汽车安全玻璃试验方法-GBT5173.2

汽车安全玻璃试验方法-GBT5173.2
汽车安全玻璃试验方法-GBT5173.2

汽车安全玻璃试验方法--光学性能试验

来源:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所发布日期: 实施日期:

标准代码:GB/T 5137点击量:35 评论数:0

页面功能【字体:大中小】【打印】

前言

GB/T 5137《汽车安全玻璃试验方法》分为四个部分:

——第1部分:力学性能试验;

——第2部分:光学性能试验;

——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验;

——第4部分:太阳能透射比测定方法。

本部分为GB/T 5137的第2部分。

GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学

性能试验方法》(英文版)。

本部分与该国际标准的主要差异如下:

9.4572 775 0.01 0.0005

——删除了国际标准中的“定义”部分;

——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003

相一致。

本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。

本部分与GB/T 5137.2—1996相比主要变化如下:

——将“4.透射比试验”改为“4.可见光透射比试验”;

——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透

射比”;

——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”;

——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”;

——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致;

——将“9.反射比试验”改为“9.可见光反射比试验”;

本部分附录A为资料性附录。

本部分由原国家建筑材料工业局提出。

本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。

本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。

本部分主要起草人:王乐、韩松、陈峥科。

本部分所代替标准的历次版本发布情况为:

GB 5137.2—1985、GB/T 5137.2—1996。

汽车安全玻璃试验方法

第2部分:光学性能试验

1 范围

GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。

本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。

2 试验条件

除特殊规定外,试验应在下述条件下进行:

a) 环境温度:20℃±5℃;

b) 压力:8.60×104Pa~1.06×105Pa;

c) 相对湿度:40%~80%。

3 试验应用条件

对某些类型的安全玻璃而言,如果试验结果可以根据其某些已知的性能所预测,则无须进行本标准规定的所有试验。

4 可见光透射比试验比

4.1 试验目的

测定安全玻璃是否具有一定的可见光透射比。

4.2 试样

应使用制品或试验片,试验片可以从制品上相应试验区域切取。

4.3 仪器

光源:白炽灯,其灯丝包含在1.5mm×1.5mm×3mm的平行六面体内。加于灯丝两端的电压应使色温为2856K±50K,该电压稳定在±0.1%内。用来测量电压的仪表应有相应的精度。

4.3.2 光学系统:(见图1)由焦距f不小于500mm并经过色差校正的两个透镜L1和L2组成。透镜的净口径不超过f/20。透镜L1与光源之间的距离应能调节,以便获得基本平行的光束。在离透镜L1

100mm±50mm处远离光源的一侧装一光阑A1,把光束的直径限制在

7mm±1mm内。第二个光阑A2,应放在与L1具有相同性能的透镜L2前,光源的成像应位于接受器的中心。第三个光阑A3,其直径稍大于光源像最大尺寸的横断面,应放在接受器前,以避免由试样产生的散射光落到接受器上。测量点应位于光束中心。

图1 可见光透射比τr的测定

4.3.3 测量装置:接受器的相对光谱灵敏度应与国际照明委员会(CIE)标准规定的白昼视觉光度接受器的相对光谱灵敏度基本一致。接受器的敏感表面应用散射介质覆盖,并且至少应是光源像最大尺寸横断面的两倍。若使用积分球,则球的孔截面至少应为光源像最大尺寸横断面的两倍。

接受器及配套指示仪器的线性应等于或在满刻度的±2%内或在读数量程的

±10%之内,选择小值。

4.4 试验程序

4.4.1 试样放入光路前,调整接受器显示仪表指示值至100分度。在没有光照射到接受器上时,指示值为0。

4.4.2 把试样放入光阑A1和A2之间,调整试样方位,使光束的入射角等于

4.4.3 测定试样的可见光透射比,对每一个测量点读取显示仪表的指示值n,可见光透射比τr等于n/100。

4.5 结果表达

按上述方法,可见光透射比τr应以试样上任意一点的测定值表示。

4.6 替换方式

只要满足4.3.3条规定,可采用给出相同可见光透射比结果的其他方法。

5 副像偏离试验

5.1 试验目的

测定主像与副像间的角偏差。

5.2 试样

前风窗玻璃制品。

5.3 应用范围

可采用两种试验方法:

