八年级四边形证明题

合集下载

四边形证明题

四边形证明题

四边形证明题1、如图,在□中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.2、如图,中,,是边上的中线,分别过点,作,的平行线交于点,且交于点,连接.(1)求证:四边形是菱形;(2)若,求的值.3、如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.4、如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DE∥AC且DE=AC,连接 CE、OE,连接AE交OD 于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.5、如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60,菱形ABCD的面积为,求DF的长.6、如图,菱形中,,分别为,上的点,且,连接并延长,交的延长线于点,连接.(1)求证:四边形是平行四边形;(2)连接,若,,求的长.7、如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O 作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求的值.8、如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.9、如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D 作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=时,求tan∠EAD的值.10、已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形 ECGD是矩形.11、如图,菱形ABCD中,对角线AC,BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=8,BD=6,求四边形OFCD的面积.12、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的长.。

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析1.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明见解析;(2)BE=5.【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长;试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【考点】1、平行四边形的判定与性质;2、菱形的性质2.如图,在▱ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=4,CF=2.(1)从对称性质看,▱ABCD是_________对称图形;(2)求平行四边形ABCD的周长.【答案】(1)中心;(2)40【解析】(1)根据平行四边形的性质可知:对角线互相平分,所以O为旋转中心,即平行四边形ABCD是中心对称图形;(2)根据平行四边形中对角、对边分别相等,∠B=∠ADC=60°,再根据已知边长,由勾股定理可求出AB、AD的长,进而可求出平行四边形ABCD的周长.试题解析:1)∵四边形ABCD是平行四边形,∴对角线互相平分,∴O为旋转中心,即平行四边形ABCD是中心对称图形,(2)∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∵BE=4,∴AB=8,∴CD=AB=8,∵CF=2,∴DF=6,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=12,∴平行四边形ABCD的周长=2(12+8)=40.【考点】1.平行四边形的性质;2.中心对称图形3.下列性质中,正方形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角【答案】A.【解析】A、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.B、正方形和矩形的对角线都互相平分,故本选项错误;C、正方形和矩形的对角线都相等,故本选项错误;D、正方形和矩形的四个角都是直角,故本选项错误.故选A.【考点】1.正方形的性质2.矩形的性质.4.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?用你学过的方法进行解释.【答案】3cm.【解析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.试题解析:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=.∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3.∴EC的长为3cm.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理;4.方程思想的应用.5.ABCD中, ∠A比∠B小200,则∠A的度数为( )A.600B.800C.1000D.1200【答案】B.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B-∠A =20°,∴∠B=100°,∴∠A=80°.故选B.【考点】平行四边形的性质.6.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+)D.1+【答案】C.【解析】本题已知条件涉及矩形的对角线和周长,可考虑用“矩形的对角线相等且相互平分”性质来解.如图所示,∠AOB=120°,AD=2∵ABCD为矩形,∴AD=BC=2,AO=B0=1(矩形的对角线相等且相互平分),∴△AOB为等腰三角形,∠BAO=30°;在Rt△ABD中,∠BAO=30°,AD=2∴AB= ,BD=1,∴矩形ABDC的周长为.【考点】矩形性质.7.如图,在梯形中,为的中点,交于点.(1)求证:;(2)当,且平分时,求的长.【答案】(1)证明详见解析.(2)EF=4.【解析】根据题意构造辅助线,利用中线性质和平行四边形性质即可得出结论.(1)过D作DM∥AB,∵AD∥BC,DM∥AB,∴四边形ABMD为平行四边形,∴BM=AD∵,∴EF∥DM,又∵E为CD的中点∴F为CM中点即MF=CF,∴BF=BM+MF=AD+CF.(2)过E作EH⊥AB,∵BE平分,∴CE=EH=DE(角平分线上一点到角两边的距离相等),在Rt△ADE和Rt△AHE中,DE=EH,AE=AE∴Rt△ADE≌Rt△AHE(SH定理)∴AH=AD=1,同理可得BH=BC=7,∴AB=AH+BH=8∵四边形ABMD为平行四边形,∴DM=AB=8,又∵E、F 分别为CD、CM中点,∴.【考点】1.平行四边形性质;2.角平分线性质;3.全等三角形.8.已知O是口ABCD对角线的交点,△ABC的面积是3,则口ABCD的面积是()A.3B.6C.9D.12【答案】B.【解析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选B.【考点】平行四边形的性质.9.矩形、菱形与正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线平分一组对角D.对角线相等【答案】B.【解析】A、矩形对角线不互相垂直,故本选项错误;B、平行四边形的对角线互相平分,以上三个图形都是平行四边形,故本选项正确;C、三个图形中,只有菱形和正方形的对角线平分一组对角,故本选项错误;D、菱形对角线不相等,故本选项错误.故选B.【考点】1.正方形的性质2.菱形的性质3.矩形的性质.10.