动叶调节原理..

合集下载

燃气轮机原理及控制调节

燃气轮机原理及控制调节

Centaur 40 燃气轮机
发电机
VP40(98)-006
Centaur 40 发电机组
VP40(98)-007
Centaur 40双轴燃气轮机
喷嘴壳体和喷嘴总成
排气收集器
燃料喷嘴 压缩机扩散器总成 压缩机壳体总成 压缩机转子总成
附属驱动装置总成
涡轮排气扩散器 驱动轴总成
燃烧室总成 气体燃料歧管 压缩机可变导叶总成 进口空气总成
有二次调频的能力。
图2-5负荷—转速串级控制
燃气轮发电机组的功率-频率静态特性根据其 采用的调节算法而不同。当转速采用P 调节时, 其静态特性见图2-6 。
在P 调节作用下,稳态时实际转速n 与其给定值 nc 是有差的。在不同的转速给定值nc 下,Ne -n 的静态特性线不同; nc 越高,稳态时同一 转速值所对应的功率Ne 越高;在同一nc 下, Ne 随着n 的升高而降低。
-转速的串级调节策略;外回路为功率调节 回路,它根据功率偏差ΔNe = Nec - Ne 来改 变转速设定值nc , 为保证功率的无差调节,外 回路中设置积分器;内回路为转速的P调节算 法,它根据外回路输出的转速给定值进行有 差调节,输出为燃料量指令Gf。
图2-9
图2-4
有差转速控制算法
• 根据要求的转速基准信号(Speed Reference)TNR与实际转速 TNH之差,正比例地改变FSR,实现
产品改进
• 使用Centaur 50 叶片,挡板和轮盘 • 减小叶片应力
标准 Centaur 40 动力涡轮 转子
改进转子采用Centaur 50挡板叶片 设计和 Centaur 40 轮毂
VP40(98)-015
Centaur 40 燃气轮机

动叶可调轴流引风机的工作原理

动叶可调轴流引风机的工作原理

第四节引风机一引风机的结构特点动叶可调轴流式送风机一般包括:进口消音器、进口膨胀节、进口风箱、机壳、转子、扩压器、联轴器及其保护罩、调节装置及执行机构、液压及润滑供油装置和测量仪表、风机出口膨胀节、进、出口配对法兰。

电动机通过中间轴传动风机主轴。

1 进气箱、扩压器进气箱和进气管道,扩压器和排气管道分别通过挠性进气膨胀节和排气膨胀节连接;进气箱和机壳、机壳与扩压器间用挠性围带连接。

这种连接方式可防止振动的传递和补偿安装误差和热胀冷缩引起的偏差。

进气箱中心线以下为成弧形结构,减小进气箱进气损失,并相对减小了气流的脉动,有利于提高风机转子的做功效率。

进气箱、扩压器、机壳保证相对轴向尺寸,形成较长的轴向直管流道,使风机气流流动平稳,减少了流动损失,提高了抗不稳定性能,保证了风机装置效率。

进气箱和扩压器均设有人孔门,便于检修。

进气箱有疏水管。

2 机壳机壳具有的水平中分面以及机壳前后的挠性围带连接,很容易拆卸机壳上半,便于安装和检修转子部。

3 转子转子由叶轮、轴承箱、中间轴、液压调节装置等组成。

轴承箱为整体结构,借助两个与主轴同心的由圆柱面内置于机壳内筒中的下半法兰上,轴承箱两个法兰的下半部分与机壳内圆筒的相应法兰用螺栓固定。

机壳上半内筒的法兰紧压轴承箱相应法兰。

在主轴的两端各装一个滚柱轴承用以承受径向力,为了承受轴向力,在近联轴器端装有一个向心推力球轴承,承担逆气流方向的轴向力。

轴承外侧装有氟橡胶制的径向轴密封,防止漏油。

轴承的润滑和冷却借助于轴承箱体内的油池和外置的液压润滑联合油站。

为防止烟气温度的影响,对主轴承箱外表面及油管进行附加冷却,在风机一侧装有冷却(密封风机)。

置于整体式轴承箱中的主轴承为油池强制循环润滑。

当轴承箱油位超过最高油位时,润滑油将通过回油管流回油站。

润滑油和液压油均由25 l/min的公用油站供油。

叶轮叶轮轮壳采用低碳合金钢(后盘及承载环为锻件)通过多次焊接后成型,强度、刚度高,叶轮悬臂装在轴承箱的轴端。

风机液压机构原理

风机液压机构原理

目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘 14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳21-连接螺栓2-(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

