物流配送中几种路径优化算法
物流领域中的运输路径规划算法综述与优化

物流领域中的运输路径规划算法综述与优化运输路径规划是物流领域中至关重要的环节,它涉及到货物的运输安排、运输成本的控制以及运输效率的提升。
在物流管理中,合理的运输路径规划可以有效地降低物流成本,提高运输效率,优化供应链管理。
本文将综述物流领域中常用的运输路径规划算法,并探讨其优化方法和应用。
一、传统运输路径规划算法综述1. 最短路径算法最短路径算法是物流领域中最基础且常用的路径规划算法之一。
其主要目标是通过确定节点之间的最短路径来实现快速、高效的货物配送。
常用的最短路径算法包括Dijkstra算法、Floyd-Warshall算法和A*算法。
这些算法通过考虑节点之间的距离、时间、耗费等因素来进行路径选择,以最小化总体的运输成本。
2. 蚁群算法蚁群算法是一种模拟蚂蚁寻找食物路径的群体智能算法。
在物流领域中,蚁群算法被广泛应用于货车路径规划、货柜装载问题等。
它通过模拟蚂蚁在搜索食物时的信息素传递和选择机制,寻找最优的运输路径。
蚁群算法具有较强的自适应性和全局搜索能力,能够有效解决复杂的路径规划问题。
3. 遗传算法遗传算法是一种模拟生物进化过程的启发式算法。
在物流领域中,遗传算法被广泛应用于货物配送路径优化、车辆调度等问题。
它通过模拟自然选择、交叉、变异等操作,不断优化运输路径的适应度,以提高运输效率和降低成本。
遗传算法具有较强的全局搜索能力和并行计算能力,能够获取较优的解。
二、运输路径规划算法的优化方法1. 路径规划算法与实时数据的结合传统的运输路径规划算法大多是基于固定的网络拓扑结构,未考虑实时数据的变化。
而结合实时数据的路径规划算法可以更加准确地预测交通状况,从而选择更优的运输路径。
例如,通过实时交通数据可以选择空闲路段,避开拥堵路段,从而降低运输时间和成本。
2. 多目标优化算法在实际的物流运输中,往往涉及到多个目标,如最短路径、最小成本、最小时间等。
传统的路径规划算法往往只考虑一个目标,忽略了其他因素的影响。
物流行业中的配送路线优化方法

物流行业中的配送路线优化方法一、物流行业中的配送路线优化方法介绍在物流行业中,配送路线的选择和优化是提高运输效率、降低成本的关键因素之一。
通过合理安排和优化配送路线,可以实现货物的及时准确到达目标地点,缩短运输时间并降低运输成本。
本文将重点介绍物流行业中常用的配送路线优化方法。
二、基于贪心算法的最近邻法最近邻法是一种基于贪心算法的简单而有效的优化方法,其主要思想是从出发地开始选择距离最近的目标地作为下一个节点,依次连接各个节点形成路径。
这种方法适用于少量目标地情况下,并且对解决TSP问题也有广泛应用。
三、遗传算法与模拟退火算法面对大规模或复杂度较高的问题时,传统算法往往难以得出精确解决方案。
遗传算法和模拟退火算法则能够有效应对这种情况。
1. 遗传算法遗传算法是通过借鉴生物进化过程中存在着复制(交叉)、变异等操作来求解问题,并在每一代中保留符合适应度函数的个体。
在物流行业中,遗传算法可用于寻找最优配送路线,通过固定交叉和变异操作来生成下一代解决方案,并基于适应度评估选择出较优路径。
2. 模拟退火算法模拟退火算法通过设置初始温度、降温速率等参数,来模拟金属在加热后慢慢冷却的过程。
在物流行业中运用该方法,可以将每个节点看作是离散系统的某种状态,并利用能量差和温度参数进行状态转换,在保证整体降温趋势的情况下获得更优解答。
四、分支定界法分支定界法是一种强大且通用性较高的求解方法,它不仅可以解决TSP问题,也适合处理其他NP-hard类型问题。
1. 剪枝操作首先构建一个搜索树,在搜索时采用深度优先或广度优先策略遍历所有可能路径。
当已经走过的路径长度超过了已知最好结果时,则进行剪枝操作:即直接放弃当前分支继续向下搜索。
2. 上下界限剪枝上下界限剪枝可以提前确定一些点之间不会出现更短路径,从而减少搜索空间。
通过计算当前节点到剩余未遍历节点的最小距离和估计最大距离,将不满足条件的分支进行剪枝。
五、基于地理信息系统(GIS)的多车辆配送路径规划地理信息系统(GIS)是一种利用计算机技术实现对地理位置相关数据分析与处理的方法。
物流配送优化模型及算法综述

物流配送优化模型及算法综述一、物流配送问题概述物流配送问题是指在给定的时间窗口内,从指定的供应点或仓库将货物分配到指定的需求点或客户,并通过最优路线和车辆载重量进行配送的问题。
其目标是通过合理的路线安排、货物装载和车辆调度,使得整个物流系统的运营成本最小化,同时满足各种约束条件。
二、物流配送优化模型1.车辆路径问题(VRP)车辆路径问题是物流配送问题的经典模型,主要考虑如何确定最佳配送路线和货物装载方案,以最小化总行驶成本或最大化配送效率。