如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论.【答案】(1)证明见解析;(2)当O运动到AC中点.【解析】(1)根据MN∥BC,CE平分∠ACB,CF平分∠ACD及等角对等边即可证得OE=OF;(2)根据矩形的性质可知:对角线且互相平分,即AO=CO,OE=OF,故当点O运动到AC的中点时,四边形AECF是矩形.(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF.(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF=∠BCD,∴∠ECF=90°,∴四边形AECF是矩形.【考点】矩形的判定.11.如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为_______【答案】24cm2.【解析】因为AD=12cm,AB=7cm,且AE:BE=5:2,则AE=5,BE=2,则阴影部分的面积=12×7﹣12×5=24cm2.故答案是24cm2.【考点】矩形的性质.12.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为 ( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶2【答案】A.【解析】∵四边形ABCD是平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE-AF=1,BE=AB-AE=2∴AE:EF:BE=4:1:2.故选A.考点: 平行四边形的性质.13.(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A 向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:①填空:将点C向下平移个单位,再向右平移个单位与点B重合;②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.【答案】(1)①2,3;②见解析;(2)有3个,(5,-1),(-1,-5),(-3,3).【解析】(1)①根据平移的规律:上加下减,左加右减即可得出将点C向下平移2个单位,再向右平移3个单位与点B重合;②根据平移的规律:上加下减,左加右减得出将点D的坐标为(4,2),然后根据一组对边平行且相等的四边形是平行四边形证出四边形ABDC是平行四边形;(2)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)①∵B(3,0),C(0,2),∴将点C向下平移2个单位,再向右平移3个单位与点B重合.故答案为2,3;②点D位置如图所示.证明:由图可知AB∥CD,AB=CD,∴四边形ABCD是平行四边形;以△ABC的两条边为边,第三边为对角线的平行四边形共有3个.①以AB、AC为边可作一平行四边形,第四个顶点的坐标为(5,-1);②以CA、CB为边可作一平行四边形,第四个顶点的坐标为(-1,-5);③以BA、BC为边也可作一平行四边形,则第四顶点的坐标为(-3,3).【考点】坐标与图形变化-平移;平行四边形的判定.14.如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是_________cm.【答案】2【解析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.【考点】平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,试求出此梯形的周长和面积.【答案】(8+20)cm,(48+32)cm2【解析】过A、D点作梯形的高AE、DF,根据等腰直角三角形性质可求得BE、AE的长,从而可以求得结果.过A、D点作梯形的高AE、DF∵等腰梯形ABCD中,∠B=45°,AB=8cm∴BE=AE=4cm∵AD=4cm∴BC=4+8cm∴梯形的周长=(8+20)cm,面积=(AD+BC)×AE=(48+32)cm2.【考点】等腰梯形的性质点评:等腰梯形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.16.在梯形ABCD中,AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是______________【答案】1:4【解析】解:过A作AG⊥BC,交EF与H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF•AH=xcm2,∴EF•AH=2xcm2,∴S梯形ABCD=(AD+BC)•AG=×2EF×2AH=2EF•AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.【考点】梯形的中位线定理点评:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.17.如图所示,在平行四边形ABCD中,BD=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.【答案】【解析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°-∠ADB=90°-70°=20°.【考点】平行四边形的性质,等腰三角形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.18.如图所示,矩形的边,,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,平行四边形的面积为.【答案】【解析】先根据平行四边形的面积公式分别计算,得到规律,再根据所得的规律求解即可.由题意得平行四边形的面积为平行四边形的面积为所以平行四边形的面积为.【考点】找规律-图形的变化点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题. 19.如图在平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF,求证:四边形EBFD是平行四边形.【答案】连接BD,交AC于点O,由四边形ABCD为平行四边形可得AO=CO,BO=DO,又AE=CF,所以EO=FO,即可证得结论.【解析】连接BD,交AC于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO又∵AE=CF∴EO=FO∴四边形EBFD是平行四边形.【考点】平行四边形的判定和性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:(填一个即可)【答案】AB=CD或AD∥BC【解析】两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形. 由题意可补充AB=CD或AD∥BC.【考点】平行四边形的判定点评:本题属于基础应用题,只需学生熟练掌握平行四边形的性判定方法,即可完成.21.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当AC⊥BD时,它是菱形D.当∠ABC=900时,它是矩形【答案】B【解析】根据矩形、菱形、正方形的判定方法依次分析各项即可判断.A.当AB=BC时,它是菱形,C.当AC⊥BD时,它是菱形,D. 当∠ABC=900时,它是矩形,均正确,不符合题意;B. 当AC=BD时,无法判定它是正方形,故错误,本选项符合题意.【考点】矩形、菱形、正方形的判定点评:本题属于基础应用题,只需学生熟练掌握矩形、菱形、正方形的判定方法,即可完成. 22.已知EF是梯形ABCD的中位线,且EF=9,上底AB=6,那么下底CD= .【答案】12【解析】因为梯形的中位线长等于上底加下底的和除以2,根据题意,9×2-6=12【考点】梯形的中位线点评:基础题目,学生需要掌握梯形的中位线的运算公式,代入得出答案。

