(最新配套)浙教版九年级数学上册期末模拟试卷
(最新配套)浙江省九年级数学上册期末模拟试卷(附答案)

EDAO BC 2016-2017浙江省九年级数学上册期末模拟试卷一、选择题(共10小题,每小题4分,共40分) 1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,在△ABC 中,D 、E 两点分别在AB 、AC 边上,DE ∥BC 。
若:3:5=DE BC ,则:AD AB 为( )A .3:2B .3:5C .3:2D .5:33.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现1点的概率;B .抛一枚硬币,出现正面的概率;C .从一个装有2个白球和1个红球的袋子中任取一球, 取到红球的概率;D .任意写一个整数,它能被2整除的概率。
4.如图所示的几何体的俯视图是( ). B . C . D .5.如图,AB 是⊙O 的直径,CD 是⊙O 的弦.若∠BAD =23°,则ACD ∠的大小为( ) A .23° B .57° C .67° D .77°6.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则此三角形周长是( ) A .11 B .13 C .11或13 D .不能确定 7.二次函数c bx ax y ++=2的图象如图所示, 则下列说法正确的是( )A .240b ac -> B .0a <C .0c >D .0b >主视方向60°P Q2cm8.如图,A 、B 、C 三点在正方形网格线的交点处. 若将△ACB 绕着点A 逆时针旋转得到△''AC B , 则tan 'B 的值为( ) A .14 B .1 C .12 D .139.将宽为2cm 的长方形纸条折叠成如图所示的形状, 那么折痕PQ 的长是( )A 233B 433C 5D .2cm10.一种胸花图案的制作过程如图1—图3,图1中每个圆的半径均为1。
浙教版九年级(上)期末数学考试模拟试卷(含答案)

浙教版九年级(上)期末数学考试模拟试卷一.选择题1.在下列四个图案中,不是中心对称图形的是( )A .B .C .D .2.已知aa =25,则a +a a的值为( ) A .25 B .35C .75D .233.已知函数y =﹣x 2+bx +c ,其中b >0,c <0,此函数的图象可以是( )A .B .C .D .4.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE =3CE ,AB =8,则AD 的长为( )A .3B .4C .5D .6 5.如图,AB 是⊙O 直径,若∠AOC =140°,则∠D 的度数是( )A .20°B .30°C .40°D .70° 6.如图,已知A 点的坐标为(﹣2,0),⊙B 的圆心坐标为(0,﹣1),半径为1,若C 是⊙B 上的一个动点,射线AC 与y 轴交于点D (0,b ),则b 的取值范围是( )A .−83≤a ≤0B .−83<b <0C .﹣2≤b ≤0D .﹣2<b <07.秀秀和山山在水平的地面上放风筝,某一时刻两人的风筝正好都停在对方的正上方,即此时AC ⊥AB ,DB ⊥AB ,两人之间的距离AB 为120米,若两人的风筝线与水平线的夹角分别为a 和β,则两人放出的风筝线AD 与BC 的长度和为(忽略两人的身高与手臂长度)( )米.A.120tanα+120tanβB.120aaaa +120aaaaC.120cosα+120cosβD.120aaaa +120aaaa8.如图,⊙O是△ABC的内切圆,若∠A=70°,则∠BOC=()A.125°B.115°C.100°D.130°9.如图,在平面直角坐标系中A(0,2),B(2,0),C(6,0)点P在线段BC上由点B向C运动,连接AP,将线段AP绕点P顺时针旋转90°得到线段QP,当点P运动过程中,点Q运动的路径长为()A.2a B.2√2C.2√2a D.4√210.如图,AB是⊙O的直径,且AB=4,C是⊙O上一点,将弧AC沿直线AC翻折,若翻折后的圆弧恰好经过点O,π≈3.14,√2≈1.41,√3≈1.73,那么由线段AB、AC和弧BC所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.211.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点()A.(1,0)B.(1,8)C.(1,﹣1)D.(1,﹣6)12.如图,G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,已知GD=5,则FG为()A.3 B.3.2 C.4 D.4.8二.填空题13.一个多边形的每一个外角为30°,那么这个多边形的边数为.14.如图,EF分别为矩形ABCD的边AD,BC的中点,若矩形ABCD∽矩形EABF,AB=1,则AD=.15.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b =0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)16.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.17.等腰△ABC中,AB=AC,它的外接圆⊙O半径为1,如果线段OB绕点O旋转90°后可与线段OC重合,那么∠ABC的余切值是.18.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)中的x与y的部分对应值如表:x﹣1 0 3y n﹣3 ﹣3当n>0时,下列结论中一定正确的是.(填序号即可)①bc>0;②当x>2时,y的值随x值的增大而增大;③n>4a;④当n=1时,关于x的一元二次方程ax2+(b+1)x+c=0的解是x1=﹣1,x2=3.三.解答题19.计算:2sin30°+cos60°﹣tan60°tan30°+cos245°﹣sin234°﹣cos234°20.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个数字,分别为﹣2,1,3(每张卡片除了数字不同外,其余均相同).(1)先从盒子中随机抽取一张卡片,请直接写出卡片上的数字是1的概率;(2)先从盒子中随机抽取一张卡片,记卡片上的数为A,再从剩余的卡片中随机抽取一张,记卡片上的数为B,请用列表法或画树状图(树形图)法求两次抽取的卡片上的数字之积为2的倍数的概率.21.如图,热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m.(1)求∠ABC的角度;(2)这栋高楼有多高?(结果保留根号)22.在直角坐标系中,已知直线y=2x﹣1分别与x轴和y轴交于A,B两点.将抛物线y=x2平移,得抛物线C,使抛物线C过A,B两点.(1)求抛物线C的函数表达式.(2)写出抛物线C的顶点坐标和对称轴.23.如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.(1)求证:EG是⊙O的切线;(2)若GF=2√3,GB=4,求⊙O的半径.24.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?25.[教材呈现]如图是某题目的解法.[方法运用]在△ABC中,AB=4,AC=2,点D在边AC上.(1)如图①,当点D是边BC中点时,AD的取值范围是.(2)如图②,若BD:DC=1:2,求AD的取值范围.[拓展提升]如图③,在△ABC中,点D、F分别在边BC、AB上,线段AD、CF相交于点E,且BD:DC=1:2,AE:ED=3:5.若△ACF的面积为2,则△ABC的面积为.26.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.参考答案与试题解析 一.选择题 1.【解答】解:根据中心对称图形的概念可得:D 选项不是中心对称图形. 故选:D .2.【解答】解:∵a a=25,∴设a =2x ,b =5x , ∴a +a a=2a +5a 5a=75.故选:C . 3.【解答】解:∵a =﹣1<0,b >0,c <0,∴该函数图象的开口向下,对称轴是x =−a2a>0,与y 轴的交点在y 轴的负半轴上;故选:D . 4.【解答】解:∵DE ∥BC , ∴aa aa=aaaa =3aa3aa +aa=34,∴AD =34×8=6.故选:D . 5.【解答】解:∵∠AOC =140°, ∴∠BOC =40°,∵∠BOC 与∠BDC 都对aa ̂, ∴∠D =12∠BOC =20°,故选:A .6.【解答】解:如图,当AC 与⊙B 相切时, 连接BC ,则BC ⊥AD , ∵CD 是⊙O 的切线, ∴CD 2=DE •OD , 设DE =x , ∴OD =2+x ,∴CD =√a (2+a ),∴∠AOD =∠BCD =90°, ∵∠BDC =∠ADB , ∴△ADO ∽△BDC , ∴aaaa =aaaa ,∴12=√a (2+a )2+a ,解得:x =23,∴OD =83,∴b 的取值范围是−83≤d ≤0, 故选:A .7.【解答】解:在Rt △ABD 中,AD =aa aaaa =120aaaa (米); 在Rt △ABC 中,BC =aaaaaa =120aaaa (米); 故两人放出的风筝线AD 与BC 的长度和为(120aaaa+120aaaa)米.故选:D .8.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A),∴∠BOC=180°﹣(∠OBC+∠OCB)=180°−12(180°﹣∠A)=90°+12∠A=180°+12×70°=125°.故选:A.9.【解答】解:如图,当点运动过程中,点Q运动的路径为线段MN,当点P在点B时,点Q在图中的点M处,由题意可得△MDB≌△△BOA,∴MD=OB=2,BD=AO=2,∴OD=4,∴M(4,2);由题意可得△NEC≌△COA,∴NE=OC=6,CE=OA=2,∴OE=8,∴N(8,6),∴MN=√(8−4)2+(6−2)2=4√2.即点Q运动的路径长为4√2.故选:D.10.【解答】解:作OE⊥AC交⊙O于F,交AC于E.连接OB,BC.由折叠的性质可知,EF=OE=12OF,∴OE=12OA,在Rt△AOE中,OE=12OA,∴∠CAB=30°,∵AB是直径,∴∠ACB=90°,∠BOC=2∠BAC=60°,∵AB=4,∴BC=12AB=2,AC=√3BC=2√3,∴线段AB、AC和弧BC所围成的曲边三角形的面积=12•AC•BC+S扇形OBC﹣S△OBC=12×2√3×2+60a⋅22360−√3 4×22=√3+23π≈3.8,故选:C.11.【解答】解:∵某定弦抛物线的对称轴为直线x =2, ∴该定弦抛物线过点(0,0)、(4,0),∴该抛物线解析式为y =x (x ﹣4)=x 2﹣4x =(x ﹣2)2﹣4.将此抛物线向左平移2个单位,再向上平移3个单位,得到新抛物线的解析式为y =(x ﹣2+2)2﹣4+3=x 2﹣1.当x =1时,y =x 2﹣1=0,∴得到的新抛物线过点(1,0). 故选:A . 12.【解答】解:∵G 是边长为4的正方形ABCD 边上一点,矩形DEFG 的边EF 经过点A ,GD =5, ∴∠C =∠E =90°,∠EDG =∠ADC =90°,ED =FG ,AD =CD =4, ∴∠EDA =∠CDG , ∴△EDA ∽△CDG , ∴aa aa =aa aa ,即aa 4=45,解得,ED =3.2, ∴FG =3.2, 故选:B . 二.填空题 13.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12. 14.【解答】解:∵E ,F 分别为矩形ABCD 的边AD ,BC 的中点, ∴AE =12AD ,BF =12aa , ∵矩形ABCD ∽矩形EABF , ∴aa aa=aa aa,∴AE •AD =1,即12AD 2=1,解得,AD =√2, 故答案为:√2. 15.【解答】解:抛物线过点(﹣1,0),对称轴为直线x =2,因此可得,抛物线与x 轴的另一个交点为(5,0),a ﹣b +c =0,x =−a2a =2,即4a +b =0,因此①正确; 当x =﹣3时,y =9a ﹣3b +c <0,即9a +c <3b ,因此②不正确;当x =5时,y =25a +5b +c =0,又b =﹣4a ,所以5a +c =0,而a <0,因此有3a +c >0,故③正确; 在对称轴的左侧,即当x <2时,y 随x 的增大而增大,因此④不正确;当x =2时,y 最大=4a +2b +c ,当x =m 时,y =am 2+bm +c ,因此有4a +2b ≥am 2+bm ,故⑤正确; 综上所述,正确的结论有:①③⑤, 故答案为:①③⑤. 16.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果, ∴出场顺序恰好是甲、乙、丙的概率为16, 故答案为:16.17.【解答】解:如图1,由题意得,∠BOC =90°,AD ⊥BC , 则∠OBC =45°,∴BD =OD =√22,∴AD =√22+1,则cot ∠ABC =aaaa =√2−1; 如图2,cot ∠ABC =aaaa =√2+1, 故答案为:√2±1.18.【解答】解:①函数的对称轴为直线x =12(0+3)=32,即a 2a=−32,则b =﹣3a ,∵n >0,故在对称轴的左侧,y 随x 的增大而减小,故抛物线开口向上,则a >0, 对称轴在y 轴的右侧,故b <0,而c =﹣3,故bc >0正确,符合题意;②x =2在函数对称轴的右侧,故y 的值随x 值的增大而增大,故②正确,符合题意; ③当x =﹣1时,n =y =a ﹣b +c =4a ﹣3<4a ,故③错误,不符合题意; ④当n =1时,即:x =﹣1时,y =1,ax 2+(b +1)x +c =0可以变形为ax 2+bx +c =﹣x ,即探讨一次函数y =﹣x 与二次函数为y =ax 2+bx +c 图象情况, 当x =﹣1,y =1,即(﹣1,1)是上述两个图象的交点,根据函数的对称性,另外一个交点的横坐标为:32×2=3,则该交点为(3,﹣3), 故两个函数交点的横坐标为﹣1、3,即关于x 的一元二次方程ax 2+(b +1)x +c =0的解是x 1=﹣1,x 2=3,正确,符合题意, 故答案为:①②④. 三.解答题19.【解答】解:原式=1+12−√3×√33+12−1 =1﹣1 =0. 20.【解答】解:(1)由题意可得, 卡片上的数字是1的概率是13; (2)由树状图可知,一共有六种可能性,其中是2的倍数的有4中可能性,故两次抽取的卡片上的数字之积为2的倍数的概率是46=23.21.【解答】解:(1)过点A 作AD ⊥BC ,垂足为D .∵∠BAD =30°,∴∠ABC =90°﹣30°=60°; (2)在Rt △ABD 中,∵∠BAD =30°,AD =120m ,∴BD =AD •tan30°=120×√33=40√3m , 在Rt △ACD 中,∵∠CAD =60°,AD =120m ,∴CD =AD •tan60°=120×√3=120√3m , ∴BC =BD +CD =40√3+120√3=160√3(m ). 22.【解答】解:(1)∵直线y =2x ﹣1与x 轴交于A 点,与y 轴交于B 点 ∴A (12,0),B (0,﹣1).设抛物线y =x 2平移,得抛物线C 的解析式为y =(x +h )2+k , 又∵抛物线C 过点A 、B 点, ∴{(12+a )2+a =0(0+a )2+a =−1解得,h =34,k =−2516C 的解析式为,y =(x +34)2−2516.(2)由C 的解析式为,y =(x +34)2−2516可知,抛物线C 的顶点坐标为(−34,−2516),对称轴为直线x =−34.23.