——靶试验

——准直望远镜试验

这些试验根据情况可用于产品的认可、质量控制及产品鉴定。

5.4 靶试验

5.4.1 仪器及使用器具

a) 靶式光源仪:由约300mm×300 mm×l50mm的光盒制成,其前面蒙有不透明黑纸或涂有无光泽黑漆的玻璃制成的靶,光盒内使用合适的光源照明,内表面涂无光泽白漆。

b) 靶:见图2。

c) 试样支架:可将试样以实车安装角安放并可在水平及垂直方向转动和移动。

d) 暗室或暗处:为了容易看到副像的存在,将仪器设置在暗室或暗处。

图2 靶式光源仪示意图

图2中,D由公式(1)得出:D=1000xtgη (1)

式中:

D——光斑外缘的一点到环内侧最近的一点之间的距离,mm;

x——试样与靶间距离(不小于7 m),m;.

η——副像偏离的极限值,分。

5.4.2 试验程序

按图3设置试样。将试样在水平方向回转,保证被测点的水平切线与观察方向基本垂直,并在水平和垂直方向移动,以观察整个试验区域,见图4。应透过试样进行观察,也可使用单筒望远镜进行观察。

5.4.3 结果表达

确定位于靶式光源仪中央的光斑的副像是否超过与圆环内缘相切的点,即:是否超过极限值η。

图3 仪器的设置

图4 靶式光源仪观察示例

5.5 准直望远镜试验

5.5.1 仪器及使用器具

a) 准直望远镜仪:由准直镜和望远镜组成,可以按图5建立,也可以使用任何等效的光学系统。

1——灯泡;

2——聚光镜,口径>8.6mm;

3——毛玻璃,口径>聚光镜口径;

4——中心孔径约为0.3mm的滤光片,直径>8.6mm;

5——极坐标分划板,直径>8.6mm;

6——物镜f≥86mm,口径10mm;

7——物镜f≥86mm,口径10mm;

8——黑斑直径约0.3mm;

9——物镜f=20mm,口径≤10mm。

图5 准直望远镜试验装置

b) 试样支架:可将试样以实车安装角安放并可在水平及垂直方向转动和移动。

c) 暗室或暗处:为了容易看到副像的存在,将仪器设置在暗室或暗处。

5.5.2 试验程序

准直镜将中心有一亮点的极坐标系成像于无限远处。见图6。

在望远镜的焦平面内放置一个直径比亮点的投影稍大的不透明斑于光轴上以遮住亮斑。

当造成副像的试样以实车安装角放置在望远镜和准直镜之间时,一个副的、较弱的亮点就呈现在与极坐标中心相距一定距离的地方。副像偏离值可由望远镜观察极坐标中出现的副像所处的位置读取。

注:暗班与极坐标中心处亮点间的距离为光学偏移。

5.5.3 结果表达

先用靶式光源仪以简单快速的扫描方法检查安全玻璃,以确定在哪些区域出现副像最严重,然后用准直望远镜仪测定试样在实车安装角状态下最严重的区域,以确定最大的副像偏离值。

图6 准直望远镜试验观察示例

6 光畸变试验

6.1 试验目的

测定安全玻璃的光畸变。

6.2 试样

前风窗玻璃制品。

6.3 仪器及使用器具

a) 幻灯机:光源:24V、150W卤钨灯;

焦距:90mm以上;

相对孔径:约1/2.5。

幻灯机光路如图7所示,在透镜前约10mm处放置一直径8mm的光阑。

b) 幻灯机:暗背景上的亮圆阵列。幻灯片的质量和对比度应符合试验要求,以便把测量误差控制在5%以内。在光路中未放入试样时,幻灯片应在屏幕上得到如图8所示的影像。

图7 幻灯机光路

图8 幻灯机的放大部分

图8中,D由公式(2)得出:

D=(R1+R2)/R1×4 (2)

式中:

D——投影到屏幕上的圆的直径,mm;

R1——幻灯机的镜头到试样的距离,mm;

R2——试样到屏幕的距离,mm。

注:1) 由于光学系统可能引起光畸变,建议仅采用投射像的中心区域进行测量。

2) 为了保证测量精度,布置仪器时最好使比值R1/R2等于1。

c) 试样支架:将试样以实车安装角安放,并可在水平及垂直方向转动或移动。

d) 屏幕:白色屏幕;

e) 检验样板:在需要迅速评价的地方,可使用如图9所示的检验样板来测量光斑尺寸的变化。

f) 暗室或暗处。

图9 检验样板

图9中:

A=0.145△aLR2 (3)