初二数学四边形试题

初二数学四边形试题

初二数学四边形试题1.如图①,两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形,对角线均在坐标轴上,已知菱形EFGH与菱形ABCD的相似比为1:2,∠BAD=120°,其中AD=4.(1)点D坐标为,点E坐标为;(2)固定图①中的菱形ABCD,将菱形EFCH绕O点顺时针方向旋转α度角(0°<α<90°),并延长OE交AD于P,延长OH交CD于Q,如图②所示,①当α=30°时,求点P的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP是平行四边形?若存在,请推断出α的值;若不存在,说明理由;【答案】(1)点D坐标为(2,0),点E坐标为(0,1).(2)①点P的坐标是(,);②当α=60°时,四边形AFEP是平行四边形.理由见解析【解析】(1)由于∠BAD=120°,易知∠OAD=60°,通过解直角△AOD来求OD、OA的长度;然后利用相似比来求OE的长度;(2)由(1)和相似多边形的性质知,OA=2,OD=2,EF=2.①作PM⊥OA于点M,易求AM、PM的长度;②如果四边形AFEP是平行四边形,那么首要满足的条件是AP∥FE,由于∠FEO=60°,因此∠APO必为60°,此时△AOP中,∠APO=∠OAP=60°,因此△AOP是等边三角形,已知两菱形的位似比为2:1,因此EF= AD,也就是EF=AP,由此可得出当α=60°时,AP //EF,且AP=EF,即四边形APEF是平行四边形.试题解析:(1)如图①,∵∠BAD=120°,四边形ABCD是菱形,∴∠OAD=∠BAD=60°.又∵在直角△AOD中,AD=4,∴OA=AD•cos60°=4×=2,OD=AD•sin60°=4×=2.又菱形EFGH与菱形ABCD的相似比为1:2,∴OE:OA=1:2,∴OE=1,∴点D坐标为(2,0),点E坐标为(0,1).故答案是:(2,0),(0,1);(2)由(1)知,OA=2,OD=2,∠OAD=60°.∵菱形EFGH与菱形ABCD的相似比为1:2,AD=4,∴EF=AB=AD=2.①当α=30°时,∠APO=90°,则AP=OA=1.如图②,作PM⊥OA于点M.则AM=AP=,PM=,∵OM=OA-AM=,∴点P的坐标是(,);②当α=60°时,四边形AFEP是平行四边形.理由如下:∵在旋转过程中,EF=2,∠FEO=60°,∠OAP=60°,当射线OE旋转角度α=60°时,得△AOP 是等边三角形,此时∠APO=60°,AP=2,∴AP=EF,∴∠APO=∠FEO,得AP∥EF,∴四边形AFEP是平行四边形,∴当α=60°时,四边形AFEP是平行四边形.【考点】1、菱形的性质;2、解直角三角形;3、图形的旋转变换;4、相似多边形的性质2.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形【答案】C【解析】A、邻边相等的平行四边形是菱形,有两边相等的平行四边形是菱形,并没有说明是邻边,故A错误;B、有一个角是直角的四边形是直角梯形,还可能是正方形或矩形,故B错误;C、四个角相等的菱形是正方形,故C正确;D、两条对角线相等的四边形是矩形,还可能是梯形或正方形,故D错误.故选:C.【考点】1、正方形的判定;2、菱形的判定;3、矩形的判定;4、直角梯形3.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【答案】C.【解析】可由平行四边形的性质对命题分别作出判断,进而即可得出结论.A.有两组对边分别平行的四边形是平行四边形,正确;B.平行四边形的对角线互相平分,正确;C.平行四边形的对角互补,邻角相等,错误;D.平行四边形的对边平行且相等,正确.故选C.【考点】平行四边形的性质.4.如图,在平行四边形ABCD中,M是CD的中点,AB=2BC,BM=,AM=,则CD的长为()A.B.C.D.【答案】D.【解析】因为M为CD中点,∴CM=DM=CD=AB=BC=AD,∴∠DAM=∠DMA,∠CBM=∠CMB,∵∠C+∠D=180°,∴∠C=2∠DMA,∠D=2∠CMB∴∠DMA+∠CMB=(∠C+∠D)=90°,∴∠AMB=180°-(∠DMA+∠CMB)=90°,即△MAB为直角三角形,∵BM=,AM=,∴CD=AB=.故选D.【考点】平行四边形的性质.5.如图,平行四边形中,是四边形内任意一点, ,,,的面积分别为,则一定成立的是 ( )A.B.C.D.【答案】D.【解析】解:∵四边形ABCD是平行四边形, ∴设.∵.∴.∴.故选D.【考点】平行四边形的性质.6.如图,在菱形中,,的垂直平分线交对角线于点,垂足为点,连结,则等于 .【答案】60°【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD,∵∠BAD=80°,∴∠ABC=180°∠BAD=180°80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC∠ABF=100°40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.【考点】1.菱形的性质;2.全等三角形的判定与性质;3.线段垂直平分线的性质.7.把一张矩形纸片ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC =4 cm.(1)求线段DF的长;(2)连接BE,求证:四边形BFDE是菱形;(3)求线段EF的长.【答案】(1);(2)证明见解析;(3).【解析】(1)由折叠知,BF=DF.在Rt△DCF中,利用勾股定理可求得,DF的长;(2)利用翻折变换的性质得出∠2=∠3,BE=DE,BF=DF,进而利用等腰三角形的性质得出三条边相等即可;(3)本题可利用相似解决,由于折叠,可知BD⊥EF,利用直角三角形相似的性质:对应边成比例求得结果.