3-调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

动叶可调式轴流风机振动原因分析及预防措施制定

动叶可调式轴流风机振动原因分析及预防措施制定

动叶可调式轴流风机振动原因分析及预防措施制定- 1 -摘要:针对某火电厂2号机组停运3个月后再次启动一次风机后出现的风机振动大的问题,通过对振动原因进行排查,发现了是由于风机动叶长期未进行活动,部分风机动叶根部生锈发生卡涩,最终导致调节芯轴弯曲,转子不对中产生振动。

提出机组长期停运应定期进行动叶开关活动,风机转子定期盘动,做好停运设备定期保养工作,防止部件生锈卡涩造成振动变大。

关键词:风机;振动;定期工作- 1 -0引言轴流式一次风机作为大型火电机组的主要锅炉辅机设备,主要承担着为锅炉燃烧输送煤粉的作用,其运行状况的好坏对电厂的安全与经济有着重大影响。

风机运行过程中如果发生振动,不仅会损坏设备,严重时还会导致锅炉灭火、机组停运,因此一次风机的正常稳定运行对保证机组的安全稳定运行至关重要。

本文针对某电厂一次风机振动大产生的原因展开分析,并从定期工作方面提出预防措施,保证一次风机的安全运行。

1设备概况河南某电厂2×1000MW机组,锅炉型号DG3063.81/29.3-Ⅱ1型超超临界参数、变压直流、一次中间再热、单炉膛、平衡通风、固态排渣、露天布置、全钢构架、对冲燃烧方式,锅炉。

一次风机由成都电力机械厂生产的GU24036-112型动叶可调轴流式风机。

该风机的主要工作原理为:由系统管道流入风机的气流经进气箱改变方向,经整流罩收敛加速后流向叶轮,电动机动力通过叶轮叶片对气流作功,叶片的工作角度可无级调节,由此改变风量、风压,满足工况变化需求;流经叶轮后的气流为螺旋运动,经后导叶导流为轴向流入扩压器,在扩压器内气体的大部分动能转化成静压能,再流至系统满足运行要求,从而完成风机出力的工作过程[1]。

一次风机的主要技术参数及极限运行参数如表1、表2。

表1 风机主要技术参数表2风机极限运行参数2 存在问题某电厂2号机组2020年1月11日通过机组168试运后停机备用,至2020年5月份计划启动机组进行保养工作,2020年5月6日进行机组启动前阀门活动试验过程中,发现2号一次风机动叶执行机构开至20%开度后卡涩,检修人员到现场打开芯筒人孔门对伺服阀执行机构连杆进行检查,发现连杆断裂,如图1图12020年5月13日该电厂启动2号锅炉1号一次风机过程中,DCS显示风机振动偏大,水平振动5.8mm/s,垂直振动3.7mm/s,较正常值明显偏大,就地检查地脚螺栓无松动,测量信号完好,停运该风机后吊开风机上机体,活动动叶发现一级叶片有7片叶片漂移,如图2,进一步解体检查发现调节机构芯轴肉眼可见弯曲,如3。

轴流式一次风机动叶故障分析及其预防处理措施

轴流式一次风机动叶故障分析及其预防处理措施
4、在此过程中及时调整二次风,维持差压正常。可以切至定压运行或者手动控制汽机主控手操器,保持压力的相对平稳。
5、待负荷下降至150MW左右,准备停运1A一次风机前手动开大#1B一次风机动叶,与副值保持联系,注意汽包水位。(汽包水位因1A一次风机停运后炉膛燃烧减弱会迅速下降,之后因1B一次风机出力炉膛燃烧增加水位会上升,通过曲线看出#1B一次风机出风后水位的上升很快,因此在手动增大#1B一次风机动叶时不到大幅度增大,防止水位上升太多),提高凝结水压力设定值,防止备用凝泵自启。
CRT上停运一次风机后,立刻增大1B一次风机动叶开度,保证一次风压正常(必要时就地手动关严#1A一次风机出口电动挡板),维持炉膛燃烧稳定。控制汽包水位正常。
6、待汽包水位,负荷、主汽压力、一次风压力稳定后,做好相应安措,联系检修处理。
若在以上操作过程中,在停1A一次风机前,1A一次风机应“过电流保护动作”跳闸,应立刻增大1B一次风机动叶开度(注意#1B一次风机参数如振动,电流、温度上升速度等)维持燃烧稳定,注意控制汽包水位。同时RB动作后要及时将减温水调节阀开启,防止超温。
异常现象及处理经过:
事件回顾分析:
(1)1月3日,#1A一次风机动叶执行机构曲柄脱落,与电动执行机构分离,就地动叶输出轴已开至最大,因此导致#1A一次风机电流上升至166A,最大时达到185A;1A一次风机跳闸,一次风机RB动作,负荷降至144MW左右各参数相对稳定后复位一次风机RB,后负荷稳定在165MW左右。
3结论
2、液压缸反馈原理
当液压缸向右移动时,定位轴被带动同时向右移动。但由于滑块不动,单面齿条向左移动。这样又使伺服阀将油道兰色与红色油道的油孔关闭,液压油缸随之处在新的平衡位置不再移动。而动叶片亦在关小的状态下工作,这就是反馈过程。在反馈时齿轮带动指示轴旋转,将动叶片关小的角度显示出来。