【解答】解:(1)连接OE . ∵AB =BC , ∴∠A =∠C ; ∵OE =OC , ∴∠OEC =∠C , ∴∠A =∠OEC , ∴OE ∥AB , ∵BA ⊥GE ,∴OE ⊥EG ,且OE 为半径; ∴EG 是⊙O 的切线;(2)∵BF ⊥GE , ∴∠BFG =90°,∵aa =2√3,GB =4,∴aa =√aa 2−aa 2=2, ∵BF ∥OE ,∴△BGF ∽△OGE , ∴aa aa =aaaa, ∴2aa=44+aa,∴OE =4,即⊙O 的半径为4.24.【解答】解:(1)由题意得:y =80+20×20−a 0.5,∴y =﹣40x +880(x >16);(2)设每天的销售利润为w 元,则有:w =(﹣40x +880)(x ﹣16)=﹣40(x ﹣19)2+360,∵a =﹣40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.25.【解答】解:[方法运用](1)延长AD 至点E ,使得DE =AD ,连接CE ,∵在△ABD 和△CDE 中,{aa =aa aaaa =aaaa aa =aa ,∴△ABD ≌△CDE (SAS ),∴AB =CE ,AD =DE ,∵△ACE 中,CE ﹣AC <AE <CE +AC ,∴2<AE <6,∴1<AD <3.故答案为:1<AD <3.(2)如图2,过点C 作CM ∥AB ,交AD 的延长线于点M ,∴△ABD ∽△MCD ,∴aa aa =aa aa =aa aa ,∵BD :DC =1:2,AB =4,∴CM =8,AD =13AM ,在△AMC 中,∵CM =8,AC =2,∴6<AM <10,∴2<AD <103. [拓展提升]解:如图3,过点A 作AM ∥BC 交CF 的延长线于点M ,∴△AME ∽△DCE ,∴aa aa =aa aa =35, ∵aa aa =12, ∴aa aa =32, ∴aa aa=25, 同理△AMF ∽△BCF , ∴aa aa =aa aa =25, ∴aa aa =27. ∴a △aaaa △aaa =27, ∵△ACF 的面积为2,∴△ABC 的面积为7.故答案为:7.26.【解答】解:(1)把A (﹣3,0),B (1,0)代入y =x 2+bx +c 中,得{9−3a +a =01+a +a =0, 解得{a =2a =−3, ∴y =x 2+2x ﹣3.(2)①设直线AC 的表达式为y =kx +b ,把A (﹣3,0),C (0,﹣3)代入y =kx +b ′.得{a ′=−3−3a +a′=0, 解得{a =−1a′=−3, ∴y =﹣x ﹣3,∵点P (m ,0)是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,﹣m ﹣3),N (m ,m 2+2m ﹣3),∴MN =(﹣m ﹣3)﹣(m 2+2m ﹣3)=﹣m 2﹣3m =﹣(m +32)2+94,∵a =﹣1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且﹣3<−32<0,∴当m =−32时,MN 有最大值94.②如图2﹣1中,当点M 在线段AC 上,MN =MC ,四边形MNQC 是菱形时.∵MN=﹣m2﹣3m,MC=−√2m,∴﹣m2﹣3m=−√2m,解得m=﹣3+√2或0(舍弃)∴MN=3√2−2,∴CQ=MN=3√2−2,∴OQ=3√2+1,∴Q(0,﹣3√2−1).如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m=−√2m,解得m=﹣3−√2或0(舍弃),∴MN=CQ=3√2+2,∴OQ=CQ﹣OC=3√2−1,∴Q(0,3√2−1).当点P在y轴的右侧时,显然MN>CM,此时满足条件的菱形不存在.综上所述,满足条件的点Q的坐标为(0,﹣3√2−1)或(0,﹣1)或(0,3√2−1).。
浙教版九年级上册数学期末考试试卷附答案

浙教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.若32y x =,则x yx +的值为()A .32B .5C .52D .122.在一个不透明的盒子中有1个白球和3个红球,它们除颜色外其余都相同,从盒子里任意摸出1个球,摸到白球的概率是()A .12B .13C .14D .153.将抛物线2y x =-向左平移3个单位,再向上平移5个单位,则平移后的抛物线解析式为()A .2(3)5y x =-++B .2(3)5y x =-+-C .2(3)5y x =--+D .2(3)5y x =---4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为()A .1B .2C .3D .45.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为()A .12cmB .18cmC .20cmD .24cm6.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C ,D ,则tan ADC ∠的值为()A .21313B .31313C .23D .327.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A 、B 、C 、D 、E 、O 均是正六边形的顶点.则点O 是下列哪个三角形的外心()A .AEDB .ABD △C .BCD △D .ACD△8.如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为弧AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D ,E .若图中阴影部分的面积为10π,则CDE ∠=()A .30°B .36︒C .54︒D .45︒9.如图,CD 是Rt ABC 斜边AB 上的高,8AC =,6BC =,点O 是CD 上的动点,以O 为圆心作半径为1的圆,若该圆与ABC 重叠部分的面积为π,则OC 的最小值为()A .54B .43C .75D .5310.已知ABC 为直角三角形,且30A ∠=︒,若ABC 的三个顶点均在双曲线(0)ky k x=>上,斜边AB 经过坐标原点,且B 点的纵坐标比横坐标少3个单位长度,C 点的纵坐标与B 点横坐标相等,则k =()A .4B .92C .32D .5二、填空题11.正五边形每个内角的度数是_______.12.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.13.如图,已知⊙O 上三点A ,B ,C ,切线PA 交OC 延长线于点P ,若2OP OC =,则ABC ∠=_______.14.如图所示,正方形的顶点A 在矩形DEFG 的边EF 上,矩形DEFG 的顶点G 在正方形的边BC 上.已知正方形的边长为4,DG 的长为6,则DE 的长为_______.15.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).16.如图,直角ABC 的直角边长4AB BC ==,D 是AB 中点,线段PQ 在边AC 上运动,322PQ =PDBQ 面积的最大值为_______,周长的最小值为_______.三、解答题17.(1)计算:022sin 30(2021)tan 60π︒+--︒.(2)已知线段4a =,9b =,求线段a ,b 的比例中项.18.在一个不透明的盒子中有3个颜色、大小、形状完全相同的小球,小球上分别标有1,2,3这3个号码.(1)搅匀后从中随机抽出1个小球,抽到1号球的概率是_______.(2)搅匀后先从中随机抽出1个小球(不放回),再从余下的2个球中随机抽出1个球,求抽到的2个小球的号码的和为奇数的概率.19.如图,某海防哨所(O )发现在它的北偏西30°,距离哨所500m 的A 处有一艘船,该船向正东方向航行,经过3分钟到达哨所东北方向的B 处,求该船的航速.(精确到1/km h )20.如图,在ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,//DE AC ,//EF AB .(1)求证:BDE EFC :△△.(2)若35AF FC =,EFC 的面积是25,求ABC 的面积.21.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x (元/千克)55606570销售量y (千克)70605040(1)求y (千克)与x (元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?22.如图,在ABC 中,点O 是BC 中点,以O 为圆心,BC 为直径作圆刚好经过A 点,延长BC 于点D ,连接AD .已知CAD B ∠=∠.(1)求证:①AD 是⊙O 的切线;②ACD BAD :△△;(2)若8BD =,1tan 2B =,求⊙O 的半径.23.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,ABC 中,点D 是BC 边上一点,连接AD ,若2AD BD CD =⋅,则称点D 是ABC 中BC 边上的“好点”.(1)如图2,ABC 的顶点是43⨯网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“好点”;(2)ABC 中,14BC =,3tan 4B =,tan 1C =,点D 是BC 边上的“好点”,求线段BD 的长;(3)如图3,ABC 是⊙O 的内接三角形,点H 在AB 上,连结CH 并延长交⊙O 于点D .若点H 是BCD △中CD 边上的“好点”.①求证:OH AB ⊥;②若//OH BD ,⊙O 的半径为r ,且3r OH =,求CHDH的值.24.如图,在平面直角坐标系中,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且∠OBC =30°,OB =3OA .(1)求抛物线y =ax 2+bx +3的解析式;(2)点P 为直线BC 上方抛物线上的一动点,P 点横坐标为m ,过点P 作PF //y 轴交直线BC 于点F ,写出线段PF 的长度l 关于m 的函数关系式;(3)过点P 作PD ⊥BC 于点D ,当 PDF 的周长最大时,求出 PDF 周长的最大值及此时点P 的坐标.参考答案【分析】由32y x =,设()30,y k k =≠则2,x k =再代入求值即可得到答案.【详解】解:32y x =,∴设()30,y k k =≠则2,x k =∴2355.222x y k k k x k k ++===故选:.C 【点睛】本题考查的是比例的基本性质,掌握设参数的方法解决有关比例的问题是解题的关键.2.C 【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解: 不透明的口袋里装有1个白球、3个红球,共有4个球,∴现随机从袋里摸出1个球是白球的概率为14;故选:C .【点睛】本题考查了概率的计算,熟练掌握概率公式是解题的关键.3.A 【分析】根据图象向左平移加,向上平移加,可得答案.【详解】解:将抛物线y=-x 2向左平移3个单位,再向上平移5个单位,平移后抛物线的解析式是y=-(x+3)2+5,故选:A .【点睛】本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.【详解】试题分析:根据平行线分线段成比例可得AD AEDB EC =,代入计算可得:643EC=,即可解EC=2,故选B .考点:平行线分线段成比例5.D 【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,由题意可知CD 为8,然后根据勾股定理求出BD 的长,进而可得出AB 的长.【详解】如图,连接OB ,过点O 作OC ⊥AB 于点D ,交圆O 于点C ,则AB=2BD ,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ),∴()12BD cm ==,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.6.C 【分析】根据圆周角定理可知,∠ABC=∠ADC.在Rt△ACB中,根据锐角三角函数的定义即可求出∠ABC的正切值,从而得出答案.【详解】连接BC、AC.∵∠ADC和∠ABC所对的弧都是 AC,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt△ACB中,2 tan3ACABCBC∠==,∴tan∠ADC=2 3,故选C.【点睛】本题主要考查锐角三角函数的定义和圆周角的知识点,解答本题的关键是利用圆周角定理把求∠ADC的正切值转化成求∠ABC的正切值.7.D【分析】根据三角形外心的性质,到三个顶点的距离相等,可以依次判断.【详解】答:因为三角形的外心到三角形的三个顶点的距离相等,所以由正六边形性质可知,点O 到A,B,C,D,E的距离中,只有OA=OC=OD.故选:D.【点睛】此题主要考查了三角形外心的性质,即到三角形三个顶点的距离相等.8.B【分析】连接OC ,易得四边形CDOE 是矩形,△DOE ≌△CEO ,根据扇形的面积公式得∠COE=36°,进而即可求解.【详解】解:连接OC ,∵∠AOB =90°,CD ⊥OA ,CE ⊥OB ,∴四边形CDOE 是矩形,∴CD ∥OE ,∴∠DEO =∠CDE ,由矩形CDOE 易得到△DOE ≌△CEO ,∴图中阴影部分的面积=扇形OBC 的面积,∵S 扇形OBC =210360n π⨯=10π,解得:n=36,∴CDE ∠=∠DEO=∠COE=36°.故选B .【点睛】本题考查了扇形面积的计算,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC 的面积等于阴影的面积是解题的关键.9.D【分析】根据勾股定理求出AB=10,由OC 取最小值时,O 与BC 相切,证明△OCP ∽△BCD ∽△BAC 得出::3:4:5OP PC CO =,从而求出OC 的最小值.【详解】解:2S r ππ==∵圆O 的半径为1,且圆与ABC 重叠部分的面积为π,∴此圆全部在△ABC 内,如图,在Rt ABC 中,8AC =,6BC =,∴10AB =若OC 取最小值时,O 与BC 相切,设切点为P ,连接OP ,则OP ⊥BC∵CD ⊥AB∴∠OPC=∠CDB∵∠OCP=∠BCD∴△OCP ∽△BCD同理可证△BAC ∽△BCD∴△OCP ∽△BCD ∽△BAC∵::6:8:103:4:5BC AC AB ==∴::3:4:5OP PC CO =又∵OP=1∴OC=15533⨯=故选:D .【点睛】此题主要考查了相似三角形的判定与性质,勾股定理以及直线与圆的位置关系,证明△OCP ∽△BCD ∽△BAC 是解答此题的关键.10.B【分析】设(,)(0)k B x k x>,再分别表示出B ,C ,由直角三角形的性质得出BC OB =,联立方程组求出k 的值即可.【详解】解:在k y x =中,设(,)(0)k B x k x >,则3k x x+=,(,)k C x x ∵AB 经过坐标原点,∴(,)k A x x--∵ABC 为直角三角形,且30A ∠=︒,∴∠60B =︒∴1,22BC AB AB BC ==又∵2AB OB=∴BC OB=∴3k x x ⎪+=⎪⎩解得,92=k 故选:B .【点睛】本题属于反比例函数综合题,考查了反比例函数的性质,待定系数法,中心对称的性质等知识,解题的关键是学会利用中心对称的性质解决问题.11.108︒【分析】先求出正n 边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为2180()n -⨯︒,∴正五边形的内角和是5218540(0)-⨯︒=︒,则每个内角的度数是5405108︒÷=︒.故答案为:108︒【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.12.10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.30︒【分析】如图,连接,OA 先证明2,OP OA =再证明90,OAP ∠=︒利用三角函数求解60AOP ∠=︒,从而可得答案.