重点突破6:换元法求函数值域

合集下载

函数值域求法(换元法,判别式法和万能K法)

函数值域求法(换元法,判别式法和万能K法)

四类换元法1、一般换元;2、双换元;2、三角换元; 4、整体换元。

一、一般换元例1、求函数1--=x x y 的值域。

二、三角换元两个重要公式 1cos sin 22=+x xx x 22cos 1tan 1=+(常出现在竞赛中) 例2、求函数22x x y -+=例3、(2011高中联赛)函数11)(2-+=x x x f 的值域为_____________三、双换元例4、求函数31++-=x x y 的值域例5、求函数x x y -+-=363的值域。

四、整体换元例6、求函数5)4)(3)(2)(1(+++++=x x x x y 的值域。

判别式法/万能K 法原理:方程有解:一、分式型的值域形如fex dx c bx ax y ++++=22(d a ,不同时为零)的二次分式函数,可转化成如0)()()(2=++y c x y B x y A 的形式,视为关于x 的一元二次方程,对y 使用判别式0≥∆,可得y 的取值范围。

例1、求函数12222++-=x x x y 的值域。

例2、求函数122+++=x x xx y 的值域例3、求函数xx x x y ++-=2222在)2,2(-上的值域/最大、最小值。

例4、若函数18log )(223+++=x n x mx x f 的定义域为R ,值域为]2,0[,求n m ,的值。

二、可化为分式型的值域 形如2222fyexy dx cy bxy ax M ++++=(d a ,不同时为零)的式子,分子分母同除2y 齐次化后得到f yx e y x d c y x b y x a M ++++=)()()()(22,令t y x =,则化为一元的二次型分式f et dt c bt at M ++++=22。

例5、设+∈R y x ,,则代数式y x y y x x 222+++的最大值为______________.例6、若对任意非零实数y x ,不等式xy x y x a 4)5(222+≤+恒成立,则a 的最大值为___________(两种方法)例7、若R y x ∈,,求561045),(22++-+-=y x y xy x y x f 最小值。

求函数值域的几种方法

求函数值域的几种方法

解:由于 x 2 - 2x = (x -1) 2 –1 -1 . 1 1 2 y 2 x 2 x , 1 1 . y y x 2x
y 1 1 1 0 , 即 0. y y
解得 y -1 或 y > 0 .
函数的值域为 { y | y -1 或 y > 0 } .
1 1 应有 y 1 . 2 2 1 y x 1 2x 的值域应为 ( , ] , 这 说 明 2 “ 方 法1” 中 所 说 的 “ ( x) 0有 实 根 ” 是 必 要 的 . 1 1 (t 1)2 , 2 2
• •
3. 利用 (x) 的值域求 f [ (x) ] 的值域 如果函数 y = f (x) 是关于 (x) 的复合函数, 而 (x) 的值域是易求的,则可由原函数中先解 出 (x) ,而后由 (x) 的值域确定 f (x) 的值域 .
2 x 4 例3 求 函 数 y 的值域 . x 3
解:由原函数, 得
x y 3y 2 x 4,
3y 4 解得 x . y2 3y 4 4 由于 x 0, 0. y 2 . y2 3
4 函数的值域为[ , 2 ) . 3
1 例 4 求函数 y 2 的值域 . x 2x
又因 f (1) 2 , 函数定义域为 2 , .


6. 利用一元二次方程的根的判别式求一类函数 的值域
例8
x2 2 求函数 y 的 值 域 . 2x2 2 3 x 1
解:去分母得2 y x 2 2 3 y x y x 2 2 ,
(2 y 1) x 2 2 3 y x ( y 2) 0