[精华版]风机动叶调节机构及工作原理

[精华版]风机动叶调节机构及工作原理

风机动叶调节机构及工作原理我公司#5、6炉引、送风机均采用动叶可调轴流式风机。

#7、8炉送风机也采用动叶可调轴流式风机。

为了充分掌握动叶可调轴流式风机的动叶调节机构和工作原理,首先我们要了解动叶可调轴流式风机的有关特性。

一.引、送风机的结构:引、送风机由吸入烟风道、进气室、扩压器、叶轮、主轴、动叶调节机构、传动组、自动控制机构等部分组成。

二.引送风机的工作原理:引送风机的工作原理是基于机翼型理论:当气体以一个攻角α进入叶轮,在翼背上产生一个升力,同时必定在翼腹上产生一个大小相等方向相反的作用力使气体排出叶轮呈螺旋形沿轴向向前运动。

与此同时,风机进口处由于差压的作用,使气体不断地被吸入。

动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差越大,风量则小。

当攻角达到临界值时,气体将离开翼背的型线而发生涡流,此时风机压力大,幅度下降,产生失速现象。

三.引送风机相关参数:2、引风机及电动机:四.引、送风机液压油系统图:五.引、送风机动叶调节机构工作原理:从液压调节机构来看,液压调节结构可分为两部分:一部分为控制头,它不随轴转动。

另一部分为油缸及活塞,它们与叶轮一起旋转,但活塞没有轴向位移,叶片装在叶柄的外端。

每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一定角装设,两者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

液压调节机构的调节原理大致如下:1.当讯号从控制轴输入要求“+”向位移时分配器左移、压力油从进油管A经过通路2送到活塞左边的油缸,由于活塞无轴向位移,油缸左侧的油压就上升,使油缸向左移动,带动调节连杆偏移,使动叶片向“+”向位移。

与此同时,调节杆(反馈杆)也随着油缸左移,而齿条将带动控制轴的扇齿轮反时针转动,但分配器带动的齿条却要求控制轴的扇齿做顺时针转动因而调节杆就起到“弹簧”的限位作用。

当调节力大时,“弹簧”限不住位置,所以叶片仍向“+”向位移,即为叶片调节正终端位置,但由于“弹簧”的牵制作用,在一定时间后油缸的位移自动停止,由此可以避免叶片调节过大,防止小流量时风机进入失速区。

轴流风机动叶调节机构常见故障及判断方法

轴流风机动叶调节机构常见故障及判断方法

轴流风机动叶调节机构常见故障及判断方法文章发表于《热力发电》2013年第八期,转载请注明,谢谢。

林邦春1,余洋2(1.福建华电可门发电有限公司,福建福州350512;2.福建华电可门发电有限公司,福建福州350512)摘要:介绍丹麦诺狄斯克VARIAX动叶调节技术的调节原理,总结该动叶调节技术的常见故障现象及原因,提出各种故障的判断方法,可供采用相同动叶调节技术风机的电厂技术人员借鉴参考。

