第二章 控制系统数学模型2-3

合集下载

自动控制原理 控制系统的数学模型

自动控制原理 控制系统的数学模型
s3

3)
s(s
1)2 (s

3)
c2 t r 1et (r 1)!
1 tet 2
c1 3 et
(s 1)
4
c3 2
s
3
c4 1 e3t (s 3) 12
f (t) 2 1 et (t 3) 1 e3t
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
4)积分定理:
L[
f
(t )dt ]

1 s
F (s)
5)初值定理:
若函数 f(t) 及其一阶导数都是可拉氏变换的,则函数 f(t)
的初值为
f
(0
)

lim
t 0
f (t) lim sF (s) s
6)终值定理:
若函数 f(t) 及其一阶导数都是可拉氏变换的,sF(s)在包含虚
轴的右半平面内无极点,则函数 f(t) 的终值为
20
5.非线性元件(环节)微分方程的线性化
经典控制领域,主要研究线性定常控制系统
线性定常系统:描述系统的数学模型是线性常系数的微分 方程。可以应用叠加原理,即系统的总输出可以由若干个输入 引起的输出叠加得到。
对于非线性方程,可在工作点附近用泰勒级数展开,取
前面的线性项,得到等效的线性环节。
y
设具有连续变化的非线性函数:y=f(x)
输入(充分激励)

自动控制原理第2章

自动控制原理第2章
自动控制理论
电气信息学院
任课教师: 高秀梅
1
第二章 控制系统的数学模型
§2-1 微分方程 §2-2 传递函数 §2-3 动态结构图 §2-4 信号流图 §2-5 梅逊(Mason)公式 §2-6 自动控制系统的传递函数
2
一、什么是数学模型? 二、为什么要建立数学模型? 三、建立数学模型的方法? 四、数学模型的形式有哪些?
2) . 比例定理: f (t ) Kf1 (t ), L[ f1 (t )] F1 (s) 若 则 st
0
L[ f (t )] Kf1 (t )e dt KF1 ( s)
1)和2)为拉氏变换的线性特性。 3). 微分定理: 若 L df (t ) df (t ) e at dt sF (s) f (0 ) dt dt 0 则
1、系统输入量: F(t) 输出量: y(t) 2、列写方程组:
F(t)
k m f y(t)
11
§2-1 微分方程
3、消去中间变量并写成标准形式:
m d y (t ) f dy ( t ) 1 y (t ) F (t ) 2 k k dt k dt
令T
2 2
2
m f 1 , , K k k 2 mk

T
d y (t ) dt 2
dy ( t ) 2 T y ( t ) KF ( t ) dt
12
§2-1 微分方程
例3 求下图的微分方程
i1
i1
i
i2
13
§2-1 微分方程 二、线性微分方程式的求解
工程实践中常采用拉氏变换法求解线 性常微分方程。 拉氏变换法求解微分方程的基本思路:

自动控制原理复习资料——卢京潮版第二章

自动控制原理复习资料——卢京潮版第二章

第二章:控制系统的数学模型§ 引言·系统数学模型-描述系统输入、输出及系统内部变量之间关系的数学表达式。

·建模方法⎩⎨⎧实验法(辩识法)机理分析法·本章所讲的模型形式⎩⎨⎧复域:传递函数时域:微分方程§控制系统时域数学模型1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络11cc c r Ru u u u LLC LC'''∴++= ── 2阶线性定常微分方程 (2)弹簧—阻尼器机械位移系统 分析A 、B 点受力情况 由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -= 代入B 等式:020012i x k )x x k k x f(=--&&& 得:()i 1021021x fk x k k x k k f &&=++ ── 一阶线性定常微分方程(3)电枢控制式直流电动机 电枢回路:b a E i R u +⋅=┈克希霍夫 电枢及电势:m e b C E ω⋅=┈楞次 电磁力矩:i C M m m ⋅=┈安培力矩方程:m m m m m M f J =+⋅ωω& ┈牛顿变量关系:m mb a M E i u ω----消去中间变量有:(4)X-Y 记录仪(不加内电路)消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─二阶线性定常微分方程即:a mm 321m m 4321m u T k k k k l T k k k k k l T 1l =++&&&2、 线性系统特性──满足齐次性、可加性 ● 线性系统便于分析研究。

