可能结果的集合。

比如,掷骰子这个随机试验,样本空间就是{1, 2, 3, 4, 5, 6},而掷出奇数点这个事件就是一个随机事件。

三、条件概率条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

举个例子,假设一个班级中,男生占 60%,女生占 40%。

男生中数学成绩优秀的比例为 70%,女生中数学成绩优秀的比例为 50%。

现在随机抽取一个学生,已知这个学生是男生,那么他数学成绩优秀的概率就是条件概率。

四、统计的基本概念统计主要是对数据进行收集、整理、分析和解释的过程。

数据可以分为分类数据(如性别、职业等)、顺序数据(如成绩的等级)和数值数据(如身高、体重等)。

五、数据的收集方法常见的数据收集方法有普查和抽样调查。

普查是对研究对象的全体进行调查,能得到全面准确的信息,但往往耗费大量的人力、物力和时间。

抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样时要保证样本的随机性和代表性,以提高推断的准确性。

六、数据的整理与图表展示收集到数据后,需要对其进行整理。

常用的图表有柱状图、折线图、饼图等。

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

概率与统计的基础知识

概率与统计的基础知识

概率与统计的基础知识统计学是一门研究如何收集、整理、分析、解释和呈现数据的学科。

概率是统计学的基础,它被用来描述和分析在不同情况下事件发生的可能性。

本文将介绍概率与统计的基础知识,包括概率的定义、概率的计算方法、统计的概念以及统计的应用。

一、概率的定义概率是描述事件发生可能性的数值,它介于0到1之间。

0表示事件不可能发生,1表示事件一定发生。

根据概率的定义,我们可以得出以下公式:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A包含的有利结果的数量,n(S)表示样本空间中可能结果的总数。