关键词:轴流风机;动叶调节;判断方法;防范措施Common faults and judgment of the axial fan blades' regulatory agenciesLIN Bang-chun1,YU Yang2(Fujian Huadian Kemen Power Company Limited,Fuzhou 350512,China.) Abstract:Description the regulating principle of Denmark Nuodisike VARIAX moving blades to adjust technology, summarizes the common symptoms and causes of the technology of the moving blade adjusting mechanism, put forward various fault finding methods are available using the same rotor blades to adjust the technology fan power plant 's technical staff learn from the reference.Key words:Axial fan;Moving blade adjustment;Method to judge;Preventive measures1前言福建华电可门发电有限公司(以下简称可门电厂)装机容量为4×600MW,锅炉为上海锅炉厂引进美国ALSTOM技术设计,超临界参数变压运行螺旋管圈直流炉,单炉膛、一次再热、四角切圆燃烧方式、平衡通风、Π型露天布置、固态排渣、全钢梁悬吊结构,正压直吹式制粉系统。

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理

风机动叶调节机构及工作原理我公司#5、6炉引、送风机均采用动叶可调轴流式风机。

#7、8炉送风机也采用动叶可调轴流式风机。

为了充分掌握动叶可调轴流式风机的动叶调节机构和工作原理,首先我们要了解动叶可调轴流式风机的有关特性。

一.引、送风机的结构:引、送风机由吸入烟风道、进气室、扩压器、叶轮、主轴、动叶调节机构、传动组、自动控制机构等部分组成。

二.引送风机的工作原理:引送风机的工作原理是基于机翼型理论:当气体以一个攻角α进入叶轮,在翼背上产生一个升力,同时必定在翼腹上产生一个大小相等方向相反的作用力使气体排出叶轮呈螺旋形沿轴向向前运动。

与此同时,风机进口处由于差压的作用,使气体不断地被吸入。

动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差越大,风量则小。

当攻角达到临界值时,气体将离开翼背的型线而发生涡流,此时风机压力大,幅度下降,产生失速现象。

三.引送风机相关参数:四.引、送风机液压油系统图:五.引、送风机动叶调节机构工作原理:从液压调节机构来看,液压调节结构可分为两部分:一部分为控制头,它不随轴转动。

另一部分为油缸及活塞,它们与叶轮一起旋转,但活塞没有轴向位移,叶片装在叶柄的外端。

每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一定角装设,两者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。

液压调节机构的调节原理大致如下:1.当讯号从控制轴输入要求“+”向位移时分配器左移、压力油从进油管A经过通路2送到活塞左边的油缸,由于活塞无轴向位移,油缸左侧的油压就上升,使油缸向左移动,带动调节连杆偏移,使动叶片向“+”向位移。

与此同时,调节杆(反馈杆)也随着油缸左移,而齿条将带动控制轴的扇齿轮反时针转动,但分配器带动的齿条却要求控制轴的扇齿做顺时针转动因而调节杆就起到“弹簧”的限位作用。

当调节力大时,“弹簧”限不住位置,所以叶片仍向“+”向位移,即为叶片调节正终端位置,但由于“弹簧”的牵制作用,在一定时间后油缸的位移自动停止,由此可以避免叶片调节过大,防止小流量时风机进入失速区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动叶调节原理目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。

豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳 21-连接螺栓(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。

国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W 形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。

调节阀芯:它是一负遮盖换向阀。

在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。

主缸体:主缸体是一个上下腔面积不等的差动缸,送风机、一次风机液压缸上下腔面积比为1:2,引风机、增压风机液压缸上下腔面积比为2:1,其这两种缸的形式不一样,后面会详细解释。

当上下腔同时进油的时候,由于压力一样,面积不一样,所以大腔收到的力大,膨胀,小腔的油通过詛油孔进入大腔,加剧了大腔的膨胀,这个时候,大腔为缸腔而小腔为泵功能向大腔供油,但大腔回油的时候,小腔有变为缸功能,这一特征使得双向运动的时间及对外作用力一致。

液压缸工作原理:(送风机、一次风机液压缸,特点:活塞固定,缸体动作,叶片的动作是通过缸体的移动来调节的,缺点:油缸的功率受到轮毂大小和工作油压大小的影响,功率受到限制;优点:相对移动的密封面只有活塞与缸体内壁、调节阀体和活塞两个地方,泄漏点较少,密封性好.)正常状体(平衡状态):叶片无调节,此时阀芯的位置使进油口(P)与小腔接通,回油口(O)关闭,但与大腔有个小切口,以保证循环冷却和较低的工作油压。