【详解】解:如图,连接,OA ,2,OA OC OP OC == 2,OP OA ∴=PA 是O 的切线,90,OAP ∴∠=︒1cos ,2OA AOP OP ∴∠==60AOP ∴∠=︒,,AC AC= 11603022ABC AOC ∴∠=∠=⨯︒=︒,故答案为:30.︒【点睛】本题考查的是圆周角定理,圆的切线的性质,锐角三角函数的应用,掌握以上知识是解题的关键.14.83【分析】根据两角对应相等得出 AED CGD ,再根据相似三角形的性质得出=AD DE DG DC,从而得出DE 的长;【详解】解:∵四边形ABCD 是正方形,∴AD=DC=4,∠ADC=∠C=90°,∴∠GDC+∠ADG=90°,∵四边形DEFG 是矩形,∴∠EDG=∠E =90°,∴∠EDA+∠ADG=90°,∴∠GDC=∠EDA∴ AED CGD ,∴=AD DE DG DC ,∵DG=6∴4=64DE ∴83DE =【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的性质和判定是解题的关键15.③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0,b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1,∴12ba -=,∴b=-2a ;∵c+a+b >0,∴c-a >0,∴a-c <0,∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x 当p <0时,()()120<--p m x m x ∴()()120p m x m x --≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.16.11222+【分析】(1)连接DQ ,则可得四边形PDBQ DPQ BDQ S S S =+△△,根据已知条件分别表示出DPQ S 和BDQ S ,再根据AC 和PQ 的值求得四边形PDBQ 面积的最大值;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,设1BH D E ⊥于点H ,交AC 于点F ,据此可得,四边形1PD EQ 为平行四边形,因为四边形PDBQ的周长2BD PQ DP BQ EQ BQ =+++=++,周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,此时EQ BQ BE +=,再根据勾股定理求得BE 的长即可.【详解】(1)如图,连接DQ ,∴四边形PDBQ DPQ BDQ S S S =+△△,∵直角ABC 的直角边长4AB BC ==,D 是AB 中点,∴ABC 为等腰直角三角形,122BD AD AB ===,∴AC =设AP x =,∴AQ AP PQ x =+=+,∴CQ AC AQ x x =-==,设DPQ V 底边PQ 上的高为1h ,∴2h ===∴113222DPQ S PQ h =⨯⨯=⨯△,设BDQ △底边PQ 上的高为2h ,∴22h AQ ==,∴2113222222BDQ S BD h x x =⨯⨯=⨯⨯=+△,∴四边形PDBQ 3332222S x x =++=+,∴当x 最大时,四边形PDBQ 的面积最大,∵x 的最大值AC PQ =-=∴四边形PDBQ 的面积最大值1132=;(2)如图,作D 关于AC 的对称点1D ,连接1DD 交AC 于点G ,作1E//D AC ,1=D E AC ,∴四边形1PD EQ 为平行四边形,1DG AG D G ==,∴1DP D P EQ ==,又∵四边形PDBQ 的周长2BD PQ DP BQ EQ BQ =+++=++,∴周长最小,则EQ BQ +的值最小,即这三点共线时,EQ BQ +的值最小,∴此时EQ BQ BE +=,设1BH D E ⊥于点H ,交AC 于点F ,∴BF AC ⊥,∴1DG AG D G FH ===∴BF AF ==∴BH BF FH =+==∴1FG D H AF AG ==-==∴112EH D E D H =-==,∴在Rt BEH 中,BE ==∴四边形PDBQ 的周长最小值2=.【点睛】本题考查了等腰直角三角形的性质、三角形的面积、四边形面积、四边形周长等知识,解答本题的关键是正确的作出辅助线.17.(1)1-;(2)6.【分析】(1)先计算特殊角的正弦与正切值、零指数幂,再计算实数的混合运算即可得;(2)根据比例中项的定义列出式子计算即可得.【详解】(1)原式21212⨯+-=113=+-1=-;(2)设线段a ,b 的比例中项为x ,则::a x x b =,4a = ,9b =,4::9x x ∴=,解得6x =或6x =-(不符题意,舍去),即线段a ,b 的比例中项为6.【点睛】本题考查了特殊角的正弦与正切值、零指数幂、比例中项,熟记各定义和运算法则是解题关键.18.(1)13;(2)23【分析】(1)用列举法列出所有可能出现的结果,其中“抽到1号”的有1种,即可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【详解】(1)共有3种可能出现的结果,其中“抽到1号球”的有1种,∴“抽到1号球”的概率为13;(2)用列表法表示出所有可能出现的结果情况如下:∴由表可知,共有6种等可能结果,其中其中“和为奇数”的有4种,∴4263P ==.【点睛】本题考查了列举法、列表法求随机事件发生的概率,列举出所有可能出现的结果是解答本题的关键.19.14/km h【分析】设AB 与正北方向线交于点C ,根据已知及三角函数求得AC 、OC 的长,再根据等腰直角三角形的性质求得BC 的长,利用AB=AC+BC 求出AB 的长,再除以该船航行的时间即可求解;【详解】如图所示:设AB 与正北方向线交于点C ,∵在Rt △AOC 中,∠AOC=30°,OA=500m ,∴sin 30250AC OA m =︒= ,cos30OC OA =︒= ,∵△OBC 是等腰直角三角形,∴BC OC ==,∴250AB AC BC =+=+,∴该船的航速为:2503=5100060+÷+【点睛】本题考查了解直角三角形的知识,解一般三角形的问题一般可以转化为解直角三角形的问题,解决方法为构造直角三角形,难度一般;20.(1)见解析;(2)64【分析】(1)由平行线的性质可得∠DEB=∠FCE ,∠DBE=∠FEC ,再根据相似三角形的判定可得结论;(2)先根据35AF FC =得出58CF AC =,再根据相似三角形的判定与性质即可得出答案.【详解】(1)∵DE ∥AC ,∴∠DEB=∠FCE ,∵EF ∥AB ,∴∠DBE=∠FEC ,∴△BDE ∽△EFC ;(2)∵35AF FC =,∴58CF AC =,∵//EF AB ,∴△BAC ∽△EFC ,∴22564⎛⎫== ⎪⎝⎭ EFC ABC CF AC S S ,∵25= EFC S ,∴64= ABC S ,即△ABC 的面积为64.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是本题的关键.21.(1)2180y x =+﹣;(2)60元/千克或80元/千克;(3)70元/千克;800元【分析】(1)利用待定系数法来求一次函数的解析式即可;(2)依题意可列出关于销售单价x 的方程,然后解一元二次方程组即可;(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.【详解】解:(1)设y 与x 之间的函数表达式为y kx b =+(0k ≠),将表中数据(55,70)、(60,60)代入得:55706060k b k b +=⎧⎨+=⎩,解得:2180k b =-⎧⎨=⎩,∴y 与x 之间的函数表达式为2180y x =-+;(2)由题意得:()()502180600x x --+=,整理得214048000x x -+=:,解得126080x x ==,,答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)设当天的销售利润为w 元,则:()()502180w x x =--+22(70)800x =-+﹣,∵﹣2<0,∴当70x =时,w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.【点睛】本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.22.(1)①见解析;②见解析;(2)3r =【分析】(1)①直接用直径所对圆周角是90°进行解题即可;②找到∠CAD=∠ABD 和∠ADC=∠BDA ,两个角相等即可证明两个三角形相似;(2)利用锐角三角函数和相似三角形的性质即可求出半径的长度;【详解】(1)①如图所示,连接AO ,由BC 是直径得90BAC ∠= ,∵OB=OA ,∴∠B=∠OAB ,∵∠CAD=∠B ,∴∠OAD=∠OAC+∠CAD=∠OAC+∠OAB=90°,∴AD 为圆的切线;②在△ACD 和△BAD 中,∠CAD=∠ABD ,∠ADC=∠BDA ,∴△ACD ∽△BAD(2)由(1)知△ACD ∽△BAD ∴DA DC AC DB DA AB==,∵1tan 2B =,∴1tan 2AC B AB ==,∴12DA DC DB DA ==,则2AD CD =,即182AD AD BD ==,得AD=4,∴122CD AD ==,∴BC=BD-CD=8-2=6,∴半径3r =;【点睛】本题考查了直径所对圆周角等于90°,相似三角形的判定以及锐角三角函数,正确掌握知识点是解题的关键;23.(1)见解析;(2)5或10;(3)①见解析;②23.【分析】(1)分两种情况讨论,如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2.CD AD BD = 从而可作出图形;(2)作BC 边上的高AH ,由3tan 4AH B BH ==tan 1,AH C CH ==可得:4,,3BH AH CH AH ==再列方程414,3AH AH +=求解6,8,6,AH BH CH ===设BD x =,则由222,AD AH DH =+2AD BD CD =⋅可得22(8)6(14)x x x -+=-,解方程可得答案;(3)①首先证得,AHC DHB ∽则该相似三角形的对应边成比例:,AH CH DH BH=即••AH BH CH DH =,由点H 是BCD △中CD 边上的“好点”,可得2•,BH CH DH =再证明,AH BH =再利用垂径定理的推论可得结论;②如图④,连接,AD 证明90,ABD ∠=︒可得AD 是直径,所以,,A O D 共线,设,OH x =则3,OA OD x ==2,BD x =再分别求解,,CH DH 从而可得答案.【详解】解:(1)如图①,取格点,,E F 且2,3,EF AC CE CB ====连接CF 交AB 于,D 如图②,取格点,N 且//,,CA BN BN CA =连接CN 交AB 于,D 则两种情况都满足2,CD AD BD = 即D 为ABC 中边AB 上的“好点”.理由如下:如图①,90ACB CEF ∠=∠=︒,2,4,EF AC CE CB ====(),CEF BCA SAS ∴ ≌,ECF CBA ∴∠=∠90,ECF BCD ∠+∠=︒ 90BCD CBA ∴∠+∠=︒,90CDB ∴∠=︒,∴90CDA CDB ∠=∠=︒,,ACD CBD ∴ ∽,CDADBD CD ∴=2,CD AD BD ∴= 如图②, 矩形,ANBC ,CD ND AD BD ∴===2.CD AD BD ∴= (2)如图③,作BC 边上的高AH ,3tan 4AHB BH ==tan 1,AHC CH ==4,,3BH AH CH AH ∴==14,BC BH CH =+= ∴414,3AH AH +=6,8,6,AH BH CH ∴===设BD x =,则8,14,DH x CD x =-=- 222,AD AH DH =+2AD BD CD =⋅,∴22(8)6(14)x x x -+=-,215500,x x ∴-+=()()5100,x x ∴--=∴5x =或10x =,经检验:5x =或10x =都符合题意,所以BD 的长为5或10.(3)①∵,,CHA BHD ACH DBH ∠=∠∠=∠∴,AHC DHB ∽∴,AH CH DH BH =即••AH BH CH DH =,∵点H 是BCD △中CD 边上的“好点”,2•,BH CH DH ∴=2•,BH AH BH ∴=,BH AH ∴=.OH AB ∴⊥②2.3CH DH =理由如下:如图④,连接,AD //,OH BD ,OH AB ⊥∴90,ABD ∠=︒∴AD 是直径,所以,,A O D 共线,3,r OH = ∴设,OH x =则3,OA OD x ==2,BD x ∴=22223642,AB AD BD x x x ∴=-=-=,OH AB ⊥ 22222,483,AH BH x HD BD HB x x x ∴===+=+=2•,BH CH DH =22,3BH CH x DH ∴==2.3x CH DH ∴=【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,三角形的中位线的性质,勾股定理的应用,相似三角形的判定与性质,解直角三角形的应用,垂径定理,圆周角定理,掌握以上知识是解题的关键.24.(1)y =﹣13x 2+3;(2)l==213m -+;(3,P 15)4【分析】(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),根据∠OBC =30°,得B (0),而OB =3OA ,得A0),再用待定系数法即可得y =﹣13x 2+3;(2)延长PF 交x 轴于点E ,先由B (0),C (0,3)得直线BC 的表达式为y=3-x +3,设点P (m,21333m -++),则点F (m,3-m +3),故PF =l=213m -+;(3)先证明∠OBC =30°=∠P ,在Rt △PDF 中,PD =cos30°⋅PF,DF =sin30°⋅PF =12PF ,故△PDF 的周长=PD +PF +DF+1+12)PF,可知PF 最大时,△PDF 的周长最大,而当m=2时,l 最大=94,即PF 最大为94,即可得到答案.【详解】解:(1)由抛物线y =ax 2+bx +3的表达式知:C (0,3),∴OC =3,∵∠OBC =30°,∴OB=tan 30°OC∴B(0),又OB =3OA,即3OA ,∴OA∴A(0),将A(0),B(0)代入y =ax 2+bx +3,得:0330273a a ⎧=-+⎪⎨=++⎪⎩,解得:13a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y =﹣13x 2+3;(2)延长PF 交x 轴于点E,如图:设直线BC 表达式为y =sx +t ,将B(0),C (0,3)代入得:3t t ⎧+⎪⎨=⎪⎩,解得3s t ⎧=⎪⎨⎪=⎩∴直线BC 的表达式为y=3-x +3,设点P (m,2133m -++),则点F (m,+3),∴PF =l=21(3)(3)3m -++--+=213m -;(3)∵∠OBC =30°,∴∠BFE =60°=∠PFD ,∵PD ⊥BC ,∴∠P =30°,在Rt △PDF 中,PD =cos 30°⋅PFPF ,DF =sin 30°⋅PF =12PF,∴△PDF 的周长=PD +PF +DF 12)PF PF ,∴PF 最大时,△PDF 的周长最大,而由(2)知:PF =l =213m -=219()324x --+,∴当m l 最大=94,即PF 最大为94,此时,△PDF∴点P 的坐标为15()24,△PDF 的周长最大值为278+.【点睛】本题考查二次函数综合应用,涉及待定系数法、二次函数图象上点坐标的特征、解直角三角形、三角形周长等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.。
【浙教版】初三数学上期末模拟试题(带答案)