二、概率的计算方法1. 经典概率经典概率又称为古典概率,适用于样本空间中所有可能结果都是等可能发生的情况。

在这种情况下,事件A发生的概率可以通过以下公式计算:P(A) = n(A) / n(S)2. 相对频率概率相对频率概率是通过实验的结果来估计概率的方法。

通过多次实验,统计事件A发生的次数,然后将次数除以总实验次数,即可得到相对频率概率。

3. 主观概率主观概率是个体主观判断下对事件发生概率的估计。

它是依据经验、直觉和专业知识来进行的估计。

三、统计的概念统计是利用数据进行推断、决策和预测的过程。

在统计学中,数据被分为两种类型:定性数据和定量数据。

1. 定性数据定性数据是用于描述某种特征或属性的数据。

它通常用文字或符号进行表示,如性别、颜色、态度等。

2. 定量数据定量数据是用于表示数量或度量的数据。

它通常用数字进行表示,如身高、体重、温度等。

统计中的两个重要概念是总体和样本。

总体是指研究对象的全体,而样本是指从总体中随机选取的一部分。

四、统计的应用统计学在各个领域都有广泛的应用,以下是几个常见的应用领域:1. 生物统计学生物统计学是将统计学应用于生物学研究的领域。

它可以帮助研究人员分析生物实验数据、评估药物疗效以及研究遗传变异等。

2. 经济统计学经济统计学是将统计学应用于经济学研究的领域。

概率与统计基础知识

概率与统计基础知识

概率与统计基础知识概率与统计是数学的一个分支,是研究不确定性的科学。

概率论主要研究随机现象,统计学则通过采样和分析数据来推断总体特征。

今天,我们将介绍一些概率与统计的基础知识,包括概率的定义、常见的概率分布以及统计学中的一些基本概念。

一、概率的定义概率是描述一个随机事件发生可能性的数值。

常用的概率定义有频率定义、古典概型以及主观概率等。

频率定义是指根据统计实验的结果来计算概率,即事件发生的次数与试验总次数的比值。

古典概型是指事件的每种可能结果发生的概率相等。

主观概率则是基于主观判断和经验估计得出的概率。

二、常见的概率分布1. 均匀分布:均匀分布是概率分布中最简单的一种形式。

在一个区间内,每个数值的概率都是相等的。

例如,掷骰子的结果就是均匀分布。

2. 正态分布:正态分布也被称为高斯分布,它是自然界中非常常见的一种分布形式。

正态分布的特点是对称,其密度曲线呈钟形。

许多自然现象和统计数据都符合正态分布,如身高和成绩分布等。

3. 二项分布:二项分布适用于只有两个可能结果的独立重复实验。

例如,抛硬币的结果只有正面和反面两种可能,这时可以用二项分布来描述硬币正反面的概率。

4. 泊松分布:泊松分布用来描述单位时间或单位空间内事件发生的次数,如一天内接到的电话数量、某个时间段内停车场停车次数等。

三、统计学的基本概念1. 总体与样本:总体是指我们研究的对象的全体,样本是从总体中选取的一部分。

通过对样本的研究,我们可以推断总体的特征。

2. 参数与统计量:总体的特征可以用参数来表示,样本的特征则可以用统计量来估计。

例如,总体均值用μ表示,样本均值用x表示。

3. 抽样:抽样是指从总体中选择一定数量的个体作为样本的过程。

抽样是统计学中非常重要的一环,对样本的选择要具有代表性和随机性。

4. 假设检验:假设检验是统计学中用来推断总体特征的一种方法。

通过建立假设和进行显著性检验,我们可以判断某个结论是否具有统计学意义。

总结起来,概率与统计是研究随机现象的一门学科,它可以帮助我们了解事件发生的概率和推断总体特征。

概率与统计教案

概率与统计教案

概率与统计教案一、引言概率与统计是数学中的重要分支,它们在各个领域中都具有广泛的应用。

本教案将介绍概率与统计的基本概念、理论和应用,并以案例分析的方式进行教学。

二、教学目标1. 理解概率与统计的基本概念和原理;2. 掌握概率与统计的基本计算方法;3. 能够应用概率与统计的知识解决实际问题。

三、教学内容1. 概率部分1.1 基本概念1.1.1 随机事件1.1.2 样本空间与样本点1.1.3 事件的概率1.2 概率计算方法1.2.1 古典概型1.2.2 几何概型1.2.3 排列组合与概率1.3 条件概率与独立性1.3.1 条件概率的定义与计算1.3.2 事件的独立性1.4 随机变量与概率分布1.4.1 随机变量的定义与性质1.4.2 离散型随机变量与概率分布1.4.3 连续型随机变量与概率密度函数1.5 期望与方差1.5.1 期望的定义与性质1.5.2 方差的定义与性质2. 统计部分2.1 总体与样本2.1.1 总体的概念与性质2.1.2 样本的概念与性质2.2 统计量与抽样分布2.2.1 统计量的定义与性质2.2.2 样本均值的抽样分布2.3 参数估计2.3.1 点估计与区间估计2.3.2 极大似然估计2.4 假设检验2.4.1 假设检验的基本原理2.4.2 单样本均值的假设检验2.4.3 双样本均值的假设检验四、教学方法1. 讲授与演示相结合的教学法:通过讲解概率与统计的基本概念和原理,配合演示实例和案例分析,提高学生的理论理解能力和应用能力。