(1)由折叠知,BF=DF.设BF=x,则DF=x,CF=4-x,CD=AB=3在Rt△DCF中,利用勾股定理得:x2-(4-x)2=32解得:x=.(2)连接BE,∵AD∥BC,∴∠1=∠2,∵将一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和D重合,∴∠2=∠3,BE=DE,BF=DF,∴∠1=∠3,∴ED=DF=DE=BF,∴四边形EBFD是菱形;(3)连接BD,得BD=5cm,利用,易得EF=cm.【考点】1.翻折变换(折叠问题);2.勾股定理;3.相似三角形的判定与性质.8.如图,在梯形ABCD中,AB∥CD,,∠,DE⊥AB于点E,且,那么梯形ABCD的周长为_______,面积为________.【答案】,【解析】如图,过点C作CF⊥AB,垂足为点F.∵ DE⊥AB,∴ DE∥CF.又AB∥CD,∴四边形DEFC是矩形,∴.又∵,∴ Rt△ADE≌Rt△BCF,∴.在Rt△ADE中,∠,∴,∴,∴梯形ABCD的周长,.9.如图,在△中,∠0°,BC 的垂直平分线交BC于点D,交AB于点E,点F在DE 的延长线上,且.⑴求证:四边形是平行四边形.⑵当∠B满足什么条件时,四边形ACEF是菱形?并说明理由.【答案】⑴见解析⑵∠,理由见解析【解析】(1)证明:由题意知,∴∥,∴ .∵,∴ .又∵,∴△≌△,∴,∴四边形ACEF是平行四边形.(2)解:当∠时,四边形是菱形.理由如下:∵∴.∵垂直平分,∴又∵∴∴,∴四边形是菱形.10.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为( )A .16B .C .22D .8【答案】C【解析】根据折叠的性质可知着色部分的面积等于S 矩形ABCD ﹣S △CEF ,应先利用勾股定理求得FC 的长,进而求得△CEF 的面积,代入求值即可.解:由折叠的性质可得:CG=AD=4,GF=DF=CD ﹣CF ,∠G=90°, 则△CFG 为直角三角形,在Rt △CFG 中,FC 2﹣CG 2=FG 2, 即FC 2﹣42=(8﹣FC )2, 解得:FC=5,∴S △CEF =FC•AD=×5×4=10,则着色部分的面积为:S 矩形ABCD ﹣S △CEF =AB•AD ﹣10=8×4﹣10=22. 故选C .点评:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,由折叠得到相等的边,相等的角,并利用勾股定理求解,要求同学们熟练掌握矩形和三角形的面积公式以及图形面积的转换.11. 在平行四边形、矩形、菱形、正方形、等腰梯形中,对角线相等的有( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】本题只需分析平行四边形,矩形,菱形,正方形,等腰梯形的性质即可. 解:(1)等腰梯形两条对角线相等; (2)平行四边形对角线互相平分;(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; (4)矩形对角线相等; (5)正方形对角线相等. 共有三个,故选C .点评:本题考查的是各个图形的性质,考生需熟记课本中的基本定义.12. 如图,梯形ABCD 中,AD ∥BC ,∠C=90°,且AB=AD ,连接BD ,过点A 作BD 的垂线,交BC 于E ,若EC=3cm ,CD=4cm ,则梯形ABCD 的面积是_________cm².【答案】26【解析】连接DE ,先根据勾股定理求得DE 的长,由AB=AD ,AE ⊥BD 可得AE 垂直平分BD ,∠BAE=∠DAE ,即可得到BE 的长,根据平行线的性质可得∠DAE=∠AEB ,即可求得AB 、BC 的长,最后根据梯形的面积公式求解.解:连接DE在直角三角形CDE中,根据勾股定理,得DE=5.∵AB=AD,AE⊥BD,∴AE垂直平分BD,∠BAE=∠DAE.∴DE=BE=5.∵AD∥BC,∴∠DAE=∠AEB∴∠BAE=∠AEB∴AB=BE=5∴BC=BE+EC=8∴AD=5∴该梯形的面积是(5+8)×4÷2=26 cm².【考点】梯形的面积公式,勾股定理,垂直平分线的判定和性质,平行线的性质点评:此类问题知识点较多,综合性强,是中考常见题,一般难度较大,需特别注意.13.如图,在矩形中,点是线段上一动点,为的中点,的延长线交于.(1)求证:;(4分)(2)若,从点出发,以1cm/s的速度向运动(不与重合).设点运动时间为秒,请用表示的长;并求为何值时,四边形是菱形.(6分)【答案】(1)通过对菱形的证明从而求证(2)【解析】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠PDO=∠QBO又∵OB=OD,∠POD=∠QOB∴△POD≌△QOB∴OP=OQ 4分(2)①PD=8-t 6分②若四边形PBQD是菱形,则PB=PD=(8-t)cm, 7分∵四边形ABCD是矩形∴∠A=90°∴在Rt△ABP中,∵AB="6cm"∴∴∴, 9分即运动时间为秒时,四边形PBQD是菱形.【考点】二次函数的综合题点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.,14.下列四边形中,对角线不互相平分的是().A.平行四边形B.菱形C.正方形D.等腰梯形【答案】D【解析】对角线互相平分的四边形为平行四边形,菱形是特殊的平行四边形,正方形是特殊的菱形,由此可知D不是对角线互相平分【考点】平行四边形的性质点评:等腰梯形对角线不互相平分,可以根据平行四边形对角线平分的类似方法证得15.(8分)已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F。