一、选择题1.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球 2.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .183.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .44.下列事件:(1)如果a 、b 都是实数,那么a+b=b+a ;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A .0个B .1个C .2个D .3个 5.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434B .3C .438D .36.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个 7.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 8.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒9.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .1310.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案 11.根据下列表格中的对应值:x 1.981.992.00 2.01 2y ax bx c =++-0.06 -0.05 -0.03 0.01 判断方程0ax bx c ++=(,a ,b ,c 为常数)一个根x 的范围是( )A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x << 12.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( ) A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+ 二、填空题13.在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.14.如图,⊙O 的内接四边形ABCD 的一个外角∠DAE =45°,连结OB ,OD ,若将一骰子(看着一个点)投到⊙O 中,则骰子落在阴影部分的概率为_______.15.如图,小明和小亮两人在玩转盘游戏,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后指针所指的两个数字之和为奇数时,小明胜;数字之和为偶数时,小亮胜.那么小明获胜的概率是__________.16.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是______.(结果用含π的式子表示)17.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.18.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE 固定不动,将含30°角的三角尺ABC 绕顶点A 顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD =15°时,BC ∥DE ,当90°<∠BAD <180°时,∠BAD 的度数为___.19.将抛物线y =2(x ﹣1)2+3绕着点A (2,0)旋转180°,则旋转后的抛物线的解析式为_____.20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.某生活小区鲜奶店每天以每瓶3元的价格从奶场购进优质鲜奶,然后以每瓶6元的价格出售,如果当天卖不完,剩余的只有倒掉.店主记录了30天的日需求量(单位:瓶),整理得下表: 日需求量26 27 28 29 30 频数 5 8 7 6 4(1)求这30天内日需求量的众数;(2)假设鲜奶店在这30天内每天购进28瓶,求这30天的日利润(单位:元)的平均数;(3)以30记录的各需求量的频率作为各需求是发生的概率.若鲜奶店每天购进28瓶,求在这记录的30天内日利润不低于81元的概率.22.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为 ;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率. 23.如图,AB 、CD 是O 中两条互相垂直的弦,垂足为点E ,且AE CE =,点F 是BC 的中点,延长FE 交AD 于点G ,已知1,3,2AE BE OE ===.(1)求证:AED CEB ≌;(2)求证:FG AD ⊥;(3)求O 的半径.24.如图,△ABC 中A (2-,3),B (3-,1),C (1-,2).(1)将△ABC 绕原点O 顺时针旋转180°,在坐标系中画出旋转后的△A 1B 1C 1; (2)写出的△A 1B 1C 1的顶点B 1的坐标 .25.已知抛物线2221y x x m =--+,直线2y x =-与x 轴交于点M ,与y 轴交于点N . (1)求证:抛物线与x 轴必有公共点;(2)若抛物线与x 轴交于A 、B 两点,且抛物线的顶点C 落在此直线上,求ABC 的面积;(3)若线段MN 与抛物线有且只有一个公共点,求m 的取值范围.26.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0.(1)代数式22x -的不变值是________,A=________.(2)已知代数式231x bx -+,若A=0,求b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、是随机事件,故A 错误;B 、是随机事件,故B 错误;C 、是必然事件,故C 正确;D 、是不可能事件,故D 错误;故选:C .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.C解析:C【分析】从题目知道,小明需要得到签字笔,必须获得三等奖,即转到蓝色区域,把圆盘中蓝色的小扇形数出来,再除以总分数,即可得到答案.【详解】解:小明要获得签字笔,则必须获得三等奖,即转到蓝色区域,从转盘中找出蓝色区域的扇形有4份,又因为转盘总的等分成了16份, 因此,获得签字笔的概率为:41164=, 故答案为C.【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;在做转盘题时,能正确找到事件发生占圆盘的比例是做对题目的关键,还需要注意,转盘是不是被等分的,才能避免错误. 3.B解析:B【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.4.C解析:C【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可.【详解】(1)如果a 、b 都是实数,那么a+b=b+a ,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件; (3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误; (4)射击1次,中靶,是随机事件.故随机事件的个数有2个.故选:C .【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.A【分析】以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值, 即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 6.B解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.8.B解析:B【分析】连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB 与∠BAC 都对BC ,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC ,∴∠OAC=∠OCA=28°,∵∠COE 为△AOC 的外角,∴∠COE=56°,则∠E=34°.故选:B .【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.9.A解析:A【分析】过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,DF=3AF=43,由勾股定理可求解.【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,,60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键.10.C解析:C【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6.【详解】解:根据题意可知:∠A=∠C=60°,∵线段OP 绕点O 逆时针旋转得到线段OD ,∴OP=DO ,∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°,∴∠AOP=∠CDO ,在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP=OC=AC ﹣AO=6.故选C.【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.11.D解析:D【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得.【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大,当 2.00x =时,0.030y =-<,当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<, 故选:D .【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.12.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=,2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.二、填空题13.【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数【详解】解:∵摸到黑色白色球的频率分别稳定在10和35∴摸到蓝色球的频率稳定在1-10-35=55∴蓝色球的个数为:20×55=11个故答解析:11【分析】球的总数乘以蓝色球所占球的总数的比例即为蓝色球的个数.【详解】解:∵摸到黑色、白色球的频率分别稳定在10%和35%,∴摸到蓝色球的频率稳定在1-10%-35%=55%,∴蓝色球的个数为:20×55%=11个,故答案为:11.【点睛】考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值. 14.【分析】首先求出阴影部分面积利用阴影部分面积除以总面积进而求出投到阴影部分的概率即可【详解】解:的内接四边形的一个外角设的半径为骰子落在阴影部分的概率为故答案为:【点睛】本题考查了扇形的面积圆内接四 解析:14【分析】首先求出阴影部分面积,利用阴影部分面积除以总面积,进而求出投到阴影部分的概率即可.【详解】解:O 的内接四边形ABCD 的一个外角45DAE ∠=︒, 45C DAE , 290BOD C ,设O 的半径为r ,22903604r rS 阴影, ∴骰子落在阴影部分的概率为22144r r ,故答案为:14. 【点睛】 本题考查了扇形的面积,圆内接四边形的性质,概率的求法,熟悉相关性质是解题的关键.15.【分析】列举出所有情况根据概率公式即可得到小明获胜的概率【详解】共9种情况和为奇数的情况数有5种小明获胜的概率为故答案为:【点睛】本题考查了列表格或画树状图求概率正确画出树状图是解答本题的关键解析:59【分析】列举出所有情况,根据概率公式即可得到小明获胜的概率.【详解】共9种情况,和为奇数的情况数有5种,小明获胜的概率为59. 故答案为:59.【点睛】本题考查了列表格或画树状图求概率.正确画出树状图是解答本题的关键.16.【分析】已知BC 为直径则∠CDB=90°在等腰直角三角形ABC 中CD 垂直平分ABCD=DBD 为半圆的中点阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差【详解】解:由题可知△ACB 为等腰解析:1π-【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【详解】解:由题可知△ACB 为等腰Rt △ACB ,在Rt △ACB 中,22222+=∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,则△ADC 和△BDC 都为等腰直角三角形,CD=BD=AD ,令 CD=BD=AD=x ,则2222x x +=,xS 阴影部分=S 扇形ACB -S △ADC =22902113602ππ⨯-⨯=- .故答案为:1π-.【点睛】 本题考查了扇形面积的计算公式及不规则图形面积的求法,掌握扇形的面积公式是解题的关键.17.①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB 连接OD 然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD ⊥BC 故①解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB ,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径, ∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA,∴∠ADO=∠DAO,∴∠ADO=∠EAD,∴∠ADO+∠EDA=90°,∴ED是⊙O的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.18.105°或135°【分析】根据题意画出图形再由平行线的判定定理即可得出结论【详解】解:如图(1)当AC∥DE时∠BAD=∠DAE=45°;如图(2)当BC∥AD时∠DAB=∠B=60°;如图(3)当解析:105°或135°【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【详解】解:如图(1),当AC∥DE时,∠BAD=∠DAE=45°;如图(2),当BC∥AD时,∠DAB=∠B=60°;如图(3),当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;如图(4),当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.∴当90°<∠BAD<180°时,∠BAD=105°或135°.故答案为:105°或135°.【点睛】本题考查的是旋转的性质,平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.19.y=﹣2(x﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标进而由此写出旋转后的抛物线所对应的函数表达式即可【详解】解:抛物线y=2(x﹣1)2+3的顶点为(13)设绕解析:y=﹣2(x﹣3)2﹣3【分析】由题意根据抛物线的顶点变换规律得到新抛物线解析式的顶点坐标,进而由此写出旋转后的抛物线所对应的函数表达式即可.【详解】解:抛物线y=2(x﹣1)2+3的顶点为(1,3),设绕着点A(2,0)旋转180°得到(x,y),∴12x+=2,32y+=0,解得x=3,y=﹣3,∴绕着点A(2,0)旋转180°得到(3,﹣3),故旋转后的抛物线解析式是y=﹣2(x﹣3)2﹣3.