● 在实际工程问题中,应尽量将问题化到线性系统范围内研究。

● 非线性元部件微分方程的线性化。

例:某元件输入输出关系如下,导出在工作点0α处的线性化增量方程解:在0αα=处线性化展开,只取线性项: 令 ()()0y -y y αα=∆ 得 αα∆⋅-=∆00sin E y 3、 用拉氏变换解微分方程 a u l l l 222=++&&& (初条件为0)复习拉普拉斯变换的有关内容1 复数有关概念 (1)复数、复函数 复数 ωσj s += 复函数 ()y x jF F s F += 例:()ωσj 22s s F ++=+= (2)复数模、相角 (3)复数的共轭(4)解析:若F(s)在s 点的各阶导数都存在,称F(s)在s 点解析。

自动控制原理(第三版)第2章控制系统的数学模型(2)

自动控制原理(第三版)第2章控制系统的数学模型(2)
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
求取该电路在单位阶跃输入时的响应。 U c ( s) 1 G( s ) T RC U r ( s ) Ts 1
ur 1( t )
方法1
U c ( s ) G( s )U r ( s )
1
U r (s)
1 s
方法2
1 (Ts 1) s
1 t 1 g (t ) 1[G ( s)] e T T t uc (t ) g (t )ur ( )d
0 1 1 ( t ) t t 1 T 1 T e d e e T d 0T 0 T t
1 uc (t ) L [ ] (Ts 1) s T 1 1 1 L ( )L ( ) s Ts 1 1 e
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
传递函数的求法
例2-1 方法一 R-L-C串联电路
d 2 uc ( t ) R duc ( t ) 1 1 uc ( t ) ur ( t ) 2 dt L dt LC LC传递Fra bibliotek数: G( s)
U c ( s) 1 U r ( s) LCs 2 RCs 1
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
零、极点分布图
传递函数的零、极点分 布图: 将传递函数的零、 极点表示在复平面上的 图形。
零点用“o”表示 极点用“×”表示
j
1 -3 -2

-1
s2 G( s) = ( s 3)( s 2 2s 2)
大连民族学院机电信息工程学院

西工大、西交大自动控制原理 第二章 控制系统的数学模型_2

西工大、西交大自动控制原理 第二章  控制系统的数学模型_2

5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)

自动控制原理:第二章 控制系统数学模型

自动控制原理:第二章  控制系统数学模型

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入

第二章控制系统数学模型

第二章控制系统数学模型
s s 后,再求 F (s) 的极限值来求得。条件是当 t 和s 0时,等式两边各
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui

uo
1 C
idt

由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R

ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0

自动控制原理-第二章 控制系统的数学模型

自动控制原理-第二章 控制系统的数学模型
dn dtn f ( t )
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt

Raia (t)

Ea (t)

ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt

fmm (t)

Mm

MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t

L1 U C
S


L1
S
2
1 S
1
1 S

S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、回路中的传递函数乘积不变
第二章 控制系统的数学模型
16
C
R
G1 (s) 1 G1 (s)G2 (s)
C
G2 (s)
开环传递函数
反馈信号B与误差信号E之比
(4) 等效为单位反馈
R

G1 ( s)
G2 (s)
C
R
1 G2 ( s )

G2 (s)
G1 ( s)
C
第二章 控制系统的数学模型
6
2. 结构图的等效变换及简化
(5) 比较点前移
R
G (s)

Q
2-3 控制系统的结构图-方块图

结构图的组成和绘制 结构图的等效变换及简化 信号流图的组成及性质
信号流图的绘制
梅森增益公式
闭环系统的传递函数
1.结构图的组成和绘制…
(Block diagrams)
组成: 方块 综合点 分支点 箭头线
绘制方法: R(s)
E(s) F(s)
第二章 控制系统的数学模型
2. 结构图的等效变换及简化
(9) 比较点变换或合并
R1 E1


