函数求值域方法之值域换元法

合集下载

求函数值域 、 周期的方法总结(适合高一)

求函数值域 、 周期的方法总结(适合高一)

求函数值域 、 周期的方法总结(适合高一)求值域一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。

二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。

三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125x y x -=+的值域。

四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

例4.求函数2y x =五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k xk x y 的值域(k x <<0时为减函数;k x >时为增函数))例5.求函数y x =六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211x y x -=+的值域。

七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。

除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。

周期一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

函数求值域方法之值域换元法

函数求值域方法之值域换元法

函数求值域方法之值域换元法值域换元法是一种常见的函数求值域的方法,通过将自变量进行一定的换元变换,从而转化为一个更简单的函数,通过分析这个新的函数的性质,来确定原函数的值域。

值域换元法的基本思想是通过适当的变量替换,将函数的自变量转化为另一个具有一定性质的自变量,从而使得原函数的值域问题变得更加简单。

这种方法适用于多种不同形式的函数,因此具有较广泛的适用性。

具体步骤如下:1.分析原函数的特点:首先需要对原函数进行一定的分析,确定其性质和特点。

这包括确定函数的定义域、奇偶性、单调性等。

2.设定新的变量:根据原函数的性质,选择一个新的变量来替代原函数的自变量,使得新变量的取值范围更为简单。

3.建立新的函数关系式:通过变量替换,建立新的函数关系式。

根据变量替换的方式不同,可以分为三种情况:-线性关系:如果原函数和新变量之间存在线性关系,可以直接建立新的函数关系式。

-可逆替换:如果变量替换是可逆的,即可以通过一定的算法从新变量反解出原函数的自变量,那么可以通过反解的方式建立新的函数关系式。

-不可逆替换:如果变量替换是不可逆的,即不能通过一定的算法从新变量反解出原函数的自变量,那么可以通过构造一个新的函数来近似原函数。

4.分析新函数的性质:对新函数进行分析,确定其定义域、奇偶性、单调性等。

可以通过导数的方法、函数图像的方法等来进行分析。

5.再逆变换回原变量:如果最终确定了新函数的值域,可以将新函数的值域通过逆变换的方式转化回原函数的值域。

值域换元法的优点是可以将原问题转化为一个更简单的问题,并且适用范围广,同时也有一定的局限性。

在实际运用中,需要根据具体的问题来选择合适的变量替换方法,以及确定合适的新函数进行分析。

总的来说,值域换元法是一种常见的函数求值域的方法,通过适当的变量替换和建立新的函数关系式,可以将原函数的值域问题转化为一个更简单的问题。

这种方法在实际问题中具有广泛的应用,可以提高问题求解的效率。

函数值域求法大全

函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。

确定函数的值域是研究函数不可缺少的重要一环。

本文介绍了十一种函数值域求法。

首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。

例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。

再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。

其次是配方法,这是求二次函数值域最基本的方法之一。

例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。

还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。

除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。

这些方法各有特点,应根据具体情况选择合适的方法来求解。

总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。

换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。

其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。

换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。

例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。

代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。

由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。

因此,函数的值域为 $[1,+\infty)$。

又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。

高中数学求值域的若干种方法总结

高中数学求值域的若干种方法总结

值域值域指的是函数因变量(y )的取值范围。

求函数值域在高中学习、考试中算是有一定难度的,而很多初学或者基础相对薄弱的学生往往很爱提到一个词——“带入”。

求值域之所以较难,是因为做题时首先要根据题目判断所需方法、选好方法后又得按照所选方法的步骤一步步进行,远不是一个“带入”能解决的,而且求值域的方法算是比较多的,因此需要大家先要把各个方法对应的题型特征、各个方法的步骤、注意事项、技巧等记清楚。