故答案为:y=﹣2(x﹣3)2﹣3.【点睛】本题考查二次函数图象与几何变换,由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:1 2 -【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x2-4x+1有最大值是2.故答案为:-12.【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(1)这30天内日需求量的众数是27;(2)则这30天的日利润的平均数是80.4元;(3)在这记录的30天内日利润不低于81元的概率为17 30.【分析】(1)根据众数的概念并结合表格中的数据进行解答即可;(2)首先根据加权平均数的计算公式与已知条件即可求出总利润,接下来利用总利润÷30,即可求出每天的利润;(3)设每天的需求量为x瓶时,日利润不低于81元,根据图表所给出的数据列出算式,求出x的取值范围,再根据概率公式进行计算即可.【详解】(1)∵27出现了8次,出现的次数最多,∴这30天内日需求量的众数是27,(2)假设鲜奶店在这30天内每天购进28瓶,则这30天的总利润是:(26×5+27×8+28×7+28×6+28×4)×6﹣28×30×3=2412(元),则日利润的平均数是:2412÷30=80.4(元);(3)设每天的需求量为x瓶时,日利润不低于81元,根据题意得:6x﹣28×3≥81,解得:x≥27.5,则在这记录的30天内日利润不低于81元的概率为:764173030 ++=.【点睛】本题考查了众数、加权平均数和利用频率估计概率,掌握这些基本概念才能熟练解题.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)14;(2)图表见解析,14【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”,而“洗手监督岗”是其中之一,所以,李老师被分配到“洗手监督岗”的概率=14; 故答案为:14; (2)画树状图为:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4, 所以李老师和王老师被分配到同一个监督岗的概率=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 23.(1)证明过程见解析;(2)证明过程见解析;(35【分析】(1)由圆周角定理得∠A=∠C ,由ASA 得出AED CEB ≌;(2)由直角三角形斜边上的中线性质得EF=12BC=BF ,由等腰三角形的性质得∠FEB=∠B ,由圆周角定理和对顶角相等证出∠A+∠AEG=90°,进而得出结论; (3)作OH ⊥AB 于H ,连结OB ,由垂径定理可得AH=BH=12AB=2,则EH=AH-AE=1,由勾股定理求出OH=1,5OB 的长即为O 的半径.【详解】(1)证明:由圆周角定理得∠A=∠C ,在△AED 和△CEB 中, A C AE CEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CEB (ASA ).(2)证明:∵AB ⊥CD ,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵点F 是BC 的中点,∴EF=12BC=BF , ∴∠FEB=∠B ,∵∠A=∠C,∠AEG=∠FEB=∠B,∴∠A+∠AEG=∠C +∠B =90°,∴∠AGE=90°,⊥.∴FG AD(3)解:作OH⊥AB于H,连结OB,∵AE=1,BE=3,∴AB=AE+BE=4,∵OH⊥AB,∴AH=BH=1AB=2,2∴EH=AH-AE=1,∴()2222-=-=,211OE EH∴2222++=,BH OH215即O5【点睛】本题考查了圆周角定理、垂径定理、全等三角形的判定、直角三角形斜边上的中线的性质、勾股定理等知识.本题综合性较强,熟练掌握圆周角定理和垂径定理是解题的关键.24.(1)见解析;(2)(3,-1)【分析】(1)根据旋转的性质即可将△ABC绕原点O旋转180°得到△A1B1C1;(2)结合(1)所画图形即可写出B1的坐标.【详解】(1)如图,△A1B1C1即为所求;(2)B 1的坐标为(3,-1);故答案为:(3,-1).【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.25.(1)见解析;(2)1;(3)3m =或13m <或31m -<- 【分析】(1)根据根的判别式2=4∆-b ac 的正负性,即可求证;(2)利用顶点的特点,求得点C 的坐标,将点C 坐标代入抛物线即可求得抛物线解析式,继而可得抛物线与x 的交点A 、B 坐标,继而根据三角形面积公式即可求解; (3)先求出点M 、N 的坐标,再分两种情况讨论即可:【详解】解:(1)∵()222(2)4140m m ∆=---+=≥∴抛物线与x 轴必有公共点.(2)∵2221y x x m =--+ ∴其定点C 的横坐标为1212--⨯= 又∵定点C 在直线2y x =-上,所以定点C 的坐标为(1,1)- 把点(1,1)-代入抛物线2221y x x m =--+中,解得21m =∴抛物线方程为22(2)y x x x x =-=-∴抛物线与x 轴的交点分别为(0,0)和(2,0)∴2AB = ∴1121122ABC C S AB y =⋅=⨯⨯= (3)当0x =时,2y =-,则N 为(0,2)- 当0y =时,20x -=,即M 为(2,0)∵拋物线的对称轴为1x =∴分两种情况:①由22221y x y x x m =-⎧⎨=--+⎩,得22330x x m --+=∴()22(3)410m ∆=---+=,解得m =时, 线段MN 与抛物线有且只有一个公共点;②当2210m --+<,解得13m <或1m <-时,线段MN 与抛物线有且只有一个公共点.综上所述,m 的取值范围是m =或13m <或1m <-.【点睛】本题考查二次函数与一次函数的综合问题,涉及到根的判别式,解题的关键是综合运用所学知识,特别是二次函数的性质,有一定的难度.26.(1)-1,2;3;(2)11b =-+21b =--【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再作差后可求出A 的值;(2)由A=0可得出方程23(1)1x b x -++=0有两个相等的实数根,进而可得出△=0,解答即可得出结论.【详解】解:(1)根据题意得,220x x --=,解得,11x =-,22x =∴A=2-(1)=2+1=3,故答案为:-1,2;3;(2)根据题意得,23(1)1x b x -++=0有两个相等的实数根,∴△=[- (b+1)]2-4×3×1=0∴11b =-+21b =--【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。
浙教版九年级(上)数学期末模拟试卷

浙教版九年级数学第一学期期末模拟试卷(时间120分钟,满分150分)一、仔细选一选.(每小题4分,共40分) 1、已知:)0(32≠+==q n q p n m ,则=++qn p m ( ) A 、34 B 、32C 、31D 、 22、某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,3、由函数()2112y x =-的图象通过向左平移1个单位,再向下平移1个单位得到的函数解析式是( ) A.22(1)1y x =+- B.223y x =+C.221y x =--D.2112y x =- 4、已知AB 是⊙O 的直径,点C 在⊙O 上,连结AC ,BC ,若∠A=30°,则∠B 为( ) A 、30° B 、45° C 、60° D 、90° 5、在Rt △ABC 中,∠C=900,AB=5,AC=3,则cosA 的值是 ( )A 、43 B 、34 C 、35 D 、456、如图所示为一弯形管道,其中心线是一段圆弧AB .已知半径60cm OA =,108AOB =∠,则管道的长度(即AB 的长)为 ( )A 、25πB 、30πC 、36πD 、60π7、如图,E 是平行四边形ABCD 的边BC 的中点,F 是BE 的中点,AE 与DF 相交于H,则FH :DH=( )。
A 、21 B 、41C 、81D 、818、如图,在矩形ABCD 中,DE ⊥AC 于E , cos ∠ADE =53,AB =4,则AD 的长为( )AB60cm108A .3B .316C .320D .516 9、如图,已知△ABC ∽△DBE ,AB =6,DB =8,则=DBE ABC S S △△: 。
10、二次函数y=ax 2+bx+c 的图像如图所示, 则下面结论中①a <0,②b >0,③c >0,④24b ac ->0,⑤a b c ++>0,正确有( ) A 、2 个 B 、3个 C 、4个 D 、5个 二、认真填一填:(每题6分,共30分) 11、如果23=b a ,那么=-bba 12、如图1,两建筑物AB 和CD 的水平距离为30米,从A 点测得D 点的俯角为30°,测得C 点的俯角为60°,则建筑物CD 的高为______米.13、若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都是反比例函数2y x=-的图象上的点,并且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是 ,(用“<”号连结 ) 14、如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .15、如图, Rt △ABC, 斜边AC 上有一动点D(不与点A 、C重合), 过D 点作直线截△ABC, 使截得的三角形与△ABC 相似, 则满足这样条件的直线共有________条. 16、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是 。
【浙教版】初三数学上期末模拟试卷(附答案)

一、选择题1.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A .12B .13C .14D .162.下列事件中必然发生的事件是( ) A .一个图形平移后所得的图形与原来的图形不全等 B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数 3.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1B .2C .3D .44.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则 A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .无法确定5.已知⊙O ,如图, (1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点; (3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个6.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( ) A .8.5B .17C .3D .67.如图△ABC 中,∠C =90°,∠B =28°,以C 为圆心,CA 为半径的圆交AB 于点D ,则AD 的度数为( )A .28°B .56 °C .62°D .112°8.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°9.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .3010.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案 11.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小 12.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( )A .3B .6C .8D .9二、填空题13.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m 、n ,若把m 、n 分别作为点A 的横坐标和纵坐标,则点A (m ,n )在函数y =12x的图象上的概率是_____. 14.从21012--,,,,这五个数中任取一个数,作为关于x 的一元二次方程220x x k ++=中k 的值,则所得方程中有两个不相等的实数根的概率为______.15.新冠疫情期间,甲乙丙丁四人负责某小区门口的值岗,现在需要从4人中抽调2人进行流动执勤,请问抽中的两人恰好为甲乙的概率是_______.16.如图,在平面直角坐标系中有一个等边OBA △,其中A 点坐标为()1,0,将OBA △绕顶点A 顺时针旋转120︒,得到11AO B ;将得到的11AO B 绕顶点B 顺时针旋转120︒,得到112B AO ;然后再将得到的112B AO 绕顶点2O 顺时针旋转120︒,得到222O B A …按照此规律,继续旋转下去,则2014A 点的坐标为________.17.如图,在⊙O 中,弦AC 、BD 相交于点E ,且AB BC CD ==,若∠BEC=130°,则∠ACD 的度数为_____18.如图,MN 是O 的直径,2MN =,点A 在O 上,30AMN ∠=︒,B 为弧AN的中点,点P 是直径MN 上的一个动点,则PA PB +的最小值为_______.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.三、解答题21.某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查,将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求D 班选择环境保护的学生人数,并补全折线统计图;(2)若随机抽取一位学生,选择做交通监督或环境保护志愿者的概率是多少? 22.某公司组织部分员工到一博览会的A 、B 、C 、D 、E 五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,随机同时抽出两张牌,若牌面数字和为偶数时,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?23.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .24.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C .(1)请画出ABC ∆向左平移5个单位长度后得到的111A B C ∆;并写出1A 、1B 、1C 的坐标;(2)请画出ABC ∆关于原点对称的222A B C ∆;并写出2A 、2B 、2C 的坐标. 25.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.26.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:销售单价(元)34353637383940月平均销售量(件)430425420415410405400【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先画出树状图,从而可得出两个转盘转动时的所有可能结果,再找出一个为红色,一个为蓝色的结果,然后利用概率公式即可得.【详解】由题意,画树状图如下:由此可知,两个转盘转动时的所有可能结果共有6种,它们每一种出现的可能性都相等,其中,一个为红色,一个为蓝色的结果只有1种,则配得紫色的概率是16P ,故选:D.【点睛】本题考查了利用列举法求概率,依据题意,正确画出树状图是解题关键.2.C解析:C【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案. 