2. 实践操作教学法:以概率与统计的计算方法为主线,设计在线实验和小组讨论任务,培养学生的实际操作能力和团队合作意识。

3. 案例分析教学法:通过真实案例的引入,引导学生运用概率与统计的知识解决实际问题,提高学生的问题解决能力和应用能力。

五、教学评估1. 练习与作业:布置概率与统计的计算题和应用题,检测学生对知识点的理解和掌握程度。

2. 实验报告:要求学生在实践操作过程中撰写实验报告,评估学生的实际操作能力和科学写作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲概率与统计(小题)热点一随机抽样1.随机抽样的各种方法中,每个个体被抽到的概率都是相等的.2.系统抽样又称“等距”抽样,被抽到的各个号码间隔相同.3.分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.例1(1)(2019·汉中联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n等于()A.12 B.16 C.20 D.24(2)(2019·上饶联考)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.跟踪演练1(1)(2019·漳州质检)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A .522B .324C .535D .578(2)(2019·合肥质检)某工厂生产的A ,B ,C 三种不同型号的产品数量之比为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A ,B ,C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有10件,则n 的值为( ) A .15 B .25 C .50 D .60 热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.4.对于其他的统计图表,要注意结合问题背景分析其所表达的意思,进而解决所给问题. 例2 (1)(2019·厦门质检)下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份(2)(2019·临沂质检)已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C.中位数为64.5 D.平均数为64跟踪演练2(1)已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A.乙班的理科综合成绩强于甲班B.甲班的文科综合成绩强于乙班C.两班的英语平均分分差最大D.两班的语文平均分分差最小(2)(2019·黄冈模拟)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸热点三变量间的相关关系、统计案例高考中解决变量间的相关关系问题时需注意:(1)回归直线一定过样本点的中心(x,y).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.例3(1)(2019·皖江联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x (℃) 18 13 10 -1 用电量y (度)24343864由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当温度为-5 ℃时,用电量的度数约为( )A .64B .66C .68D .70(2)某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机不使用智能手机总计 学习成绩优秀 4 8 12 学习成绩不优秀16 2 18 总计201030附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828经计算K 2的观测值k =10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响跟踪演练3 (1)(2019·长春质检)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),上图为选取的15名志愿者身高与臂展的折线图,下图为身高与臂展所对应的散点图,并求得其回归方程为y ^=1.16x -30.75,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米(2)(2019·泸州模拟)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关”真题体验1.(2019·全国Ⅰ,文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2018·全国Ⅰ,文,3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2018·全国Ⅲ,文,14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.押题预测1.某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 2.给出如下列联表患心脏病 患其他病 总 计 高血压 20 10 30 非高血压 30 50 80 总 计5060110P (K 2≥10.828)≈0.001,P (K 2≥6.635)≈0.010,参照公式k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得到的正确结论是( )A .有99%以上的把握认为“高血压与患心脏病无关”B .有99%以上的把握认为“高血压与患心脏病有关”C .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” 3.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:使用年数x (单位:年) 2 3 4 5 6 维修总费用y (单位:万元)1.54.55.56.57.5根据上表可得线性回归方程为y ^=1.4x +a ^.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用________年.A 组 专题通关1.(2019·河北省五个一名校联盟联考)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中中年人数为12人,则n 等于( ) A .30 B .40 C .60D .802.某校李老师本学期负责高一甲、乙两个班的数学课,两个班都是50个学生,如图反映的是两个班的本学期5次数学测试中的班级平均分对比情况,根据图中信息,下列结论不正确的是( )A .甲班的数学平均成绩高于乙班B .乙班的数学成绩没有甲班稳定C .下次测试乙班的数学平均分高于甲班D .在第1次测试中,甲、乙两个班总平均分为783.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.84.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2 400名学生中抽取30人进行调查.现将2 400名学生随机地从1~2 400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2 321~2 400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( ) A .416 B .432 C .448 D .4645.(2019·郑州质检)若1,2,3,4,m (m ∈R )这五个数的平均数等于其中位数,则m 等于( ) A .0或5 B .0或52 C .5或52 D .0或5或526.(2019·长春质检)下列命题:①在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在线性回归方程y ^=-0.5x +2中,当解释变量x 每增加一个单位时,预报变量y ^平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的个数是( ) A .1 B .2 C .3 D .47.(2019·衡水质检)某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为658.(2019·济宁模拟)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A .0B .1C .2D .39.(2019·广东天河区普通高中测试)为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位:cm),其茎叶图如图所示,则下列描述正确的是( )A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐10.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好该项运动,得出2×2列联表,由计算可得K 2≈8.806.P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是( )A .有99.5%以上的把握认为“爱好该项运动与性别无关”B .有99.5%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”11.已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组数据如下表所示,则下列说法中错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈现负相关关系 B .可以预测当x =20时,y ^=-3.7 C .m =4D .由表格数据知,该回归直线必过点(9,4)12.(2019·江淮质检)为了了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人员中,男性人数与女性人数相同D .倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数13.(2019·河南省九师联盟质检)为了了解世界各国的早餐饮食习惯,现从由中国人、美国人、英国人组成的总体中用分层抽样的方法抽取一个容量为m 的样本进行分析.若总体中的中国人有400人、美国人有300人、英国人有300人,且所抽取的样本中,中国人比美国人多10人,则样本容量m =________.14.某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为________.15.(2019·成都模拟)节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号1 2 3 4 5 年生产利润y (单位:千万元)0.70.811.11.4预测第8年该国企的生产利润约为________千万元.参考公式及数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2;a ^=y -b ^x ,∑i =15(x i -x )(y i-y )=1.7, i =15(x i -x )2=10.根据该折线图,下列结论正确的是________(填序号). ①月接待游客量逐月增加;②年接待游客量逐年增加; ③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.B 组 能力提高17.(2019·葫芦岛模拟)近日,据媒体报道称,“杂交水稻之父”袁隆平及其团队培育的超级杂交稻品种“湘两优900(超优千号)”再创亩产世界纪录,经第三方专家测产,该品种的水稻在实验田内亩产1 203.36公斤.中国工程院院士袁隆平在1973年率领科研团队开启了杂交水稻王国的大门,在数年的时间内就解决了十多亿人的吃饭问题,有力回答了世界“谁来养活中国”的疑问.2012年,在袁隆平的实验田内种植了A ,B 两个品种的水稻,为了筛选出更优的品种,在A ,B 两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:10 kg),通过茎叶图比较两个品种的平均数及方差,并从中挑选一个品种进行以后的推广,有如下结论:①A 品种水稻的平均产量高于B 品种水稻,推广A 品种水稻;②B 品种水稻的平均产量高于A 品种水稻,推广B 品种水稻;③A 品种水稻的产量比B 品种水稻更稳定,推广A 品种水稻;④B 品种水稻的产量比A 品种水稻更稳定,推广B 品种水稻;其中正确结论的编号为( )A .①②B .①③C .②④D .①④18.(2019·南昌模拟)已知具有线性相关的五个样本点A 1(0,0),A 2(2,2),A 3(3,2),A 4(4,2),A 5(6,4),用最小二乘法得到回归直线l 1:y ^=b ^x +a ^,过点A 1,A 2的直线l 2:y =mx +n ,那么下列说法中,正确的有________.(填序号) ①m >b ^,a ^>n ; ②直线l 1过点A 3;③∑i =15(y i -b ^x i -a ^)2≥∑i =15 (y i -mx i -n )2; ④∑i =15|y i -b ^x i -a ^|≥∑i =15|y i -mx i -n |.⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2= ∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x。

相关文档
最新文档