其中常用的模型包括TSP(Traveling Salesman Problem)、CVRP(Capacitated Vehicle Routing Problem)和VRPTW(Vehicle Routing Problem with Time Windows)等。
2.货车装载问题(BPP)货车装载问题是指在给定的车辆装载容量限制下,如何合理地将货物装载到车辆中,以最大化装载效率或最小化装载次数。
该问题常常与VRP结合使用,以使得整个配送过程达到最优。
3.多目标物流配送问题多目标物流配送问题是指在考虑多种目标函数的情况下,如何找到一个平衡的解决方案。
常见的多目标函数包括成本最小化、配送时间最短化、节能减排等。
解决该问题常常需要使用多目标优化算法,如遗传算法、粒子群算法等。
三、物流配送优化算法1.精确求解算法精确求解算法是指通过穷举所有可能的解空间,找到最优解的方法。
常用的精确求解算法包括分支定界法、整数规划法、动态规划法等。
这些算法可以保证找到最优解,但在规模较大的问题上效率较低。
2.启发式算法启发式算法是指通过设定一些启发式规则和策略,寻找近似最优解的方法。
常用的启发式算法包括贪心算法、模拟退火算法、遗传算法等。
这些算法在求解复杂问题时效率较高,但不能保证找到最优解。
3.元启发式算法元启发式算法是指将多种启发式算法结合起来,形成一种综合的解决方案。
常用的元启发式算法包括蚁群算法、粒子群算法等。
物流配送中的最优路径规划算法

物流配送中的最优路径规划算法随着电子商务和供应链管理的发展,物流配送成为了现代社会中不可或缺的环节。
物流配送的效率和成本对于企业的竞争力至关重要。
而最优路径规划算法的应用能够有效提高物流配送的效率,降低成本。
本文将介绍物流配送中的最优路径规划算法,探讨其原理和应用。
一、最优路径规划算法的原理1.1 Dijkstra算法Dijkstra算法是一种常用的最优路径规划算法。
该算法基于图的原理,通过计算节点之间的距离和权重,寻找出最短路径。
具体步骤包括:a. 初始化起点和终点,将起点设置为当前节点,并初始化距离为0;b. 计算当前节点到相邻节点的距离,并更新最短距离;c. 标记当前节点为已访问,然后选择未访问的节点中距离最短的作为下一个当前节点;d. 重复步骤b和c,直到所有节点都被访问或者找到目标节点。
1.2 A*算法A*算法是一种启发式搜索算法,常用于解决路径规划问题。
该算法通过估计节点到目标节点的距离,并考虑节点之间的代价,快速找到最优路径。
具体步骤包括:a. 初始化起点和终点,将起点设置为当前节点,并初始化距离为0;b. 计算当前节点到相邻节点的距离,并估计相邻节点到终点的距离;c. 根据当前节点到起点的距离和估计的目标节点距离,计算节点的代价;d. 选择代价最小的节点作为下一个当前节点;e. 重复步骤b、c和d,直到找到目标节点。
二、最优路径规划算法的应用物流配送中的最优路径规划算法可以应用于以下多个方面,以提高配送效率和降低成本。
2.1 配送路线优化在物流配送过程中,为了减少行驶里程和时间,最优路径规划算法能够帮助配送员确定最佳的配送路线。
通过计算不同配送点之间的距离和交通情况,算法可以快速给出最优的行驶路径,从而减少配送时间和成本。
2.2 车辆调度和路径规划在仓库或配送中心,车辆调度是一个复杂的问题。
最优路径规划算法可以帮助配送中心有效分配车辆和计划配送路线。
算法可以考虑车辆的载重、容量等限制,并考虑交通拥堵情况,快速生成最优的车辆调度方案,提高配送效率。
物流配送中的最优路径选择方法分析

物流配送中的最优路径选择方法分析物流配送是现代物流供应链管理中的重要环节,对于企业来说,选择一条最优路径进行货物的配送,能够有效提高物流效率,降低成本,增强竞争力。
而在众多可供选择的路径中,如何选取最优路径成为了一个值得思考和研究的问题。
本文将从物流配送中的最优路径选择方法进行深入分析。
最优路径选择方法主要包括启发式算法、优化模型和智能算法。
每种方法都有其独特的优点和适用场景,下面将逐一进行介绍。
启发式算法是一种基于经验和直觉的路径选择方法。
这种方法强调快速地找到一个相对好的解决方案,虽然不能保证找到最优解,但在时间和资源有限的情况下,启发式算法能够提供较好的解决方案。
常见的启发式算法有贪心算法、模拟退火算法和遗传算法。
贪心算法通过每一步的局部最优选择来最终达到全局最优,速度快,但容易陷入局部最优。
模拟退火算法模拟固体物质退火过程,通过接受劣解的概率,跳出局部最优解,但时间复杂度较高。
遗传算法仿照生物进化过程,通过选择、交叉和变异产生新的解决方案,具有较好的全局搜索能力。