【详解】A 、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B 、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C 、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D 、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误; 故选C . 【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.3.B解析:B 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.4.C解析:C 【分析】 根据P (A )=mn分别计算事件发生的概率,进行比较 . 【详解】 解:P (A )=22=3+25,P (B )=20230205=+ ∴P (A )=P (B ) 故选:C. 【点睛】掌握事件发生的概率的求法P (A )=mn是本题的解题关键. 5.D解析:D【分析】①根据作图过程可得AC AD=,根据垂径定理可判断;②连接OC,根据作图过程可证得△AOC为等边三角形,由等边三角形的性质即可判断;③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点,∴AC AD=,根据垂径定理可知,AB⊥CE,CE=DE,∴①正确;②连接OC,∵AC=OA=OC,∴△AOC为直角三角形,∵AB⊥CE,∴AE=OE,∴BE=BO+OE=3AE,∴②正确;③∵AB为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE,∴③正确,故选:D.【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.6.D解析:D【分析】先根据勾股定理求出斜边长,再根据直角三角形内切圆半径公式求出半径,从而得到直径.【详解】解:根据勾股定理,斜边是2281517+=,直角三角形的内切圆半径8151732+-==,∴直径是6.故选:D.【点睛】本题考查三角形的内切圆,解题的关键是掌握直角三角形内切圆半径的求解方法.7.B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD的度数为56°;故选:B.【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.8.B解析:B【分析】由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得=BC BD,然后由圆周角定理,即可求得答案.【详解】解:∵线段AB 是⊙O 的直径,弦CD 丄AB , ∴=BC BD , ∵∠CAB =20°,∴∠BOD=2∠CAB=2×20°=40°. 故选:B . 【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.9.A解析:A 【分析】根据旋转的性质找到对应点、对应角、对应线段作答. 【详解】解:∵3120B A ∠=∠=︒ ∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC , ∴∠D=∠A=40°,∠DEC=∠B=120°, ∴∠DCE=180°-40°-120°=20°, ∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°. 故选:A . 【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.10.C解析:C 【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6. 【详解】解:根据题意可知:∠A=∠C=60°, ∵线段OP 绕点O 逆时针旋转得到线段OD , ∴OP=DO , ∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°, ∴∠AOP=∠CDO , 在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ), ∴AP=OC=AC ﹣AO=6. 故选C. 【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.11.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.12.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.二、填空题13.【分析】根据反比例函数的性质找出符合点在函数y=图象上的点即可根据概率公式求解【详解】解:列表得:∴一共有36种情况在函数y=的图象上的有(26)(34)(43)(62)共4种;∴在函数y=的图象上解析:1 9【分析】根据反比例函数的性质,找出符合点在函数y=12x图象上的点,即可根据概率公式求解.【详解】解:列表得:∴一共有36种情况,在函数y=12x的图象上的有(2,6)(3,4)(4,3)(6,2)共4种;∴在函数y=12x 的图象上的概率是436=19,故答案为:19.【点睛】本题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比;反比例函数上的点的横纵坐标的积为比例系数.14.【分析】利用根的判别式求出方程有两个不相等的实数根时k的取值范围再求出概率【详解】解:要使方程有两个不相等的实数根则即解得∴满足条件∴概率是故答案是:【点睛】本题考查概率求解和一元二次方程根的判别式解析:3 5利用根的判别式求出方程有两个不相等的实数根时k 的取值范围,再求出概率. 【详解】解:要使方程有两个不相等的实数根,则0∆>,即440k ->,解得1k <, ∴2-、1-、0满足条件, ∴概率是35. 故答案是:35. 【点睛】本题考查概率求解和一元二次方程根的判别式,解题的关键是掌握求解概率的方法,和利用一元二次方程根的判别式判断方程解的情况的方法.15.【分析】画树状图得出所有等可能的情况数找出甲乙两人被抽中的情况数即可确定所求的概率【详解】所有等可能的情况有12种其中甲乙两人被抽中的情况有2种则P (甲乙两人被抽中)=故答案为:【点睛】此题考查了列解析:16【分析】画树状图得出所有等可能的情况数,找出甲乙两人被抽中的情况数,即可确定所求的概率. 【详解】所有等可能的情况有12种,其中甲乙两人被抽中的情况有2种, 则P (甲乙两人被抽中)=21=126故答案为:16【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】计算出的横坐标推出的横坐标再代入即可【详解】观察得知:;且当为偶数时的纵坐标为0;当为奇数时的纵坐标为归纳得出:;代入得;故答案为:【点睛】本题考查了图形的旋转变化正确归纳旋转的规律是解决本 解析:()3022,0计算出1234A A A A 、、、的横坐标,推出n A 的横坐标,再代入2014n =即可. 【详解】 观察得知:152A =,2538222A =+=,38311222A =+=,411314222A =+=;且当n 为偶数时,n A 的纵坐标为0;当n 为奇数时,n A 归纳得出:()3112n n A +-=; 代入2014n =,得20143022A =; 故答案为:()3022,0. 【点睛】本题考查了图形的旋转变化,正确归纳旋转的规律是解决本题的关键.17.105°【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB 然后根据三角形的内角和定理即可求出∠BCA 与∠CED 再在△CDE 中利用三角形的内角和求解即可【详解】解:∵∴∠BCA =∠CBD =∠解析:105° 【分析】根据圆周角定理的推论可得∠BCA =∠CBD =∠CDB ,然后根据三角形的内角和定理即可求出∠BCA 与∠CED ,再在△CDE 中利用三角形的内角和求解即可 【详解】解:∵AB BC CD ==, ∴∠BCA =∠CBD =∠CDB , ∵∠BEC =130°,∴∠BCA =∠CBD =25°,∠CED =50°, ∴∠CDB =25°,∴∠ACD =180°﹣50°﹣25°=105°. 故答案为:105°. 【点睛】本题考查了圆周角定理的推论和三角形的内角和定理,熟练掌握上述知识是解题的关键.18.【分析】作点A 的对称点根据中位线可知最小时P 正好在上在根据圆周角定理和等弧所对圆心角相等求得再利用勾股定理即可求解【详解】如图作点关于的垂线交圆与连接交于点连接则此时的值最小∵∴∵点是的中点∴∵关于【分析】作点A 的对称点,根据中位线可知PA PA =' ,PA PB +最小时P 正好在A B '上,在根据圆周角定理和等弧所对圆心角相等求得90AOB ∠'=︒,再利用勾股定理即可求解.如图,作点A 关于MN 的垂线交圆与A ' ,连接A B ' 交MN 于点P ,连接AP OB OA OA '、、、 , 则此时AP BP + 的值最小A B =' , ∵30AMN ∠=︒, ∴60AON ∠=︒, ∵点B 是AN 的中点, ∴30BON ∠=︒ , ∵A A '、 关于MN 对称, ∴60AON AON ∠'=∠=︒, ∴306090AOB ∠'=︒+︒=︒, 又∵112122OA OB MN '===⨯=, 在RT A OB '△中∴221+1=2A B '=AP BP + 的值最小2 2. 【点睛】本题主要考查了圆心角、弧、弦之间的关系、圆周角定理、垂直平分线定理、勾股定理等.在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.本题是与圆有关的将军饮马模型.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对 解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论 【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上, ∵y= 3x 2+12x+m 的对称轴x=b2a-=-2,开口向上,∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2, C 在对称轴右侧,y 随x 的增大而增大, ∵1>-1, ∴y 3>y 1,, ∴y 3>y 1>y 2, 故答案为:y 3>y 1>y 2. 【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程解析:-1 【分析】根据正比例函数的概念可直接进行列式求解. 【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠, 解得:1m =-; 故答案为-1. 【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.三、解答题21.(1)15人,见解析;(2)0.57 【分析】(1)先根据扇形统计图中,环境保护占200名学生中的30%求出选环境保护的学生人数,再根据折线统计图中A 、B 、C 班的人数求出D 班人数,最后补全折线统计图;(2)先根据折线统计图算出选择交通监督的学生数,再求出它的占比,概率就是交通监督和环境保护的占比之和. 【详解】解:(1)选择环境保护的学生数是:20030%60⨯=(人), D 班选择环境保护的学生人数是:6015141615---=(人),补全折线统计图如图所示:(2)选择交通监督的学生数是:1215131454+++=(人),占比是:54200100%27%÷⨯=,随机抽取一位学生,选择做交通监餐或环境保护志愿者的概率是27%30%0.57+=.【点睛】本题考查统计和概率,解题的关键是掌握折线统计图和扇形统计图的特点,以及概率的求解方法.22.(1)见解析;(2)小明获得门票的概率为13,小华获得门票的概率为23,这个规则对双方不公平.【分析】(1)根据“总体=部分÷对应百分比”计算出总数量,用总数量乘以B馆对应的百分比可得其数量,用C馆门票数量除以总数量求出对应百分比,从而补全图形;(2)列表得出所有等可能的结果,再根据概率公式计算两人获胜的概率,从而进行判断即可.【详解】解:(1)门票的总数量为20÷10%=200(张),∴B馆门票为200×25%=50(张),C馆门票数量所占百分比为30200⨯100%=15%,补全图形如下;(2)画树状图或列表,1 2 3 4 1 \ 3 4 5 2 3 \ 5 6 3 4 5 \ 7 4567\8种结果, ∴小明获得门票的概率为41123=,小华获得门票的概率为82123=,∵1233≠, ∴这个规则对双方不公平. 【点睛】本题考查了统计图的分析及用列表法或画树状图法求概率判断游戏公平性,熟练掌握各计算公式是解题的关键.23.(1)图见详解,6 ;(2)图见详解,4.5 【分析】(1)过C 画AB 的平行线,过A 画BC 的平行线,两线交于一点D ,根据平行四边形的判定定理可得四边形ABCD 是平行四边形,由平行四边形的性质可知∠CBA=∠CDA ,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B 的特点,作出∠E 与∠B 互补,然后用割补法求面积即可. 【详解】 解:(1)如图,S 四边形ABCD =3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S 四边形ABCE =3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.24.(1)图象见解析,A 1(-4,1),B 1(-1,2)C 1(-2,4);(2)图象见解析,A 2(-1,-1),B 2(-4,-2)C 2(-3,-4). 【分析】(1)依据平移的方向和距离,即可得到△A 1B 1C 1,依据图象写出1A 、1B 、1C 的坐标即可;(2)依据中心对称,即可得到△A 2B 2C 2,依据图象写出1A 、1B 、1C 的坐标即可. 【详解】解:(1)△A 1B 1C 1如图所示, A 1(-4,1),B 1(-1,2)C 1(-2,4);(2)△A 2B 2C 2如图所示,A 2(-1,-1),B 2(-4,-2)C 2(-3,-4). 【点睛】本题主要考查作图-平移变换与旋转变换,求关于原点对称的点坐标,解题的关键是掌握平移变换与旋转变换的定义与性质,并据此得出变换后所得对应点. 25.(1)每千克水果应涨价2元;(2)510x ≤≤ 【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案. 【详解】(1)设每千克应涨价x 元,由题意列方程得: (10+x )(500﹣20x )=5520, 解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元; 答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++令6000w =,即22030050006000x x -++=, 解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤, 答:每千克水果涨价x 的范围是510x ≤≤. 【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.26.(1)25%;(2)35元 【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可. 【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得: 256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)由表可知:该商品每降价1元,销售量增加5件, 设当商品降价m 元时,商品获利4250元,根据题意可得: (40-25-m )(400+5m )=4250, 解得:m 1=5,m 2=-70(不合题意舍去), 40-5=35元.答:销售单价应定为35元,商品获利4250元. 【点睛】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.。