八下数学第十八章平行四边形证明题专项·练习

八下数学第十八章平行四边形证明题专项·练习

八年级平行四边形专项练习1.如图在Rt△ABC中∠ACB=90,过点C的直线MN∥AB;D为AB 边上一点,过点D作DE⊥BC交直线MN 于E垂足为F,连接CD、BE(1)求证:CE = AD(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由2. 如图在矩形ABCD中,过对角线AC的中点O作AC 的垂线,分别交射线AD、CB 于点E、F,连接AF、CE 求证:四边形AFCE 是菱形3.如图在边长为6的正方形ABCD中,E是边CD 的中点,将△ADE沿AE 对折至△AFE,延长EF交边BC 于点G,连接AG(1)求证:△ABG ≌△AFG(2)求∠EAG 的度数;(3)求BG 的长4.如图▭ABCD 的对角线相交于点O,EF过点O分别与AD、BC相交于点E、F(1)求证:△AOE≌△COF(2)若AB =4 BC =7 OE =3试求四边形EFCD的周长5如图BD 是△ABC 的角平分线,过点D作DE∥BC交AB于点E,DF∥AB 交BC 于点F(1)求证:四边形BEDF是菱形;(2)若∠ABC =60°∠ACB =45°CD =6√2求菱形BEDF的面积6.如图在△ABC中中线BE、CD 交于点O,F、G 分别是OB、OC 的中点求证:(1) DE ∥FG(2) DG 和EF 互相平分.7. 如图在△ABC 中AB=AC ,D为BC上一点以AB、BD 为邻边作平行四边形ABDE连接AD、EC(1)求证:△ADC ≌△ECD ;(2)若BD =CD 求证:四边形ADCE 是矩形8.如图在Rt△ABC 中∠ACB =90°,过点C 的直线MN ∥AB , D为AB 边上一点,过点D作DE⊥BC ,交直线MN于E,垂足为F,连接CD、BE(1)求证:CE = AD(2)当D在AB中点时,四边BECD是什么特殊四边形?说明你的理由9.如图四边形ABCD是正方形,点E在BC延长线上,DF ⊥AE 于点F 点G在AE 上且∠ABG =∠E求证:AG = DF10. 如图是直角三角尺△ABC 和等腰直角三角尺△ BCD放置在同一平面内,斜边BC重合在一起∠A =∠BDC =90°∠ABC =30°BD = CD DE⊥AB 交AB 于点E 作DF⊥AC 交AC 的延长线于点F (1)求证:四边形AEDF 是正方形(2)当AC =4时,求正方形AEDF 的边长11.如图点0是口ABCD 对角线的交点,过点0作直线分别交AB、CD 的延长线于点E、F求证:BE = DF12. 如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD 于点F,交BC的延长线于点E(1)求证:BE = CD(2)若BF 恰好平分∠ABE ,连接AC、DE求证:四边形ACED 是平行四边形13.如图1在正方形ABCD 中,E、F分别是边AD、DC 上的点且AF⊥BE(1)求证:AF = BE(2)如图2在正方形ABCD 中,M、N、P、Q 分别是边AB、BC、CD、DA 上的点且MP⊥NQ 判断MP 与NQ 是否相等?并说明理由14.如图在平行四边形ABCD中,0为对角线交点,DP 平分∠ADC,CP 平分∠BCD,AB =6 AD =10则OP的长是多少?15. 如图矩形ABCD中延长AB至E,延长CD至F . BE = DF连接EF与BC、AD 分别相交于P、Q两点(1)求证:CP = AQ(2)若BP =1 PQ =2 ∠AEF =45°求矩形ABCD 的面积16.如图在Rt△ABC中∠BAC =90° AD⊥BC于D BG 平分∠ABC EF∥BC交AC 于F求证:AE = CF17.如图将矩形纸片ABCD沿对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E(1)试找出一个与△AED 全等的三角形,并加以证明;(2)若AB =8 DE =3 , P为线段AC上的任意一点PG⊥AE 于G PH⊥EC于H 试求PG + PH的值并说明理由18.如图在△ABC 中AB = BC ,BD 平分∠ABC 四边形ABED 是平行四边形,DE 交BC 于点 F 连接CE求证:四边形BECD 是矩形19.如图1将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F 分别在边AB、CD上,使点B 落在AD 边上的点M 处,点C落在点N处,MN与CD交于点P,连接EP (1)如图②若M 为AD 边的中点①△AEM 的周长=cm②求证:EP = AE + DP(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A、D 重合),△PDM的周长是否发生变化?若发生变化,直接写出△ PDM 的周长,若发生变化,请说明理由。

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

1.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.求证:DE=BF2.如图,在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.3.如图所示,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在点D1处,折痕为EF,若∠BAE=55°,求∠D1AD 的度数4.如图(1),▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD、BC分别相交于点E、F,则OE=OF.若将EF向两方延长与平行四边形的两对边的延长线分别相交(如图(2)和图(3)),OE与OF还相等吗?若相等,请你说明理由.5.如图,点E为▱ABCD的边AB上一点,将△BCE沿CE翻折得到△FCE,点F落在对角线AC上,且AE=AF,若∠BAC=28°,求∠BCD的度数。