此时压力油从P口进入小腔,通过詛油孔,进入大腔,从回油的小切口,通过冷油器后回到油箱中,泄漏及润滑油的通过T口直接回油箱,工作油压的大小,由回油切口的大小来决定,一般都是在3~4MPa左右。

开启叶片:执行机构带动拉叉(旋转油封、调节阀芯)向左拉,此时P口与小腔接通,O口与大腔接通(全部接口,不是小切口),此时小腔进油,大腔回油,小腔膨胀(活塞是固定的)带动缸体向左移动,叶片往开方向走,由于阀体和缸体是一体的,缸体的移动也带动阀体的移动,使阀体与阀芯位置回到平衡时的位置。

关闭叶片:执行机构带动拉叉向右压,此时P口与大、小腔都接通,O 口全部关闭(小切口都关闭),此时大小腔都进油,由于大腔的左右面积大,所以大腔膨胀,带动缸体向右移动,从而叶片往关方向走,缸体带动阀体向右走,使阀体与阀芯位置回到平衡时的位置。

(增压风机、引风机液压缸,特点:缸体固定,活塞动作,叶片的动作是通过活塞的移动来调节的,优点:缸体的大小不受轮毂内径的大小限制,可以把缸体做的较大,油缸的功率不受到轮毂大小和工作油压大小的影响,功率较大,所以比较适合用在增压风机,引风机等需较大功率的风机上,且采用缸外油循环来解决高温问题;缺点:相对移动的密封面比较多,有活塞与缸体内壁、调节阀体和缸活塞、活塞与缸体三个密封面,泄漏概率较大.)正常状体(平衡状态):叶片无调节,此时阀芯的位置使进油口(P)与小腔接通,回油口(O)关闭,但与大腔有个小切口,以保证循环冷却和较低的工作油压。

此时压力油从P口进入小腔,通过詛油孔,进入大腔,从回油的小切口,通过冷油器后回到油箱中,泄漏及润滑油的通过T口直接回油箱,工作油压的大小,由回油切口的大小来决定,由于缸体较大,受力面积大,一般都是在2~3MPa左右。

开启叶片:执行机构带动拉叉(旋转油封、调节阀芯)向左拉,此时P口与小腔接通,O口与大腔接通(全部接口,不是小切口),此时小腔进油,大腔回油,小腔膨胀(缸体是固定的)带动活塞向左移动,叶片往开方向走,由于阀体和活塞是一体的,活塞的移动也带动阀体的移动,使阀体与阀芯位置回到平衡时的位置。

关闭叶片:执行机构带动拉叉向右压,此时P口与大、小腔都接通,O 口全部关闭(小切口都关闭),此时大小腔都进油,由于大腔的左右面积大,所以大腔膨胀,带动活塞向右移动,从而叶片往关方向走,活塞带动阀体向右走,使阀体与阀芯位置回到平衡时的位置。

上海鼓风机厂(TLT)液压调节机构上海鼓风机厂的动调机构是引进德国TLT公司的技术,其技术特点是伺服阀阀体和阀芯不随液压缸转动,其阀体是固定不动的,通过阀芯的相对移动来切换进回油管路,从而实现液压缸的动作。