一、分离常数法——适应于分数形式的函数求值域问题 例1:(1)21()3x f x x +=- (2) 34()56x f x x +=+ (3)3sin 1()sin 2x f x x +=+ 解:]34,2[)(]3,1[2sin 53)(2)(]1,1[sin 065032sin 536552533722sin 56sin 36552518337622sin 1sin 3)()3(6543)()2(312)()1(-∈∴∈+∴≠∴≠∴-∈≠+≠-+-=++=-+=+-+=+++=-+-=++=++=-+=x f x x f x f x x x x x x x x x x x x x x x f x x x f x x x f ΘΘΘ 二、反函数法——适应于分数形式的函数求值域问题例2:(1)312-+=x x y (2) 6543++=x x y (3)11+-=x x e e y解:110115320035021135462131)1(46)35(13)2(1)1(43)65(12)3(11)3(6543)2(312)1(<<-∴>---∴≠∴≠∴>≠-≠----=∴-+-=∴-+=∴--=-∴+-=-∴+=-∴-=+∴+=+∴+=-∴+-=++=-+=y y y y y e y y y y e y y x y y x y e y y x y y x y e e y x x y x x y e e y x x y x x y x x x x x xx ΘΘΘΘΘΘ三、换元法求值域——适用于d cx b ax y +++=或者其他类二次函数形式的问题例3:x x x f x x x f -+=-+=1)(221)(1)()(]45,(]1,(45)21(211)1(1),,0[21),,0[1)0(1)()0(21)(1210,1)2(0,21)1(2222-∞∴-∞∴====+∞∈=+∞∈=≥+-=∴≥+-=∴-=∴-=∴≥∴=-≥∴=-原函数值域为原函数值域为时,当时,当且开口向下对称轴且开口向下对称轴令令解:f t f t t t t t t t f t t t t f t x t x t t x t t x 例4:x x x f xx x f 2cos sin ()2(cos sin )()1(2-=-=)]2,89[]1,45[2)1(11)1(189)41(4145)21(21,]1,1[41,]1,1[21]1,1[12)(]1,1[1)(]1,1[,sin ]1,1[,sin 1sin sin 21sin sin )sin 21(sin )()2()sin 1(sin )()1(222222-∴-∴====-=--=-=--=-∈-=-∈-=-∈-+=∴-∈-+=∴-∈∴=-∈∴=-+=-+=--=--=原函数值域为原函数值域为时,函数取得最大值当时,函数取得最大值当时,函数取得最小值当时,函数取得最小值当且开口向上对称轴且开口向上对称轴令令解:f t f t f t f t t t t t t t f t t t t f t t x t t x x x x x x x x f x x x f 注:三角函数中同幂不同角、同角不同幂时求值域,是不能用辅助角公式的,此时可以用换元法。

求函数值域常见的五种方法

求函数值域常见的五种方法

求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。

解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。

高中数学函数值域的求法(9种)

高中数学函数值域的求法(9种)

函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。

常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。

(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。

如函数211xy +=的值域{}10|≤<y y 。

(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。

例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。

(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。

如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。

(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。

(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。

例如:12--+=x x y 。

(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。

如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。

求值域常用的七种方法

求值域常用的七种方法
2
2、换元法
• 此法特点:函数的解析式含有根式或者三角函数 模型的.
• 求下列函数的值域
x 1 (1) y 2 (2) y x x 1 x 1 (3) y cos 2 x cos x 1
2
(4) y 9 3 2( x [0,1])
x x
3、基本不等式法
( x [0,3])
求值域常用的七种方法
1、二次函数配方法(图像法) 2、换元法 3、基本不等式法 4、利用函数的单调性法 5、分离常数法 6、数形结合法 7、导数法
1、配方法
• 求下列函数的值域
(1) y x 2 x
2
( 2) y x 2 x ( x [0,3])
2
(3) y x 4 x 1( x [ 4,4])
2
(2) y | x 2 | | x 8 | (3) y | x 1 | | x 3 | (4) y | x 3 | | x 1 |
(5) y x 6 x 13 x 4 x 5
2 2
(6) y x 6 x 13 x 4 x 5
2 2
注:求两距离之和时,要函数式变 形,使A、B在x轴的两侧,而求两 距离之差时,则使A、B两点在x轴 的同侧。
sin x (7 ) y cos x 2
7、导数法
• 求下列函数的值域
x (1) y x ( x [0,4]) e
3 2
(2) f ( x) 2 x 3 x 12 x 5
• 求下列函数的值域
1 (1) y x 1 x 2 x 2x 2 (2) y ( x 1) x 1 (3) y log 3 x log x 3 1

求值域的方法

求值域的方法

求值域的方法如何求函数的值域一、配方法将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。

二、常数分离这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。

三、逆求法对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。

四、换元法对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。

五、单调性可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。

六、基本不等式根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。

七、数形结合可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。

八、求导法求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。

函数的值域是什么函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。

f:A→B中,值域是集合B的子集。

如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数求值域方法之值域换元法
求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。

五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法
类型一:一般换元法
形如:y=ax+b 士: cx - d
方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t= cx d,
用t表示x,带入原函数得到一个关于t的二次函数,求解值域即可。

例1:求函数f (x)二x - x -1的值域
分析:本题x・[1,=),在取值区间内,x单调增,..x-1单调增,两个单调增的
函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。