2022届高考数学一轮复习——微专题06函数求值域常见8种方法全归纳

2022届高考数学一轮复习——微专题06函数求值域常见8种方法全归纳

专题06 函数求值域常见8种方法全归纳方法一、分离常数法例1、求函数312+=-x y x 的值域 先分离常数法: ∵313(2)773222+-+===+---x x y x x x ,∵702≠-x ,∴7332+≠-x , ∴312+=-x y x 的值域为{|∈y y R 且3}≠y . 方法二、判别式法例2.求函数221-=-+x x y x x 的值域 【解析】注意到,这个函数定义域为R ,这类函数在求值域时使用判别式法比较方便; 整理函数得()2221,(1)(1)0-+=----+=y x x x x y x y x y当1=y 时,方程无解当1≠y 时,所求函数的值域需要使得,方程有解,要求2(1)4(1)0∆=---≥y y y ,23210-++≥y y ,(1)(31)0-+≤y y ,113-≤≤y . 注意:当1=y 时,函数不再是关于x 的二次方程,且方程无解,所以1=y 不是函数的值域.所以在1≠y 的情况下研究函数值域,所以函数值域为1,13⎡⎫∈-⎪⎢⎣⎭y 方法三、配方法例3、求函数()44222--=+-+x x x x y 的值域【解析】可以将其换元转化为二次函数,令22-=+x x t ,2≥t ,则22222222--=+⋅⋅+x x x x t 即2442-+=-x x t 所以函数可整理为:()2222(1)3=--=--y t t t此时,发现函数在[1,)+∞单调递增,而t 的取值范围是2≥t (这里一定要看清,用的是t 的取值范围,而不是x 的取值范围),所以当2=t 时,函数取到最小值2-,所以函数值域为[2,)∈-+∞y .方法四、代数换元法例4、求函数2=+y x【解析】令0=t ,21=-x t ,∴222422(1)44=-++=--+≤y t t t通过换元,配方,将原函数转化为二次函数顶点式的形式,容易看出,函数转化为一个开口向下的二次函数,在1=t 时取到最大值.∴函数的值域为(,4]-∞.方法五、三角换元法例5、求函数=y x【解析】可以设cos θ=x ,[0,]θ∈π,注意取值范围cos sin 4πθθθ⎛⎫=-=+ ⎪⎝⎭y ,根据[0,]θ∈π,5444θπππ≤+≤,1cos 4θπ⎛⎫-≤+≤ ⎪⎝⎭[∈y . 方法六、均值不等式法例6、求函数23(0)1=≥++x y x x x 的值域 【解析】 当0=x 时,0=y 当0≠x 时,3(0)11=>++y x x x,因为12+≥=x x ,所以3311211=≤=+++y x x,[0,1]∈y 方法七、数形结合法例7(1)、求函数sin cos 2=-x y x 的值域 【解析】函数可看为两点连线的斜率,即1(cos ,sin )P x x ,2(2,0)P ,则sin 0cos 2-=-x k x ,即所求函数,问题转化为求k 的取值范围,借助图形,我们可以看到,当直线与单位圆相切时,k分别取到最大值和最小值1tan30=︒=l k,2tan150=︒=l k所以,原函数值域⎡∈⎢⎢⎥⎣⎦y .例7(2)、求函数y【解析】整理函数得,y ,这时观察函数,用一般方法不是很好继续进行,但我们发现,根号下的形式比较像两点间的距离公式,所以我们可以改造一下函数:=y (,0),(2,2),(2,1)--P x A B ,即||||=+y PA PB通过观察图像,这时所求的目标就很明显了,当P 处于AB 连线时,||||=+y PA PB 取到最小值:||5==y AB ,所以||||5+≥PA PB ,即函数值域为[5,)∈+∞y .方法八、特殊函数有界性法例8、求函数e 1e 1-=+x x y 的值域 【解析】 注意到函数定义域为R ,可以进行如下转化,用y 表示x ,()e 11+=-x x y e ,e (1)1-=--x y y . 注意1=y 时方程不成立,所以1≠y ,可将1-y 除到等式右边得:1e 1+=-x y y ,因为e 0>x ,即101+>-y y,解得:()1,1∈-y【巩固】1.求函数y =x 2+6x +1x 2+1的值域. 【分析】可将原函数整理成关于x 的方程的形式:(1-y )x 2+6x +1-y =0,并且该方程有解,容易判断y =1时满足方程有解,而y ≠1时方程为关于x 的一元二次方程,根据方程有解从而得到△≥0,这样可解出y 的范围,从而便可得出原函数的值域.【解答】解:将y =x 2+6x +1x 2+1整理成关于x 的方程,(1-y )x 2+6x +1-y =0,该方程有解; (1)若y =1,显然上面方程有解;(2)若y ≠1,上面方程为关于x 的一元二次方程,方程有解;∴△=36-4(1-y )2≥0;解得-2≤y ≤4且y ≠1;综上所述,原函数的值域为[]2(1,4-,1).法二:当x =0时,y =1当x ≠0时,2226166=1+=1111x x x y x x x x++=++++ ∵(][)1,22,x x +∈-∞-+∞ ∴[)(]63,00,31x x ∈-+ ∴[)(]612,11,41y x x =+∈-+ 综上,函数的值域为[]2(1,4-,1).2.求函数y =e x + 1e x+2值域. 【分析】由题意化简y =e x + 1e x +2=2+e x + 1e x +2-2,从而求函数的值域. 【解答】解:y =e x + 1e x +2=2+e x + 1e x +2-2 ∵2+e x >2,且y =x + 1x-2在(2,+∞)上是增函数, 故y =2+e x+ 1e x +2-2>2+ 12-2> 12; 故函数y =e x + 1e x +2的值域为⎝ ⎛⎭⎪⎫ 12,+∞.3.求下列函数的值域(1)y =1-x 21+x 2; (2)y =x - 1-2x ; (3)y =x + 4x. 【分析】(1)把已知函数解析式变形,利用分离常数法求解;(2)直接利用函数的单调性求得函数值域;(3)分类利用基本不等式求解.【解答】解:(1)y =1-x 21+x 2- x 2+1-2x 2+1=2x 2+1-1, ∵x 2+1≥1,∴0<1x 2+1≤1,则-1< 2x 2+1-1≤1, ∴y =1-x 21+x 2的值域为(-1,1]; (2)由1-2x ≥0,得x ≤ 12. ∵函数y =x - 1-2x 为增函数,∴其最大值为12,即函数y =x - 1-2x 的值域为(-∞, (1)/(2)]; (3)函数y =x + 4x的定义域为{x |x ≠0}, 当x >0时,y =x + 4x ≥2 x ﹒ 4x=4,当且仅当x =2时取“=”, 当x <0时,y =x + 4x =-⎝ ⎛⎭⎪⎫-x + 4-x ≤-2 (-x )﹒ 4-x =-4,当且仅当x =-2时取“=”. ∴y =x + 4x的值域为(-∞,-4]∪[4,+∞).。