浙教版九年级上册期末模拟数学试卷(含答案)

浙教版九年级数学上学期期末模拟试卷一、选择题(本大题共10小题,共30.0分)1.已知(0,y1),(1,y2),(4,y3)都是抛物线y=2x2−3x+m上的点,则()A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y22.如图,△ABC∽△AED,∠ADE=80°,∠A=60°,则∠B等于()A. 40°B. 60°C. 80°D. 100°3.在−2,−1,0,1,2这五个数中任取两数m,n,则二次函数y=(x−m)2+n的顶点在坐标轴上的概率为()A. 25B. 15C. 14D. 124.下列各组图形中,一定相似的是()A. 所有矩形B. 所有正方形C. 所有菱形D. 所有平行四边形5.如图,⊙O的半径为13,弦AB的长为24,M是弦AB上的动点,则线段OM长的最小值为()A. 8B. 7C. 6D. 56.如图,D,E分别是△ABC的边AB、BC上的点,DE//AC,若S△BDE:S△CDE=1:2,则S△DOE:S△AEC的值为()A.16B. 19C. 112D. 116 7. 如图,AG ︰GD =4︰1,BD ︰DC =2︰3,则BG ︰GE =( ) A. 1︰1B. 4︰3C. 6︰5D. 13︰128. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A. B.C. D.9. 如图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( )A. ∠APB =∠EPCB. ∠APE =90°C. 点P 是BC 的中点D. BP:BC =2:310. 如图,正方形ABCD 的边长为2,BE =CE ,MN =1.线段MN 的两端在CD ,AD 上滑动,当△ABE 与以D ,M ,N 为顶点的三角形相似时,DM 的长为( )A. 13B. 13或23C. √55D. √55或2√55二、填空题(本大题共6小题,共24.0分)11.出售某种手工艺品,若每个获利x元,一天可售出(8−x)个,则当x=__________元,一天出售该种手工艺品的总利润y最大.12.如果一个三角形的三边长为5,12,13,与其相似的三角形的最长边为39,那么较大的三角形的周长为,面积为.13.如图所示,AB是半⊙O的直径,AC为弦,OD⊥AC于点D,过点O作OE//AC交半⊙O于点E,过点E作EF⊥AB于点F.若AC=2,则OF的长为_________.14.如图,在平行四边形ABCD中,AB=10,AD=6,点E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是________.15.如图所示,在矩形ABCD中,AB=√3,BC=√6,点E在对角线BD上,且BE=1.8,连结AE并延长交DC=________.于点F,则CFCD16.如图,抛物线y=−2x2+8x−6与x轴交于点A,B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.三、解答题(本大题共7小题,共66.0分)17.如图,小明的爸爸在相距4m的两树等高位置处拴了一根绳子,做成一个简易的秋千,绳子自然下垂呈抛物线.已知身高1.5m的小明站在距离树1m的地方,头部刚好触到绳子.(1)求抛物线的函数表达式和自变量的取值范围.(2)求绳子最低点离地面的距离.18.问题情景:某校数学学习小组在讨论“随机掷两枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:“随.”小颖反驳道:“这里机掷两枚均匀的硬币,可以有‘二正、一正一反、二反’三种情况,所以P(一正一反)=13.”的‘一正一反’实际上含有‘一正一反,一反一正’这两种情况,所以P(一正一反)=12(1)________的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次试验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的试验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言,小聪与小颖两位同学的试验说明了什么?19.如图,已知A(−1,0),B(2,−3)都在一次函数y1=−x+m与二次函数y2=ax2+bx−3的图象上.(1)求m的值和二次函数的表达式;(2)请直接写出使y1>y2时自变量x的取值范围.20.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D.求AD的长.21.如图所示,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于点F,ME交BC于点G.(1)求证:△AMF∽△BGM.(2)连结FG,如果α=45°,AB=4√2,BG=3,求FG的长.22. 如图,在平面直角坐标系中,抛物线C 1:y =a (x −52)2+ℎ分别与x 轴、y 轴相交于点A(1,0)和点B(0,−2),将线段AB 绕点A 按逆时针方向旋转90°至AP .(1)求点P 的坐标及抛物线C 1的函数表达式.(2)将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2,请判断点P 是否在抛物线C 2上,并说明理由.23. 已知:如图,在△ABC 中,AB =AC.以腰AB 为直径作半圆O ,分别交BC ,AC 于点D ,E .(1)求证:BD =DC .(2)若∠BAC =40∘,求BD⏜,DE ⏜,AE ⏜的度数.参考答案1.【答案】D【解析】【分析】本题主要考查的是二次函数的图象上点的坐标特征,二次函数的性质的有关知识,先求出抛物线的对称轴,再根据二次函数的增减性解答.【解答】解:抛物线y=2x2−3x+m的对称轴为x=−−32×2=34,∵k=2>0,∴抛物线开口向上,当x>34时,y随着x的增大而增大,当x<34时,y随着x的增大而减小,∵34<1<4,∴y2<y3,∵0到对称轴的距离大于1到对称轴的距离,4到对称轴的距离大于0到对称轴的距离,∴y1>y2,y3>y1,∴y3>y1>y2,故选D.2.【答案】A【解析】【分析】本题主要考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键.根据三角形内角和定理可求得∠AED,再根据相似三角形的性质可求得∠B=∠AED,可得到答案.【解答】解:∵∠ADE+∠A+∠AED=180°,∴∠AED=180°−∠ADE−∠A=180°−80°−60°=40°,又∵△ABC∽△AED,∴∠B=∠AED=40°,故选A.【解析】解:∵二次函数y=(x−m)2+n的顶点在坐标轴上,∴m=0或n=0,画树状图得:∵−2,−1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为820=25.故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.4.【答案】B【解析】【分析】本题考查相似图形的定义,即图形的形状相同,但大小不一定相同的是相似形.根据相似图形的定义,对选项进行一一分析,排除错误答案.【解答】解:A.所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;B.所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确;C.所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D.所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误;故选B.5.【答案】D【解析】此题主要考查垂径定理和垂线段最短问题,过O作OM⊥AB于M,此时线段OM的长最短,根据垂径定理与勾股定理求解【解答】解:过O作OM⊥AB于M,此时线段OM的长最短,连接OA,∵OM过O,OM⊥AB,∴AM=12AB=12×24=12,在Rt△AMO中,由勾股定理得:OM=√OA2−AM2=√169−144=5故答案为:5.6.【答案】C【解析】[分析]先根据等高三角形的面积证明BE:EC=1:2,进而证明BE:BC=1:3;证明△DOE∽△AOC,△BDE∽△BAC,得到DEAC =BEBC=EOOA=13,借助相似三角形的性质得到S△DOE:S△AOC=(DEAC)2=19,再根据等高三角形的面积计算得到S△AOC:S△AEC=34=912即可解决问题.本题主要考查了相似三角形的判定与性质,解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.[详解]解:∵S△BDE:S△CDE=1:2,△BDE和△CDE等高,∴BE:EC=1:2;∴BE:BC=1:3;∵DE//AC,∴△DOE∽△COA,△BDE∽△BAC,∴DEAC =BEBC=EOOA=13,∴AOAE =34,∴S△DOE:S△AOC=(DEAC )2=19,∵△AOC和△AEC等高,∴S△AOC:S△AEC=34=912,∴S△DOE:S△AEC=1:12.故选C.7.【答案】D【解析】【分析】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所截得的三角形的三边与原三角形的三边对应成比例.过点G作GF//CA交BC于F,如图,利用平行线分线段成比例定理,由GF//CE得到BGGE =BFCF,DFCF=DGAG,进而可得BF=23CD+15CD=1315CD,CF=45CD,即可得.【解答】解:过点G作GF//CA交BC于F,如图,∴BGGE =BFCF,DFCF=DGAG,∵AG︰GD=4︰1,∴DF=15CD,CF=45CD,∵BD︰DC=2︰3,∴BD=23CD,∴BF=23CD+15CD=1315CD,∴BGGE =BFCF=1315CD45CD=1312.故选D.8.【答案】B【解析】【分析】本题考查了相似三角形的判定,根据勾股定理,易得出△ABC三边的长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长均为1,∴△ABC三边分别为2,√2,√10;A中三角形各边的长分别为√5,3,√2;B中三角形各边长分别为√2,1,√5;C中三角形各边长分别为1,2√2,√5;D中三角形各边长分别为2,√5,√13..只有B中三角形的三边与已知三角形的三边成比例,且相似比为√229.【答案】C【解析】【分析】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似;利用两三角形相似的判定定理,做题即可.【解答】解:利用三角形相似的判定方法逐一进行判断.A 、B 可用两角对应相等的两个三角形相似;D 可用两边对应成比例且夹角相等的两个三角形相似进行判断.只有C 中P 是BC 的中点不可推断.故选C .10.【答案】D【解析】【分析】此题主要考查学生对相似三角形的性质的理解及运用.因为∠B =∠D =90∘,所以只有两种可能,假设△ABE∽△NDM 或△ABE∽△MDN ,分别求出DM 的长.【解答】解:∵正方形ABCD 边长是2,BE =CE ,∴BE =1,∴AE =√AB 2+BE 2=√5, ①假设△ABE∽△NDM ,∴DM:BE =MN:AE ,∴DM =1:√5×1=√55. ②假设△ABE∽△MDN ,∴DM:BA =MN:AE ,∴DM =1:√5×2=2√55.∴DM =√55或2√55. 故选D .11.【答案】4【解析】【分析】本题考查了二次函数的最值.根据总利润=每个获利×每天的销量即可得到y 关于x 的函数关系式,利用二次函数的最值解答即可.【解答】解:由题意可得:y =x(8−x)=−x 2+8x =−(x −4)2+16,∵a =−1<0,∴当x=4时,y有最大值,故答案为4.12.【答案】90 270【解析】【分析】本题考查了相似三角形对应边的比相等,由相似三角形对应边比相等,知道已知三角形的三边和较大三角形的最大边,根据相应比求得边和周长,再由直角三角形面积公式即可求得三角形的面积.【解答】解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴a5=b12 =3913解得:a=15,b=36,则较大三角形的周长为90,面积为270.故答案为为90,270.13.【答案】1【解析】【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE//AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,{∠ADO=∠EFO ∠DAO=∠FOEOA=OE,∴△ADO≌△OFE(AAS),∴OF=AD=1,故答案为1.14.【答案】1.8【解析】【分析】本题主要考查了平行四边形的性质及相似三角形的性质:平行四边形的对边相等.相似三角形的对应边成比例,由△CBF∽△CDE,根据相似三角形的对应边对应成比例,可知BF:DE=BC:DC,即BF=BC:DC×DE.又四边形ABCD是平行四边形,根据平行四边形的对边相等,可知BC=AD=6,DC=AD=10,易知DE=3,从而求出BF的长.【解答】解:∵在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,∴CD=10,BC=6,DE=3.∵△CBF∽△CDE,∴BF:DE=BC:DC,∴BF=6÷10×3=1.8.故答案为1.8.15.【答案】13【解析】【分析】本题主要考查了矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF 的长,求出CF,计算即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=√3,BC=√6,∴BD=√AB2+AD2=3.∵BE=1.8,∴DE=3−1.8=1.2.∵AB//CD,∴DFAB =DEBE,解得:DF=2√33,则CF=CD−DF=√33,∴CFCD =√33√3=13.故答案为13.16.【答案】−3<m<−158【解析】【分析】本题考查二次函数的平移,一次函数与二次函数的交点个数.根据平移变换法则,由C1的解析式求出C2的解析式.当直线y=x+m与C2相切时,求出m的值;当直线y=x+m经过点B时,求出m的值;再结合图象进而求出直线y=x+m与C1,C2有3个不同的交点时,m的取值范围.【解答】解:令y=−2x2+8x−6=0,即x2−4x+3=0,解得x=1或x=3,则点A(1,0),B(3,0).由于将C1向右平移2个单位长度得C2,则C2对应的函数解析式为y=−2(x−4)2+2(3≤x≤5),如图,当y=x+m1与C2相切时,令x+m1=−2(x−4)2+2,即2x2−15x+30+m1=0,由Δ=−8m1−15=0,解得m1=−158;当y=x+m2过点B(3,0)时,0=3+m2,解得m2=−3.结合图象知当−3<m<−158时,直线y=x+m与C1,C2共有3个不同的交点.17.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c.∵由题意可知:抛物线经过点(0,2.5),(1,1.5),(4,2.5),∴{c=2.5a+b+c=1.516a+4b+c=2.5,解得:a=13,b=−43,c=52.∴抛物线的解析式为y=13x2−43x+52(0≤x≤4).(2)将x=2代入得:y=−43−83+52=76.答:绳子最低点离地面的距离76米.【解析】本题主要考查的是二次函数的实际应用,找出函数图象经过的三点的坐标是解题的关键.