优化模型方法基于数学模型和决策理论,通过建立数学模型和制定目标函数,将路径选择问题转化为优化问题。
常见的优化模型方法有整数规划、线性规划和网络流模型。
整数规划模型适用于路径选择中存在离散决策的情况,能够通过线性规划求解器得到最优解,但时间复杂度较高。
线性规划模型适用于路径选择中存在连续决策的情况,通过求解线性规划问题得到最优解,时间复杂度较低。
网络流模型适用于具有网络结构的路径选择问题,通过建立网络模型和网络流算法得到最优路径。
智能算法方法是近年来兴起的一种路径选择方法,主要基于人工智能和机器学习技术,通过对大量数据进行分析和学习,从中找到最优路径。
智能算法方法主要有神经网络、遗传算法和粒子群算法。
神经网络通过模拟人脑的神经元网络结构,通过学习来优化路径选择。
遗传算法和前面提到的遗传算法类似,通过选择、交叉和变异来寻找最优解决方案。
物流配送中的路径规划算法的应用教程

物流配送中的路径规划算法的应用教程物流配送的高效与准时对于现代商业来说至关重要。
为了实现物流配送过程中的路径优化和成本最小化,路径规划算法被广泛应用。
本文将介绍物流配送中常用的路径规划算法,以及它们在实际应用中的方法和技巧。
一、Dijkstra算法Dijkstra算法是一种用于解决单源最短路径问题的经典算法。
在物流配送中,Dijkstra算法可以用来确定从供应链起点到终点的最短路径。
以下是使用Dijkstra算法进行路径规划的步骤:1. 初始化:设置起点为源点,将所有路径设为无穷大。
2. 从源点开始,计算到达每个相邻节点的距离,并记录最小值。
3. 选择距离最小的节点作为下一个起点,计算起点到达该节点的距离。
4. 更新起点与所有邻节点的距离,如果新路径比原路径短,则更新距离。
5. 重复步骤3和4,直到所有节点都被访问过。
6. 根据最短路径表确定起点到终点的最短路径。
二、Floyd-Warshall算法Floyd-Warshall算法是一种用于解决全源最短路径问题的算法。
在物流配送中,Floyd-Warshall算法可以用于确定任意两点之间的最短路径。
以下是使用Floyd-Warshall算法进行路径规划的步骤:1. 初始化:设置起点到终点的距离矩阵和路径矩阵。
2. 遍历所有节点对,更新起点到终点距离矩阵和路径矩阵。
3. 如果经过某个节点的路径比直接连接的路径短,更新距离矩阵和路径矩阵。
4. 重复步骤2和3,直到所有节点对都被遍历过。
5. 根据路径矩阵确定任意两点之间的最短路径。
三、A*算法A*算法是一种启发式搜索算法,常用于解决具有启发信息的最短路径问题。
在物流配送中,A*算法可以用于考虑交通状况、道路拥堵等因素,以选择最优路径。
以下是使用A*算法进行路径规划的步骤:1. 初始化:设置起点和终点,计算起点到终点的启发式距离估计。
2. 创建一个开放列表和一个封闭列表,将起点加入开放列表。
3. 从开放列表中选择启发式距离估计最小的节点作为当前节点。
配送路径优化的方法

配送路径优化的方法引言在物流配送过程中,优化配送路径是提高效率、降低成本的关键之一。
优化配送路径可以减少司机行驶距离、减少配送时间、提高配送准时率。
随着信息技术的发展,配送路径优化的方法也得到了很大的改进和创新。
本文将介绍一些主要的配送路径优化方法,并分析其适用场景和优缺点。
一、传统优化方法1. 最短路径算法最短路径算法是最为经典和常用的优化方法之一。
其中,Dijkstra算法和Floyd-Warshall算法是两种常见的最短路径算法。
这些算法通过计算路网中各个节点之间的最短距离,从而确定最优的路径。
最短路径算法适用于规模较小、配送地点相对固定的场景。
•Dijkstra算法:以起始节点为中心,逐步计算其他节点到达起始节点的最短距离。
•Floyd-Warshall算法:通过动态规划的方式计算任意两个节点之间的最短路径。
2. 车辆路径规划车辆路径规划方法主要是针对多车辆配送问题的优化。
其中,主要包括贪心算法和遗传算法等。
•贪心算法:按照某种优先级,每次选择最优的路径进行配送,直到所有路径都被配送完成。
•遗传算法:通过模拟遗传进化的方式,在候选路径集合中寻找最优解。
二、基于智能算法的优化方法随着信息技术的迅速发展,智能算法逐渐应用于配送路径优化领域,通过学习和优化来提高配送效率。
1. 遗传算法遗传算法是一种模拟自然界遗传和进化规律的优化算法。
在配送路径优化中,遗传算法可以通过不断迭代、交叉和变异,寻找最优的配送路径。
•初始化种群:随机生成多个候选路径。
•适应度评估:计算每个候选路径的适应度,即路径长度。
•选择操作:根据适应度选择一部分候选路径进行进化。
•交叉操作:随机选择两个路径,将它们的部分路径互换,生成新的候选路径。