R
3
C
R1

R
3
R2

C
R2

R1

R
3
C
R2
(10) 负号在支路上移动
R

E
G (s) H (s)
C
R
E

G (s) H (s)
C
1
9
第二章 控制系统的数学模型
2. 结构图的等效变换及简化
例 2-3.2
R
-
G1
G2 H1 H2
C
R

G (s)
1 G (s)
C
Q
(6) 比较点后移
R

Q
G (s)
C
R
G (s) G (s)

C
Q
第二章 控制系统的数学模型
7
2. 结构图的等效变换及简化
(7) 引出点前移
R
G (s)
C
C
R
G (s)
C
G (s)
C
(8) 引出点后移
R
G (s)
R
C
R
G (s)
C
1 R G (s)
8
第二章 控制系统的数学模型
第二章 控制系统的数学模型
15
2. 结构图的等效变换及简化
例 2-3.6
R
H2
G3
G1
-
G2
H1
C
R

G3
G1
- -
G2
H1
C
G1H2

R
G1 G3
-
G2
H1 G H 1 2
C
G1G2 G2 G3 C R 1 G2 H 1 G1G2 H 2
变换原则 1、前向通路的传递函数乘积不变
C
H1 G1G2 G3G4 G2 G3G4G5 C R 1 G2 G3 H 2 G3G4 H 3 G1G2 G3G4 H 1 G2 G3G4 G5 H 1
第二章 控制系统的数学模型
13
2. 结构图的等效变换及简化
例 2-3.4
R
G1 G2
G3
C
R

G1
G2
-
1
G2G3
C
步骤: 1. 各元件的微分方程; 2. 零状态下,拉氏变换,以 方块形式表示; 3. 将各方块单元联合一起。
C(s)
G(s)
F(s)
2
1.结构图的组成和绘制…
例2-3.1 两级RC电路的方块图(p14)
i (ei e1 ) / R1 I ( Ei E1 ) / R1

1 e1 i1dt E1 I1 / C1s C1
例 2-3.3
R
-
H2 G1
G5
G2
-
G3
G4
C
引出点后移
H3
并联等效
H1

R
-
H
2
G1 G5
G2
-
/G4 G3 G4
H3
C
H1
第二章 控制系统的数学模型
11
2. 结构图的等效变换及简化

R
-
H
2
G1 G5
G2
串联等效
H1
/G G3
4
-
G4
H3
C
反馈等效
H 2 / G4

R
-
G1 G 5
2. 结构图的等效变换及简化
(1) 串联等效
R
G1 (s)
G2 (s)
C
R
G1 ( s )G 2 ( s )
C
(2) 并联等效
R
G1 ( s)
G2 ( s )
C
R

G1 (s) G2 (s)
C
第二章 控制系统的数学模型
5
2. 结构图的等效变换及简化
前向通道传递函数
(3) 反馈等效
R
B

E G (s) 1

1 e0 i2 dt E0 I 2 / C2 s C2

Hale Waihona Puke i1 i i2 I1 I I 2

i2 (e1 e0 ) / R2 I 2 ( E1 E0 ) / R2
3
第二章 控制系统的数学模型
1.结构图的组成和绘制…
第二章 控制系统的数学模型
4
G 2 G3 G 4 1 G3 G 4 H 3
C
H1
第二章 控制系统的数学模型
12
2. 结构图的等效变换及简化
H 2 / G4

R
-
G1 G 5
反馈等效
G 2 G3 G 4 1 G3 G 4 H 3
C
H1
R

-
G1 G 5
G 2 G3 G 4 1 G3 G 4 H 3 G 2 G3 H 2

R
G1 G2
1 1 G2G3
C
C G1 G2 R 1 G2G3
14
第二章 控制系统的数学模型
2. 结构图的等效变换及简化
例 2-3.5
R
G1
H1
-
G2
C

R
G1
H1 1 H1 H 2
G2
C
H2
G1G2 (1 H 1 H 2 ) C R 1 H 1 H 2 G1 H 1
C
-
1、并联等效
R

-
G1
G2 H 1
C
H2
3、反馈等效

R
G1 (G2 H1 ) 1 G1 H2 (G2 H1 )
C
2、串联等效
G1G2 G1 H 1 C R 1 G1G2 H 2 G1 H 1 H 2
第二章 控制系统的数学模型
10
2. 结构图的等效变换及简化
相关文档
最新文档