解:另t = Jx _1 (20),则x=t?+1,
代入 f (x)得f (x)二t2-t 1 (t - 0)
本题实求二次函数在指定区间内的范围
3
3
当t -0,f(x)_
4
所以f (x)[彳,二)
变式:求函数f(X)二X • X -1的值域
分析:本题X・[1「::),在取值区间内,x单调增,••X-1单调增,两个单调增的
函数相加,所以整个函数在取值区间上单调递增所以f(x)_ f(1)即可
由于一般换元法相对来说比较简单,这里就不赘述,留一道练习
练习:求f (x^2x . 3x 1的值域
类型二:三角换元
记住一句话:三角换元一个大原则,三个常用公式
A、一个大原则:x有界,换成sin ncosr
x无界,换成tann
B、三个常用公式:①遇到x2,且前面系数为-1,常用sin J cos^ -1
1
②遇到x2,且前面系数为1,常用——2 1 tan2二
cos日
2tan —
③巧用万能公式:sin^ = ---------- --
1 tan
2 -
2
2 6
1 - tan
2 -
2
COS)
1 tan
2 -
2
三角换元时,尤其注意确定好二的取值范围,下面用具体的例题跟大家说明
例2:求f(x) =x 1 -x2的值域
分析:本题若使用一般换元法,则只能得到x2与t2之间的关系,操作起来比较麻烦,换元法本身的目的就是要使得题目变得更为简单便捷,所以一般换元法失灵,考虑使用三
解:令x =s in V,1-x2—o,- X [-1,1],- si n 厂[-1,1]
角换元,因为x2前面的系数是-1,所以使用公式①换元
解:令x =s in V,1-x2—o,- X [-1,1],- si n 厂[-1,1]
1
另▼[一?,m (原因:方便后面化出来的cosr,不用讨论正负性了) 代入f (x),得f(x) =sin v J -sin1 2 3 4 v =sin「|cosv |
f (x) = sin J COST
辅助角公式,合一变形得:f(x)—2sin(八匸)(厂[一了才)
二二3 二—
「4 [R],
f(x) I 2]

式:
求f(x) =x j2-x2的值域

析:
另x = 2 si nr即可

案:k 2,2]
j x2十1
例3 :求f (x)= —-的值域
x -1
分析:本题x2前面的系数是-所以考虑使用公式②
解:X21 _0, x -1 = 0, x =1
1~r 小r IE IE H JE
另xgp (-倉uq,?)
f(x)(」:,-今]出1,::)
变式:
lx2 +2x +1
求f(x)- 的值域
x +1
1
cos2 r
sin —coz sin r-cosr , 2 sin
4 tan J -1
cos^
Jl H
(-严咛
■/ e e
Jl Jl Tl Tl
4
分析:X22x_0,x=-1, x_0或x 乞-2, X 1-1 或x 1乞-1
1
-1 一一 1,但=0 ,使用三角公式 x+1
具体过程问群主哟
答案:f(x). [―一 [1,、.2]
通过常规的解法很难操作,因而我们通过转化,进
行三角换元,再求解值域。

心)」^^ 竺 ^'sin^^cos^)
2 1+tan 2 日 tan 2^+1 2
1 1
—J
f(x)
[-打
类型三:三角换常值换元法
本类型主要是三角函数求值域下的一类,由于涉及换元,所以在本专题下讲解, 此类题目主要是针对分式形式的三角函数, 用到的换元方法是万能公式的逆向应
用。

2
由于 2tan ? si npl tan 22
cos 71,可令 t =ta nN ,则 sh'cosv 就转化成
1 tan
2 2, 1 tan 22,
了关于t 的函数,再根据一般函数求解值域的办法求解(在另外专题中讲解)
例5:求f(x)
Sin
^的值域
2 —cosx
例4: 求
3
J (x)°;x 2
x x 4
的值域
解: f (x )=$g 二#
x 2 -1 (x 2 1)2 x 2 1 x 2 1
到这一步以后,自然而然想到我们的第三个三角公式一万能公式
e 2ta n —
Sin

1 ta n —
2
COST 2

1「ta n 2

_____ 2
‘ 2

1 ta n —
对f (x )再进行转化
f(x)冷寻尸
分析:本题是高次式求值域,
分析:本题解法颇多,这里主要讲解两种方法。

利用万能公式我们可以把正余弦转发为关于t的函数;当然本题也可用斜率的相关知识求解。

解:方法一:万能公式法
2ta nx
f(X)_ sin x 1 tan22x 2tan2x
2—cosx 小1 - tan22x 1 +3tan22x
2 --------------- 2—
1 tan 2x
令tan2x二t,幕2-cosx = 0, x R,tan2x虽然x有范围要求,但是tan2x整体•二R,
t R
2t 2
f(x) 「,当t=0时,f(x)=0,t = 0时,f(x)二一-,分母是对勾函数,应
1 +3t
3t+】
t
用对勾函数的相关性质,可得值域f(x)・[-止,止]
3 3
方法二:斜率法(联系群主要哦)
类型四:双换元法
例6:求f(x) — 1 -x X 3的值域
分析:本题含有两个根号,使用一次换元,无法把根号去掉。

有根号的题目,要么换元,要么平方,要么分子分母有理化。

本题介绍两种解法。

解:方法一:平方法
f2(x) =1 -x x 3 2 -X2-2x 3 =4 2 -x2-2x 3
1 —x _0,x 3 _0二—3 乞1
本题实求在x・[-3,1]时,- x2 -2x的取值范围,二次函数求范围
0 乞-x2-2x 3 辽4,f2(x) [4,8],f(x) [2,2 2]
方法二:双换元法
令m = 1 -x, n = . x 3, _3 乞x 乞 1
.0_m_2,0 _n_2
2 2
m n =1一x x 3=4
本题等价于:已知m2• n2 = 4 ,求f(x) 接下来有两种思路:
思路一:。

相关文档
最新文档