•变异操作:随机选择一个路径,对其进行变异,生成新的候选路径。
•迭代操作:通过多次迭代,不断优化候选路径,直到找到最优解。
2. 蚁群算法蚁群算法模拟了蚂蚁在寻找食物过程中的行为规律,通过蚁群中蚂蚁之间的信息交流和合作,找到最优的配送路径。
物流配送路径优化

物流配送路径优化随着电子商务的快速发展和消费需求的不断增加,物流配送的重要性日益凸显。
物流配送路径优化成为了提高物流效率和降低成本的关键因素。
本文将介绍几种常见的物流配送路径优化方法,并探讨它们的优缺点。
一、网络优化算法网络优化算法是物流配送路径优化的核心方法之一。
其基本原理是利用计算机算法对物流网络进行优化,以达到最短的路径和最低的成本。
1.最短路径算法最短路径算法是网络优化算法中的经典算法,常用的有Dijkstra算法和Floyd-Warshall算法。
这些算法可以找到从起点到终点的最短路径,并给出路径上的节点集合和距离。
物流配送中,可以将每个物流节点看作网络的节点,通过最短路径算法来确定货物的运输路径,从而减少货物的运输时间和成本。
2.遗传算法遗传算法是一种模拟生物演化的优化算法,通过模拟自然选择、遗传变异和交叉等过程来搜索最优解。
在物流配送中,可以将物流节点看作遗传算法的个体,通过迭代演化得到最优的配送路径。
二、智能调度系统智能调度系统是物流配送路径优化的另一种重要方法。
它利用现代信息技术、优化算法和人工智能等技术手段,对物流配送进行实时调度和优化。
1.实时路况监测实时路况监测是智能调度系统中的关键环节。
通过安装在物流车辆上的GPS定位装置和速度传感器,可以实时监测道路的拥堵程度和车辆的实际行驶速度。
智能调度系统根据实时路况信息,调整物流配送路径,选择较为畅通的道路,从而减少配送时间和成本。
2.智能算法优化智能调度系统利用算法优化物流配送路径。
例如,可以采用启发式算法、模拟退火算法等方法,对物流节点进行排序和规划,以最小化总行驶距离和成本。
同时,智能调度系统还可以考虑其他因素,如货物重量、大小和运输优先级等信息,进行更加精准的路径规划。
三、仓库位置优化除了优化物流配送路径,合理的仓库位置选择也是提高物流效率和降低成本的重要环节。
通过合理选择仓库的位置,可以减少配送距离和时间,降低运输成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
捕食搜索算法 动物学家在研究动物的捕食行为时发现,尽管由于动物物种的不同而造成的身体结构的千差万别,但它们的捕食行为却惊人地相似.动物捕食时,在没有发现猎物和猎物的迹象时在整个捕食空间沿着一定的方向以很快的速度寻找猎物.一旦发现猎物或者发现有猎物的迹象,它们就放慢步伐,在发现猎物或者有猎物迹象的附近区域进行集中的区域搜索,以找到史多的猎物.在搜寻一段时间没有找到猎物后,捕食动物将放弃这种集中的区域,而继续在整个捕食空间寻找猎物。
模拟动物的这种捕食策略,Alexandre于1998提出了一种新的仿生计算方法,即捕食搜索算法(predatory search algorithm, PSA)。
基本思想如下:捕食搜索寻优时,先在整个搜索空间进行全局搜索,直到找到一个较优解;然后在较优解附近的区域(邻域)进行集中搜索,直到搜索很多次也没有找到史优解,从而放弃局域搜索;然后再在整个搜索空间进行全局搜索.如此循环,直到找到最优解(或近似最优解)为止,捕食搜索这种策略很好地协调了局部搜索和全局搜索之间的转换.目前该算法己成功应用于组合优化领域的旅行商问题(traveling salesm an problem )和超大规模集成电路设计问题(very large scale integrated layout)。
捕食搜索算法设计 (1)解的表达 采用顺序编码,将无向图中的,n一1个配送中心和n个顾客一起进行编码.例如,3个配送中心,10个顾客,则编码可为:1一2一3一4一0一5一6一7一0一8一9一10其中0表示配送中心,上述编码表示配送中心1负贡顾客1,2,3,4的配送,配送中心2负贡顾客5,6,7的配送,配送中心3负贡顾客8,9,10的配送.然后对于每个配送中心根据顾客编码中的顺序进行车辆的分配,这里主要考虑车辆的容量约束。
依此编码方案,随机产生初始解。
(2)邻域定义 4 仿真结果与比较分析(Simulation results and comparison analysis) 设某B2C电子商务企业在某时段由3个配送中心为17个顾客配送3类商品,配送网络如图2所示。
为计算简洁,设各配送中心可用车辆数人Ap=3辆,最大载重量Q=10吨,车辆启动费用Bk=400元,单位距离费用Cij=5元,3类商品的重量系数分别为W1=0.2吨/件,W2=0.4吨/件,W3=0.3吨/件,其他相关参数见表1。