高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。

(解析式中含有分式和根式。

)【例1】求函数2211x x y x ++=+的值域。

【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。

【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。

【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。

由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。

换元法求二次型函数的值域

换元法求二次型函数的值域

换元法求二次型函数的值域作者:刘亚丽来源:《新校园·学习版》2009年第09期一元二次函数的值域非常重要,但在实际学习中,直接求二次函数的值域的情况并不是很多,相反,以其他函数为载体,需要转化成二次函数后再求值域的二次型问题却非常多,本文对如何使用换元法求常见的几种二次型函数的值域作一简单介绍.1.含有二次根式的二次型[分析]观察其中自变量x出现的位置及其指数的情况,可以发现加号前面的有理项中的x的次数是加号后面无理项中的 x 的次数的2倍(前面的 x 是一次的,后面的 x 是二分之一次的),这两项构成了事实上的二次项和一次项的关系,因此可以使用换元法转化成二次函数的值域问题.说明:使用换元法的时候,无论在什么情况下,都要保证新的变元与换掉的代数结构的取值范围相一致,这围,以防出错.2.含有指数式的二次型例2:求函数 y =4 x + 2 x+1 +3的值域.[分析]根据指数式的运算法则,4 x =(22)x= (2 x)2,2 x+1 = 2 x·2 1 = 2·2 x,因此可考虑把原函数看成是关于 2 x 的二次函数来解决问题.解:∵ y =(2 x)2 + 2·2 x+3,令2 x=t,则 t >0,且y = t2 +2 t +3=( t +1)2+2,( t >0).∵t >0,∴y>(0+1)2+2=3.∴函数 y = 4 x+2 x+1 +3 的值域为( 3,+∞).3.含有对数式的二次型例3:求函数 y =( log 2 x )2+log 2 x2+2 的值域.[分析]根据对数的运算法则,log 2 x2=2 log 2 x,因此可以把原函数看成是关于 log 2 x 的二次函数.解:∵y=( log 2 x )2 +2 log 2 x+2,令log 2 x = t,则 t∈R,且 y = t 2+2 t+2=( t+1 )2+1,( t∈R ).∴函数y=(log 2 x)2 + log 2 x2+2 的值域为[1,+∞).4.含有特殊三角函数式的二次型例4:求函数 y = cos2x+4sinx 的值域.[分析]原函数是由两个不同名也不同角的三角函数相加而成,因此先要根据二倍角公式 cos2 x=1-2sin2 x,将它们化成同角同名的三角函数.这样就可以把原函数看成是关于 sin x 的二次函数了.解:∵cos2x=1-2sin2x ,∴y=1-2sin2x+4sinx.令sinx= t,则-1≤ t ≤1,并且 y =-2 t2+4 t+1=-2(t-1)2+3.∵-1≤t≤1,∴-2(-1-1)2+3≤y≤-2(1-1)2+3,即-5≤y≤3.∴函数 y = cos 2 x + 4 sin x 的值域为 [-5,3].说明:如果在一个关于三角函数的解析式中同时出现了 sinx ± cosx 和 sin x cos x 这样两种结构,并且除来确定.。