6.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.7.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.8.如图,在▱ABCD中,O是对角线AC的中点,EF经过点O交AD,BC于E,F.四边形AFCE是平行四边形吗?请说明理由.9.如图,四边形ABCD是平行四边形,直线EF∥BD,与CD、CB的延长线分别交于点E、F,与AB、AD交于点G、H.(1)求证:四边形FBDH为平行四边形;(2)求证:FG=EH.10.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.11.如图①,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)线段PE、PF、AB之间有什么数量关系?并说明理由;(2)如图②,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其他条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由.12.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,已知△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.15.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.将△ADE沿DE折叠,使点A落在点A1处,求∠BDA1的度数.16.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.17.如图,在△ABC中,BC=AC,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.(1)AG与CG有怎样的位置关系?说明你的理由;(2)求证:四边形AECG是平行四边形.18.我们知道“连接三角形两边中点的线段叫三角形的中位线”“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图所示,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线,通过观察、测量,猜想EF和AD,BC有怎样的位置和数量关系,并证明你的结论.19.如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C',D'处,折痕为MN,求∠AMD'+∠BNC' 的度数20.如图所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH是平行四边形.21.如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)t为何值时,四边形ABQP为矩形?22.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.23.(1)如图①,口ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将口ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.答案1.证法一:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠CBA.∵DE平分∠ADC,BF平分∠ABC,∴∠ADE= ∠ADC,∠CBF= ∠CBA,∴∠ADE=∠CBF,∴△ADE≌△CBF(ASA).∴DE=BF.证法二:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED, ∴AE=AD.同理,CF=CB,又AD=CB,∴AE=CF,∵AB=CD,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.2.证法一:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADB=∠CBD,由折叠可知∠EBD=∠CBD,BE=BC,∴∠EBD=∠ADB,AD=BE,∴BO=DO,∴AD-DO=BE-BO,即OA=OE.证法二:∵四边形ABCD为平行四边形,∴∠A=∠C,且AB=DC.由折叠可知∠E=∠C,DE=DC,∴∠A=∠E,AB=DE.在△AOB和△EOD中,∴△AOB≌△EOD,∴OA=OE.3.∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠性质知,∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°.4.题图(2)中OE=OF.理由:在▱ABCD中,AB∥CD,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF题图(3)中OE=OF.理由:在▱ABCD中,AD∥BC,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF5.∵∠BAC=28°,AE=AF,∴∠AFE=∠AEF= =76°,∴∠EFC=180°-76°=104°,由折叠的性质知,∠B=∠EFC=104°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,∴∠BCD=180°-104°=76°.6. (1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点F为DC的延长线上一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC的中点,∴BE=CE,则在△BAE和△CFE中,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD.(2)DE⊥AF.理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.7.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADF=∠CBE.又∵BF=DE,∴BF+BD=DE+BD,∴DF=BE.∴△ADF≌△CBE.∴∠AFD=∠CEB.∴AF∥CE.8.四边形AFCE是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠BCA.又∵O是AC的中点,∴OA=OC.又∵∠AOE=∠COF,∴△AOE≌△COF.∴OE=OF.∵OE=OF,OA=OC,∴四边形AFCE是平行四边形.9. (1)∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥BD,∴四边形FBDH为平行四边形.(2)由(1)知四边形FBDH为平行四边形,∴FH=BD,∵EF∥BD,AB∥DC,∴四边形BDEG是平行四边形,∴BD=EG,∴FH=EG,∴FH-GH=EG-GH,∴FG=EH.10. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°∴△BEF是等边三角形∴EB=EF∠ABE=60°又∵EF=DC∴BE=DC∵△ABC是等边三角形, ∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.11. (1)PE+PF=AB.理由:∵PE∥AC,PF∥AB,∴∠EPB=∠C,四边形PEAF是平行四边形,∴PF=AE,∵AC=AB,∴∠B=∠C,∴∠EPB=∠B,∴PE=BE.∵BE+AE=AB,∴PE+PF=AB.(2)(1)中结论不成立.此时结论为PE-PF=AB.理由:∵PE∥AC,PF∥AB,∴∠FPC=∠ABC,四边形PEAF是平行四边形,∴PE=AF,又AB=AC,∴∠ABC=∠ACB,∴∠FPC=∠ACB=∠FCP,∴PF=FC,∴PE-PF=AF-FC=AC=AB.12. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△BEF是等边三角形.∴EB=EF,∠ABE=60°.又∵EF=DC,∴BE=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.13. (1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,又MD∥NC,∴四边形MNCD是平行四边形.(3)如图,连接DN.∵N是BC的中点,BC=2CD,∴CD=NC.∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°.∴ND=NB=CN.∴∠DBC=∠BDN=30°.∴∠BDC=∠BDN+∠NDC=90°.∴∵四边形MNCD是平行四边形,∴MN=CD.∴BD= MN.14.∵D,E 分别为AC 、AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC,且DE=21BC,又∵F 、G 分别是OB 、OC 的中点, ∴FG 是△BCO 的中位线,∴FG ∥BC,且FG= 21BC,∴DE ∥FG,DE=FG,∴四边形DEFG 是平行四边形. 15.∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等),又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°-2∠B=80°.16. (1)证明:∵AN 平分∠BAC,∴∠1=∠2,∵BN ⊥AN,∴∠ANB=∠AND=90°,又AN=AN,∴△ABN ≌△ADN,∴BN=DN.(2)由△ABN ≌△ADN 知,AD=AB=10,点N 为BD 的中点,又M 是BC 的中点,∴MN 为△BCD 的中位线,∴CD=2MN=6,∴AC=AD+CD=16,∴△ABC 的周长=AB+BC+AC=10+15+16=41.17. (1)AG ⊥CG.理由:∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,AF=CF,∴EF ∥BC,∴∠FGC=∠GCD, ∵CG 平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC,又∵AF=CF,∴AF=FG,∴∠FAG=∠AGF,∵∠FAG+∠AGC+∠ACG=180°,∴∠AGC=90°,∴AG ⊥CG.(2)证明:由(1)知,FG= 21AC,∵EF 是△ABC 的中位线,∴EF= 21BC,∴FG=EF,又∵AF=CF,∴四边形AECG 是平行四边形. 18. 结论:EF ∥AD ∥BC,EF= 21(AD+BC).证明如下:如图所示,连接AF 并延长交BC 的延长线于点G,∵AD ∥BC,∴∠DAF=∠G,在△ADF 和△GCF 中,∠DAF=∠G,∠DFA=∠CFG,DF=FC,∴△ADF ≌△GCF(AAS),∴AF=FG,AD=CG,又∵AE=EB,∴EF ∥BG,EF= 21BG,即EF ∥AD ∥BC,EF= 21(AD+BC).19.四边形纸片ABCD 中,∠A=70°,∠B=80°,∴∠D+∠C=360°-∠A-∠B=210°.∵将纸片折叠,使C,D 落在AB 边上的C',D'处,∴∠MD'B=∠D,∠NC'A=∠C,∴∠MD'B+∠NC'A=210°,∴∠AD'M+∠BC'N=150°,∴∠AMD'+∠BNC'=360°-∠A-∠B-∠AD'M-∠BC'N=60°20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC (平行四边形对边平行且相等).∴∠EDH =∠FBG . 又∵E ,F 分别为AD ,BC 的中点,∴DE =BF .又∵BG =DH ,∴.△DEH ≌△BFG (SAS ),∴EH =FG ,∠DHE =∠BGF . ∴∠EHG =∠FGH (等角的补角相等).∴EH ∥FG .∴四边形EGFH 是平行四边形21.由已知得AP =t ,CQ =3t ,PD =24-t ,BQ =26-3t .(1)∵PD ∥CQ ,∴当PD =CQ 时,即3t =24-t 时,四边形PQCD 为平行四边形,解得t =6.故当t =6时,四边形PQCD 为平行四边形. (2)如图3—38所示,作DE ⊥BC ,PF ⊥BC ,垂足分别为E ,F ,则CE =2.当QF =CE 时,即QF+CE =2CE =4时,四边形PQCD 是等腰梯形.此时有CQ -EF =4,即3t —(24一t )=4,解得t =7.故当t =7时,四边形PQCD 为等腰梯形.(3)若四边形ABQP 为矩形,则AP =BQ ,即t =26—3t ,解得t =213.故当t =213时,四边形ABQP 为矩形.22.(1)证明:在△ABN 和△ADN 中, ∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABN ≌△ADN , ∴BN =DN .(2)解:∵△ABN ≌△ADN ,∴AD =AB =10,DN =NB , 又∵点M 是BC 中点,∴MN 是△BDC 的中位线, ∴CD =2MN =6, 故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.23.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠1=∠2,∵在△AOE 和△COF 中,1234OA OC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△COF (ASA ),∴AE =CF ; (2)∵四边形ABCD 是平行四边形,∴∠A =∠C ,∠B =∠D ,由(1)得AE =CF ,由折叠的性质可得:AE =A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E =CF ,∠A 1=∠A =∠C ,∠B 1=∠B =∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A1IE≌△CGF(AAS),∴EI=FG.。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。