捕食搜索算法采用Java语言在Windows平台上(主频Y4N1/2. 2G,内存512N)实现。
求得最优解值和车辆配送路径如表2所示,可以看出此结果能直接得到基于配送网络的车辆实际配送路径。
该类顾客仅在第一次被访问的时候配送服务了表2。
配送路径中黑体节点表示车辆配送的顾客和其次序少,这和实际配送情况亦是相符的。
为了验证捕食搜索算法的有效性,利用捕食搜索算法与基于类顺序交叉和换位变异算子的遗传算法子编码相同,交叉率为变异率为迭代次数为soot对上述算例各随机计算10次,得到相应的目标值和计算时间如表3所示。
由表3中可以看出,YSA求得的目标值全而优于GA, 10次计算中9次得到了最优值(或近似最优值)20850元,而GA的最优值仅为21050元,计算平均值,从计算的时间来看,YSA的计算效率高于C从但是YSA的计算时间没有C、稳定,可以从它们计算时间的标准差上看出这一点,这是因为以在算法参数设定后计算时间波动很小(以最大迭代次数为停止准则),而YSA因为模仿动物捕食的内在特点,除了算法参数外,其初始解亦会影响算法的计算时间。
上述两种算法在多个算例上进行了实验,得到了相似的结论。
因而,文中设计的YSA作为一类新的优化算法对模型的求解是可行和高效的。
禁忌(Tabu Search)算法是禁忌(Tabu Search)算法一种亚启发式(meta-heuristic)随机搜索算法1,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。
为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向,这就是Tabu表的建立。
为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里遗传算法遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:遗传算法式中x为决策变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。
满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。
所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。
遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。
即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
觅食规则在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。
否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。
蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
移动规则每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。
为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
避障规则如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
播撒信息素规则每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。
综述根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。
比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。
说了这么多,蚂蚁究竟是怎么找到食物的呢?在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。
首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。
这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。
这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。
信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。