函数值域之换元法

函数值域之换元法

综合理论课程教育研究292 学法教法研究换元法是数学中一个非常重要且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法就是解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。

换元法又称辅助元素法、变量代换法。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

然而换元法在高考求值域问题中也是相当重要的。

一、一般换元法【例1】求函数的值域. 解:令,则且,函数的值域为【变式.重要公式: 有着本质的联系!【例2】(2005福建)已知实数满足,求.● 反思: 角的范围为什么这么取?【变式1】 求函数的最大值.答案:.【例4】(2009辽宁竞赛) 函数解:,令所以答案是.三、双换元【例5】求函数的值域.解:方法1:平方 当时,;当或1时,.函数的值域为. 方法2:双换元 令,则,其中,则解函数值域之换元法谢金辉(福建省晋江市内坑中学 福建 晋江 362200)【中图分类号】G633.6【文献标识码】A【文章编号】2095-3089(2018) 11-0292-02综合理论课程教育研究学法教法研究 293五、结论换元当待解题目的条件较繁而结论形式简单时,可考虑改变常规的习惯,逆向思考,结论换元,化未知为已知,获得简单方法。

【例8】已知,且,求的取值范围. 解:设,令,六、小结通过结论换元为用三角代换创造了条件,而且整体代入已知等式,转化为三角问题,十分巧妙,值得一学.【变式1】实数满足,设,求的最大值和最小值.解:设,则而《溶液中的离子反应》为化学反应原理三大“支柱”之一。

因其涵盖内容广,涉及化学反应原理的核心,成为高考化学的重要热点,该部分内容常以“溶液中离子浓度大小比较”形式呈现,其题型多为选择题,这种题型考查的知识点多、灵活性、综合性较强,有较好的区分度,它能很有效地考查学生对强、弱电解质、电离平衡、电离度、水的电离、pH 值、离子反应、盐类水解等基本概念的掌握。

函数值域的求法(7大压轴考法)原卷版

函数值域的求法(7大压轴考法)原卷版

函数值域的求法目录解题知识必备................................................................................ 错误!未定义书签。

压轴题型讲练................................................................................................................ 3 题型一、直接法............................................................................................................ 3 题型二、配方法............................................................................................................ 3 题型三、换元法............................................................................................................ 4 题型四、分离常数法.................................................................................................... 4 题型五、基本不等式法................................................................................................ 4 题型六、单调性法........................................................................................................ 5 题型七、判别式法........................................................................................................ 5 压轴能力测评(6题). (6)一、定义域优先函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则。