(1)先找出抛物线上三点的坐标,然后依据待定系数法求解即可;(2)当x=2时,y有最小值,从而可求得绳子最低点离地面的距离.18.【答案】解:(1)小颖;(2)小聪得到的“一正一反”的频率是50÷100=0.50,小颖得到的“一正一反”的频率是47÷100=0.47,据此,我得到“一正一反”的概率是12;(3)对概率的研究不能仅仅通过有限次试验得出结果,而是要通过大量的重复试验得出事件发生的频率,从而去估计该事件发生的概率.【解析】【分析】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的;(2)见答案;(3)见答案.19.【答案】解:(1)由于A(−1,0)在一次函数y1=−x+m的图象上,得:−(−1)+m=0,即m=−1.已知A(−1,0),B(2,−3)在二次函数y2=ax2+bx−3的图象上,则有:a−b−3=0,4a+2b−3=−3,解得a=1,b=−2,∴二次函数的表达式为y2=x2−2x−3;(2)由两个函数的图象知:当y1>y2时,−1<x<2.【解析】本题考查了用待定系数法求二次函数解析式的方法以及函数图象的意义.(1)将A、B的坐标分别代入y1、y2的解析式中,可求出m、a、b的值,也就能求出抛物线的解析式;(2)根据A、B的坐标,及两个函数的图象即可求出y1>y2时自变量x的取值范围.20.【答案】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=5,∵S△ABC=12AC⋅BC=12AB⋅CE,∴CE=AC⋅BCAB =3×45=125,∴AE=√AC2−CE2=95,∴AD=2AE=185.【解析】首先过点C 作CE ⊥AD 于点E ,由∠ACB =90°,AC =3,BC =4,可求得AB 的长,又由直角三角形斜边上的高等于两直角边乘积除以斜边,即可求得CE 的长,由勾股定理求得AE 的长,然后由垂径定理求得AD 的长. 此题考查了垂径定理、勾股定理以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.21.【答案】证明:(1)∵∠DME =∠A =∠B =α,∴∠AMF +∠BMG =180°−α,∵∠A +∠AMF +∠AFM =180°,∴∠AMF +∠AFM =180°−α,∴∠AFM =∠BMG ,∴△AMF∽△BGM .(2)当α=45°时,可得AC ⊥BC 且AC =BC =4,∵M 为AB 的中点,∴AM =BM =2√2,∵△AMF∽△BGM ,∴AM BG =AF BM ,∴AF =AM⋅BM BG =2√2×2√23=83, ∴CF =AC −AF =4−83=43, CG =BC −BG =4−3=1,∴FG =√CF 2+CG 2=√(43)2+12=53.【解析】此题考查了相似三角形的判定与性质、等腰直角三角形的性质与判定以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.(1)由∠DME =∠A =∠B =α,易得∠AMF +∠BMG =180°−α,∠AMF +∠AFM =180°−α,即可得∠AFM =∠BMG ,然后由有两角对应相等的三角形相似,即可证得△AMF∽△BGM ;(2)由α=45°,可得AC ⊥BC 且AC =BC ,又由△AMF∽△BGM ,根据相似三角形的对应边成比例,即可求得AF 的长,继而可求得CF 与CG 的长,然后由勾股定理求得FG 的长.22.【答案】解:(1)∵点A(1,0)和点B(0,−2),∴OA =1,OB =2,过P 作PM ⊥x 轴于M ,如图,由题意得:AP =AB ,∠BAP =90°,∴∠BAO +∠MAP =∠BAO +∠OBA =90°,∴∠MAP =∠OBA ,∵∠AOB =∠AMP =90°,∴△AOB≌△PMA ,∴PM =OA =1,AM =OB =2,∴OM =3,∴点P 的坐标为(3,−1),∵点A(1,0)和点B(0,−2)在抛物线C 1:y =a (x −52)2+ℎ上, ∴{ a (1−52)2+ℎ=0a (0−52)2+ℎ=−2解得{a =−12ℎ=89, ∴抛物线C 1的函数表达式为y =−12(x −52)2+98; (2) ∵将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2∴y 1=−12(x −52+2)2+98+1, 即:y 1=−12(x −12)2+178,∵当x =3时,y 1=−1,∴点P(3,−1)在抛物线C 2上.【解析】此题主要考查二次函数解析式的确定与二次函数的几何转换和二次函数上点的特征(1)过P 作PM ⊥x 轴于M ,证明△AOB≌△PMA ,根据全等三角形对应边相等求解(2)根据左加右减,上加下减的规律求得C 2,再根据图像上点的特征求解23.【答案】解:(1)连接BE 、AD ,∵AB是圆的直径,∴∠ADB=90°,∴AD是△ABC的高,∵AB=AC,∴BD=CD,(2)∵AB是圆的直径,∴∠ADB=∠AEB=90°,∴∠ABE=90°−40°=50°,AD⊥BC,∵AB=AC,∠BAC=40°,∴∠BAD=∠DAC=1∠BAC=20°,2∴由圆周角定理得:BD⏜所对的圆心角的度数是2∠DAB=40°,DE⏜所对的圆心角的度数是2∠DAE=40°,AE⏜所对的圆心角的度数是2∠ABE=2×(90°−40°)=100°.【解析】本题考查了圆周角定理,等腰三角形的性质的应用,主要考查了学生的推理能力和计算能力,注意:在同圆或等圆中,圆周角的度数等于它所夹弧所对的圆心角度数的一半.(1)连接BE、AD,根据等腰三角形的性质即可得到结论;(2)根据直径得出∠ADB=∠AEB=90°,求出∠ABE、∠BAD、∠DAC的度数,根据圆周角定理求出即可.。
浙教版九年级数学上册期末模拟试卷(含解析)

浙教版九年级数学上册期末模拟试卷解析版一、选择题(共10题;共20分)1.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D.2.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是( ) A. 12 B. 13 C. 23 D. 13.如图,直线a ∥b ∥c ,点A ,B 在直线a 上,点C ,D 在直线c 上,线段AC ,BD 分别交直线b 于点E ,F ,则下列线段的比与 AE AC 一定相等的是( )A. CE ACB. BF BDC. BF FDD. ABCD4.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan ∠APD 的值是( )A. 2B. √2C. 12 D. √22 5.对于函数y=(x-2)2+5,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线x=2对称D. 函数最大值为56.如图,等腰直角三角形ABC 的直角边AB 的长为 √3 ,将△ABC 绕点A 逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点D ,则图中阴影△ADC′的面积等于( )A. 3√32cm 2B. 3−√32cm 2 C. 2√3cm 2 D. 6cm 27.如图等腰三角形的顶角∠A=45°,以AB为直径的半圆O与BC,AC相较于点D,E两点,则弧AE所对的圆心角的度数为()A. 40°B. 50°C. 90°D. 100°8.如图,点A的坐标为(-3,-2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为()A. (0,-2)B. (0,-3)C. (-3,0)或(0,-2)D. (-3,0)9.如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,;②a的最小值为10.则下列说法正确的是( )射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= 12A. ①②都对B. ①②都错C. ①对②错D. ①错②对10.已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.12.如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A 的坐标为(1,2),则点C的坐标是________.13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.14.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP 与△ABC的一边相切时,AP的长为________.15.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017浙教版九年级数学上册期末模拟试卷
(全卷满分150分,考试时间120分钟)
温馨提示:同学们,请仔细审题,细心答题,相信自己,祝你取得理想的成绩!
参考公式:二次函数y = ax 2
+ bx + c 的顶点坐标是( -a b
2 ,a
b a
c 442-) 卷 Ⅰ
一、选择题:(本题有10小题,每小题4分,共40分)
(每小题给出的四个选项中,只有一个是正确的,不选、多选、错选均不给分) 1.若反比例函数k
y x
=
的图象经过点(-5,2),则k 的值为 ( ). A .10 B .-10 C .-7 D .7 2.抛物线22(1)3y x =+-的顶点坐标是( )
A .(1),-3
B .(1),3
C .(1)-,-3
D .(1)-,3 3.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC 的度数是( ) A .12° B.24° C.48° D .84°
4.若25
a
b =,则a b
b +=( ) A .75 B .35 C .57 D .27
5.已知圆锥底面圆的半径为6 cm ,高为8 cm ,则圆锥的侧面积为( ) A .48 cm 2
B .48π cm 2
C .60π cm 2
D .120π cm 2
6.如图,AB 是⊙O 的直径,C 是⊙O 上的一点,OD ⊥BC 于点 D ,AC=6,则OD 的长为( )
A .2
B .3
C .3.5
D .4 7.如图,抛物线()2
y ax bx c a 0=++>的对称轴是直线x=1,
且经过点P ,则a b c -+的值为( )
A .2
B .1
C .0
D .1- 8.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边D
E 与点B 在同一直线上.已知纸板的两条直角边DF=50cm ,EF=30cm ,测得
D
C B
O
A
第6题
第8题
O
A
B
C
第3题
第7题
边DF 离地面的高度AC=1.5m ,CD=20m ,则树高AB 为( ) A .12 m B .13.5 m C .15 m D .16.5 m
9. A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2
(1)y x a =-++上三点,1y ,2y ,3y 的大
小关系为( )
A .213y y y >>
B .312y y y >>
C .321y y y >>
D .312y y y >> 10. 如图,在平面直角坐标系中,BA⊥y 轴于点A ,BC⊥x 轴于点C ,函数
x
k
y =
()0>x 的图象分别交BA ,BC 于点D ,E.当AD:BD=1:3且∆BDE 的面积为18时,则k 的值是( )
A.9.6
B.12
C.14.4
D.16
卷 Ⅱ
二、填空题:(本题有6小题,每小题5分,共30分)
11.写出一个图象在第二、四象限的反比例函数的解析式 . 12.若将函数y =2x 2
的图象向左平移1个单位,再向上平移2个单位,可得到的抛物线是 .
13.如图,在△ABC 中,DE ∥BC,AD =1,AB =3,DE =2,则BC = .
14.如图,已知等腰△ABC 的面积为16cm 2,点D ,E 分别是AB ,AC 边的中点,则梯形DBCE 的面积为___ ___cm 2.
15.如图,⊙O 的半径为5,弦AB=8,动点M 在弦AB 上运动(可运动至A 和B ),设OM=x ,
则x 的取值范围是 .
16.如图,在平面直角坐标系中,ΔABC 是等腰直角三角形,∠ACB=Rt ∠,CA ⊥x 轴,垂足为点A.点B 在反比例函数()04
1>=
x x y 的图象上.反比例函数()022>=x x
y 的图象经过点C ,交AB 于点D ,则点D 的坐标是 .
第15题
第10题
E
D C
B
A 第13题
第16题
A
D
E C
B 第14题
2016年浙教版九年级数学上册期末质量检测试卷
题号 一 二 三
总分 17—18 19—20 21 22 23 24 得分
卷 Ⅰ
一、选择题(本题有10小题,每小题4分,共40分)
题号 1
2
3
4
5
6
7
8
9
10
答案
二、填空题(本题有6小题,每小题5分,共30分)
11. 12. 13.
14. 15. 16.
卷 Ⅱ
三、解答题:(本题有8个小题,共80分)
17. (本题8分)已知二次函数y=ax 2
+bx -3的图象经过点A (2,-3),B (-1,0). 求二次函数的解析式;
18. (本题8分)已知.如图,点D 、E 分别是在AB ,AC 上,AC
AE AB AD .求证:DE ∥BC
A
E D
19.(本题9分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,半径OD ⊥BC,垂足为E ,若BC=63第18题
OE=3;求: (1)⊙O 的半径; (2)阴影部分的面积。
20. (本题
9分)网格中每个小正方形的边长都是1. (1)将图1中画一个格点三角形DEF ,使得△DEF ≌△ABC
(2)将图2中画一个格点三角形MNL ,使得△MNL ∽△ABC,且相似比为2:1 (3)将图3中画一个格点三角形OPQ ,使得△OPQ ∽△ABC 2
C B
A
C B
A
C
B
A
21.(本题10分)已知(1)A m -,与(23)B m +,是反比例函数k
y x
=图象上的两个点. (1)求m 和k 的值
(2)若点C(-1,0),连结AC,BC ,求△ABC 的面积
(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.
22.(本题10分) 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .
D C O
B
A E 第21题 图1
图2
图3
第19题
求证:(1)D 是BC 的中点;
(2)△BEC ∽△ADC ;
(3)若CE=5,BD=6.5,求AB 的长。
23.(本题12分)天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:
10500y x =-+,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设该旗舰店每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要 元? (成本=进价×销售量)
24.(本题14分)如图,在平面直角坐标系中,抛物线c bx ax y ++=2
的顶点A
的坐标为
第22题
(3,15),且过点(-2,10),对称轴AB 交x 轴于点B ,点E 是线段AB 上一动点,以EB 为边在对称轴右侧作矩形EBCD ,使得点D 恰好落在抛物线上,点D ′是点D 关于直线EC 的轴对称点.
(1)求抛物线的解析式;
(2)若点D ′恰好落在y 轴上的点(0,6)时,求此时D 点的坐标; (3)直线CD ′交对称轴AB 于点F ;
①当点D ′在对称轴AB 的左侧时,且△ED ′F ∽△CDE ,求出DE:DC 的值 ②连结B D ′,是否存在点E ,使△E D ′B 为等腰三角形?若存在,请直接写出BE:BC 的值,若不存在请说明理由.
x
y
F
A
B
D'C
D
O
E x
y
A
B
O
x
y
A
B
O。