与其他调节机构不同的是,TLT 技术的调节过程由调阀移动和负反馈两个过程来实现调节。

液压缸结构:液压缸内的活塞由轴套及活塞轴的凸肩沿轴向定位。

液压缸可以在活塞上左右移动,但活塞不能作轴向移动。

为了防止液压缸左、右移动时,液压油从活塞与液压缸间隙处泄漏,活塞上装有两列带槽密封圈。

当叶轮旋转时,液压缸同步旋转,活塞由于护罩和活塞轴的旋转带动与叶轮一起作旋转运动。

风机在某工况下稳定工作时,活塞与液压缸无相对运动。

活塞轴中心装有定位轴,当液压缸左、右移动时会带动定位轴一起移动。

控制头等零件是静止不动的。

风机如在某工况下稳定工作时,动叶片也在某一角度下运转。

此时伺服阀将油道C 和D的油孔关闭,活塞左右两侧的工作油无进油、回油,动叶片的角度固定不变。

液压缸的工作原理:在正常状态下,进回油管路均与液压缸切断,活塞位置固定不变。

关闭叶片时,电动头驱动控制盘7逆时针旋转,带动滑块12向右移动。

此时液压缸只随叶轮作旋转运动,定位轴1及与之相连的双面齿条8静止不动。

于是大齿轮10只能以A为支点,推动与之啮合的单面小齿条13往右移动。

压力油口与兰色油道相通,红色油道与回油口接通,压力油从兰色油道不断进入活塞3右侧的液压油缸内,使液压油缸不断向右移动。

活塞左侧液压油缸内的工作油从红色油道通过回油孔返回油箱。

液压油缸与叶轮上的每个动叶片的调节杆相连,当液压油缸向右移动时,动叶片的角度减小。

(反馈过程)当液压缸向右移动时,定位轴被带动同时向右移动。

但由于滑块不动,所以齿轮以B为支点,单面齿条向左移动。

这样又使伺服阀将油道兰色与红色油道的油孔关闭,液压油缸随之处在新的平衡位置不再移动。

而动叶片亦在关小的状态下工作,这就是反馈过程。

在反馈时齿轮带动指示轴旋转,将动叶片关小的角度显示出来。

增大动叶角度时.电动头带动控制轴顺时针旋转,带动滑块向左移动.此时,由于液压缸只随叶轮做旋转运动,所以定位轴及齿套静止不动.齿轮只能以A为支点,推动与之啮合的单面齿条向左移动,使压力油口与红色油口接通,兰色油口与回油口相连.压力油从红色油道不断进入活塞左侧的液压缸内,液压缸不断向左移动.同时活塞右侧液压缸内的工作油从兰色油道通过回油孔返回油箱,液压缸向左移动,动叶片的角度增大.(反馈过程)当液压缸向左移动时,定位轴也同时向左移动.齿轮以B 为支点,齿条向右移动,于是伺服阀又将油道C和D的油孔关闭,动叶片又在新的角度下稳定工作.调节原理图:TLT液压伺服系统的特点:1﹑液压伺服系统是一个跟踪系统.液压缸的位置(输出)完全跟踪伺服阀口的位置(输入)而运动.2﹑液压伺服系统是一个力放大系统.推动伺服阀所需要的力很小,只需要几个N,但液压缸克服阻力,完成推动叶片转动的力则很大,可以达到25巴.推动液压缸的能量由液压泵提供.3﹑液压伺服系统是一个反馈系统.电动头旋转运动最终变成了齿条的直线运动,使伺服阀油口的缝隙发生变化,液压缸移动.而液压缸运动的结果又使油口缝隙保持原来的比例关系.使液压缸停止运动,这种作用称做负反馈.因为反馈是由于缸体和阀体的刚性连接而完成的,所以这种反馈又称为刚性负反馈.负反馈的结果总是输入信号变小以至消除.如果没有这个负反馈,液压缸是无法工作的.成都电力机械设备厂(KKK)液压调节机构成都电力机械厂根据我国电力工业的迫切需要,上世纪九十年代中期,分别对世界上各大著名的风机制造商的动调风机技术进行了调研对比,最终选择引进了代表着国际上最先进的动调轴流风机的设计、制造技术水平的德国KKK公司的AP动调轴流风机专有技术(简称AP风机)。

KKK技术的液压缸是结合了豪顿技术和德国TLT技术的优点,液压缸采用缸体静止,活塞动作的方式,这样液压缸的面积可以做的很大,不受轮毂内径大小的影响(这点和豪顿的增压引风机液压缸有相似之处),调节阀部分采用了调节阀与旋转油封相结合的设计,结构紧凑,安装的时候只需找正一次,安装方便。

但因为旋转油封和调节阀的结合设计,导致调节阀处精度较高,特别是密封的地方。

阀芯是跟随液压缸一起旋转,阀体相对壳体不旋转,只做前后轴向动作,从而使调节阀的设计要求更高。

液压缸工作原理:在平衡状态下,液压缸左右腔的进油及回油管路都切断,润滑油路开启,液压缸不动作。

当叶片需要开的时候,执行机构使调节阀体向左移动,这时右腔油路与进油口联通,左腔油路与回油口接通,右腔膨胀,面积变大,由于缸体是固定的,活塞就向左移动,由于阀芯与活塞是一体的,所以阀芯也向左移动,从而使调节阀阀芯和阀体的位置到平衡位置。

当叶片需要关的时候,执行机构使调节阀体向右移动,这时左腔油路与进油口联通,右腔油路与回油口接通,左腔膨胀,活塞向右移动,带动阀芯也向右移动,从而使阀芯与阀体回到平衡的位置。

相关文档
最新文档