初二数学平行四边形压轴几何证明题

初二数学平行四边形压轴几何证明题

初二数学平行四边形压轴:几何证明题1.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,顺次连接EF 、FG 、GH 、HE . (1)请判断四边形EFGH 的形状,并给予证明;(2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。

2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.(1)线段A 1C 1的长度是 ,∠CBA 1的度数是 .(2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.3. 如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q.(1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 重合,得△GFC. ⑴求证:BE?DG ;⑵若∠B?60?,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.5. 如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .ABEFCG D HB A 1C 1ACA DG C B FE A QCDBA DEFC6.如图,在△ABC 中,AB=AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE.(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.7.如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线交于点F.(1)求证:△ABE ≌△DFE(2)连结BD 、AF ,判断四边形ABDF 的形状,并说明理由.8. 如图,已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F . (1)求证:AE =DF ;(2)若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由. 9. 如图,在平行四边形中,点E F ,是对角线BD 上两点,且BF DE =. (1)写出图中每一对你认为全等的三角形; (2)选择(1)中的任意一对全等三角形进行证明.10.在梯形ABCD 中,AD ∥BC,AB=DC ,过点D 作DE ⊥BC ,垂足为点E ,并延长DE 至点F ,使EF=DE.连接BF 、CF 、AC.(1)求证:四边形ABFC 是平行四边形;(2)若CE BE DE ⋅=2,求证:四边形ABFC 是矩形.11.如图,△ABC 中,AB=AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角平分线,BE ⊥AE.(1)求证:DA ⊥AEA BE DCABCD E F E AF CDB A BEFA B F CDE AFC DE B(2)试判断AB 与DE 是否相等?并说明理由。

八年级平行四边形几何证明汇总

八年级平行四边形几何证明汇总

1.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC . (1)求证:OE =OF ;(2)若BC =AB 的长.2.如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH , 求证:∠DHO =∠DCO.3.如图,点P 是菱形ABCD 对角线AC 上的一点,连接DP 并延长DP 交边AB 于点E ,连接BP 并延长BP 交边AD 于点F ,交CD 的延长线于点G . (1)求证:△APB ≌△APD ;(2)已知DF ︰FA =1︰2,设线段DP 的长为x ,线段PF 的长为y . ①求y 与x 的函数关系式;②当x =6时,求线段FG 的长.4.如图,在△ABC 中,∠ACB =90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE . (1)求证:AB ⊥AE ; (2)若BC 2=AD ·AB ,求证:四边形ADCE 为正方形.5.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点。

BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .(1)求证:四边形BCFE 是菱形;(2)若CE =4,∠BCF =120°,求菱形BCFE 的面积. C A6.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.7.如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB=5,AO=4,求BD 的长. 8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外做等边△ABD 和等边△ACE ,连接BE ,CD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知:如图,点E、G在平行四边形ABCD的边AD上,EG=ED,延长CE到点F,使得E F=E C。

求证:A F∥B G。

2.如图所示,平行四边形ABCD内有一点E,满足ED⊥AD于D,∠EBC=∠EDC,∠ECB=45°。

请找出与BE相等的一条线段,并给予证明。

3.如图,在△ABC中,AB=BC=12cm,∠ABC=80°,BD是∠ABC的平分线,点E是AB边的中点。

(1)求∠EDB的度数;(2)求DE的长。

4.已知:如图,等边△ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P。

(1)求证:DP=PE;
(2)若D为AC的中点,求BP的长。

5.如图,在平行四边形ABCD中,∠BAD=32°。

分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF。

(1)求证:△ABE≌△FDA;
(2)当AE⊥AF时,求∠EBG的度数。

6.如图所示,在△ABC中,AC=4cm,把△ABC沿AC方向平移1cm到△A'B'C'的位置,则四边形ABB'C'的面积是△ABC面积的多少倍?
7.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED。

求证:AE平分∠BAD。

8如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC。

(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形。

9.如图,以△ABC的三边为边,在BC的同侧分别另作三个等边三角形,即△ABD,△BCE,△ACF。

(1)求证:四边形ADEF是平行四边形;
(2)在△ABC满足什么条件时,四边形ADEF是矩形;
(3)对于任意△ABC,四边形ADEF是否总存在?
10.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG。

(1)四边形DEFG是什么四边形,请说明理由;
(2)若四边形DEFG是矩形,点O所在位置应满足什么条件?说明理由。

11.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,求证:∠DHO=∠DCO。

12.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA 长度得到△EFA。

(1)求四边形CEFB的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(3)若∠BEC=15°,求AC的长。

13.矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD。

求证:四边形OCED
是菱形。

14.如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE =∠DBC。

(1)求证:DE=EC。

(2)若AD=BC,试判断四边形ABED的形状,并说明理由。

15.如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG。

(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG。

16.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF。

(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由。

17.如图所示,四边形ABCD是正方形,点E是边BC的中点,且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG,求证:EG=CF。

18.如图所示,在△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形。

19.如图所示,正方形ABCD,对角线AC、BD相交于点O,菱形AEFC,EH⊥AC,垂足为H,求证:EH=FC。

20.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE。

(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA 上的点,且MP⊥NQ,MP与NQ是否相等?并说明理由。

20.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2。

(1)若CE=1,求BC的长;(2)求证:AM=DF+ME。

21如图①所示,四边形ABCD是平行四边形,对角线AC、BD相交于点O,过点O作直线EF分别交AD、BC于点E、F。

(1)求证:OE=OF;
(2)如图②所示,若过O点的直线与BA、DC的延长线分别交于点E、F,你能得到(1)中的结论吗?由此你能得出什么样的一般性结论?
22已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC。

(1)求证:CD=AN;
(2)若∠AMD=2∠MCD,求证:四边形ADCN是矩形。

23如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF =90°,交AD于F点,易证EA=EF。

(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立。

(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于点F。

则EA=EF是否成立?若成立,请说明理由。

(3)由题干和(1)(2)你可以得出什么结论。

24.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足
∠ABE=∠CBP,BE=BP。

(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
25.如图,矩形ABCD的两边AB=3,BC=4,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F。

求PE+PF的值。

相关文档
最新文档