函数专题:函数值域的6种常用求法-【题型分类归纳】

函数专题:函数值域的6种常用求法-【题型分类归纳】

函数专题:函数值域的6种常用求法一、函数的最大(小)值1、最大值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≤M,那么,我们称M是函数y=f(x)的最大值,即当x=x0时,f(x0)是函数y=f(x)的最大值,记作y max=f(x0).2、最小值:对于函数y=f(x),其定义域为D,如果存在x0∈D,f(x)=M,使得对于任意的x∈D,都有f(x)≥M,那么,我们称M是函数y=f(x)的最小值,即当x=x0时,f(x0)是函数y=f(x)的最小值,记作y min=f(x0).3、几何意义:函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.二、求函数值域的6种常用求法1、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y=f(x)在区间[a,b]上单调递增,则y max=f(b),y min=f(a).(2)若函数y=f(x)在区间[a,b]上单调递减,则y max=f(a),y min=f(b).(3)若函数y=f(x)有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.2、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x函数的图象,从而利用图象求得函数的值域.3、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.4、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围. (2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理 5、分离常数法:主要用于含有一次的分式函数,形如+=+ax b y cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下: 第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式, 第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点突破:换元法求函数的值域
姓名:___________班级:___________
1.函数 的值域为( )
A. B. C. D.
2.函数 的值域是()
A.[0,+∞)B.(-∞,0]
C. D.[1,+∞)
3.求函数y=tan2x+tanx+1(x∈R且x≠ +kπ,k∈Z)的值域.
4.函数 的值域为__________.
5.函数 的值域为__________.
6.函数 的值域为__________.
7.函数 的值域为________________.
8.函数 的值域为________.
9.已知不等式 对一切 恒成立,则实数 的取值范围是______.
10.定义在 上的函数 的值域是__________.
11.函数 的值域为_________________.
9.
【解析】不等式 对一切 恒成立,等价于 ,因为 ,所以 ,所以 ,所以 实数 的取值范围是 ,故答案为 .
【方法点晴】本题主要考查利用配方法求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数 恒成立( 可)或 恒成立( 即可);②数形结合( 图象在 上方即可);③讨论最值 或 恒成立;④讨论参数.本题是利用方法①求得 的范围的.
(2)求函数定义域的注意点:①不要对解析式进行化简变形,以免定义域变化;②当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集;③定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.
(3)求函数值域的基本方法:①观察法,通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”,观察求得函数的值域;②利用常见函数的值域,一次函数的值域为 ,反比例函数的值域为 ,指数函数的值域为 ,对数函数的值域为 ,正、余弦函数的值域为 ,正切函数的值域为 ;③分离常数法,将形如 (a≠0)的函数分离常数,结合x的取值范围确定函数的值域;④换元法,对某些无理函数或其他函数,通过适当的换元,把它们化为我们熟悉的函数,再用有关方法求值域;⑤配方法,对二次函数型的解析式可以先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域的方法求函数的值域;⑥数形结合法,作出函数图象,找出自变量对应的范围或分析条件的几何意义,在图上找出值域;⑦单调性法(也可结合导数),函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其单调性,进而求函数的最值和值域;⑧基本不等式法,利用基本不等式 (a>0,b>0)求最值,注意应用基本不等式的条件是“一正二定三相等”;⑨判别式法,将函数转化为二次方程,利用Δ≥0,由此确定函数的值域,利用判别式求函数值的范围,常用于一些“分式”函数、“无理”函数等,使用此法要特别注意自变量的取值范围;⑩有界性法,充分利用三角函数或一些代数表达式的有界性,求出值域.
6.
【解析】解:由题意可知: ,
结合二次函数在闭区间上值域的性质可知:
当 时, ;
当 时, ,
函数的值域为 .
7.
【解析】令

∴ 的值域为
故答案为:
点睛:复合函数的值域处理方法:转化为内外层函数的值域问题,本题内层函数为 ,其值域为外层函数的定义域,而外层函数 的值域即为所求.
8.(-∞,-2]
【解析】令 ,由对勾函数可知 ,则 的值域为 。
3.原函数的值域是[ ,+∞)
【解析】设t=tanx,由正切函数的值域可得t∈R,
则y=t2+t+1=(t+ )2+ ≥ .
∴原函数的值域是[ ,+∞).
点评:由于正切函数的值域为R,所以才能在R上求二次函数的值域.
4.
【解析】分析:先求出 的定义域,再利用换元法即可求得答案.
详解: ,

令 ,
,当且仅当 时取等.
又 ,

故答案为: .
点睛:本题中求值域的方法突出了对函数解析式的变形,这是常用的策略,注意把握,本题考查了换元法与基本不等式的运用.
5.
【解析】函数
令 ,则 .
得 .
当 时,函数有最大值 .
所以值域为 .
故答案为: .
点睛:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择
参考答案
1.C
【解析】令 ,由 ,则 ,所以 ,又 ,所以函数 的值域为 ,故选C.
2.C
【解析】令 ,则 ,所以 ,当 时, 为增函数,又因为 ,所以当 时, 有最小值 ,所以函数的值域为 .故选C.
【点睛】
直接法求函数的值域,一般从自变量 的范围入手,逐步推出 的取值范围,基本初等函数的值域都是由此方法得出的.对于二次函数,常常根据求解问题的要求,采用配方法来求值域.
【解题必备】(1)在高考中考查函数的定义域时多以客观题形式呈现,难度不大.求函数定义域的三种常考类型及求解策略:①已知函数的解析式:构建使解析式有意义的不等式(组)求解;②对于抽象函数:若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出,若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域;③对于实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.
10.
【解析】由
+10 +24 1
因为 ,
所以 1
即函数 的值域是
点睛:注意整体思想、转化划归思想、配方法、换元法等的灵活使用将求复杂函数值域问题转化为一元二次不等式的问题是解决本题的关键.
11.[-1,1)
【解析】由题可得 ,由 易得0< ≤2,
故y∈[-1,1),所以函数 的值域为[-1,1) .
相关文档
最新文档