式中:

△aL——光畸变的极限值,分;

R2——试样到屏幕的距离,m。

6.4 试验程序

6.4.1将幻灯机、试样、屏幕按图10设置在暗室或暗处。

图10 光畸变试验仪器布置

R1=4m;R2=2m~4m(最好是4m)

6.4.2 确定在无试样的状态,屏幕上圆形亮斑的直径为D(mm)。

注:当R1=R2=4m时,按式(2),D为8mm。

6.4.3 将试样以实车安装角安放在试样支架上。将试样在水平方向回转,保证被测点的水平切线与观察方向基本垂直,并在水平和垂直方向移动,以观察整个试验区域,测定投影到屏幕上的圆形的最大的变形量。

6.5 结果表达由测定的最大变形量△d,按式(4)求出光畸变的最大值。

△a=△d/0.29R2 (4)

式中:

△d——最大变形量,mm;

△a——光畸变,分;

R2——试样到屏幕的距离,m。

7 破碎后的可视性试验

7.1 试验目的

检验安全玻璃破碎后的能见度。

7.2 试样

前风窗区域钢化玻璃制品。

7.3 使用器具

尖头锤子或自动冲头。

7.4 试验程序

7.4.1 取一块尺寸及形状都与试样相同的玻璃,将试样放在此玻璃上。用透明

胶带沿周边把它们固定在一起。

7.4.2 用锤子或自动冲头按图11所示的冲击点冲击并使试样破碎。

7.4.3 观察碎片的状态。必要时,可使用感光纸测定碎片的影像,感光纸的曝光开始时间应不迟于冲击后10s,曝光终止时间应不迟于冲击后3min,只分析那些代表初始裂纹的线条。

冲击点的位置如下所示(见图11);

点1:在主视区的中心;

点2:位于过渡区最接近主视区的横边中心线上;

点3及3′:在试样最短中心线上,距边30mm;

点4:在试样最长中心线上的曲率最大处;

点5:在试样的角上或周边曲率半径最小处,距边30mm。

图11 冲击点

7.5 结果表达

根据主视区中碎片的块数及其尺寸,评价安全玻璃破碎后的可视性。

8 颜色识别试验

8.1 试验目的

验证通过前风窗安全玻璃所看到的物体的颜色。

8.2 试样

前风窗玻璃制品。

8.3 使用器具

白、黄、红、绿、蓝、琥珀6种颜色的标示板。

8.4 试验程序

通过试样的试验区域观察标示板。

8.5 结果表达

确定通过前风窗玻璃所看到的标示板的颜色是否为原色。

9 可见光反射比试验

9.1 试验目的

测定安全玻璃在标准照明体A(见附录A)条件下的可见光反射比。

9.2 仪器

9.2.1 一级仪器:高精度、积分球式的能测定标准照明体A条件下工作标样光反射比的实验室光度计或光谱光度计。

一级仪器的几何(光学)条件应为下列情况之一:

a) 漫射/垂直(符号d/0):试样被积分球漫射照明,试样法线和测量光束的轴线之间的夹角不应超过10°。

b) 垂直/漫射(符号8/d):试样被一束光线照明,该光束的轴线与试样法线的夹角不应超过8°,用积分球收集反射光通量。

一级仪器积分球的直径应不小于100mm,且开口总面积不得大于球表面积的10%,球内表面用几乎对光谱无选择性的高漫反射材料(可见光反射比大于95%)来均匀涂敷。

9.2.2 二级仪器:比一级仪器精度低、携带式、能测定标准照明体A条件下安全玻璃光反射比的光度计,并且通过9.3.5计算其测量值。

9.2.3 吸光阱:一种能把透射光引起的反射减少到所测可见光反射比值的1%或更小的装置,吸光阱也能挡住试样反侧面的杂散透过光。

9.2.4 一级光度计必须有一个准确对应CIE标准照明体A的光源,精确适应于V(λ)的探测器,并直接生成标准照明体A的可见光反射比。

9.2.5 一级光谱光度计应能从测得的光谱反射比值ρ(λ),利用标准照明体A相对光谱功率分布函数SA(λ)和CIE光谱光视效率V(λ)来计算对标准照明体A条件

下的可见光反射比。

9.3 标样和试样

9.3.1 一级标样是具有已知可见光反射比值的高漫反射板,用于校准一级仪器。

9.3.2 二级标样应与被测安全玻璃材料相同,其可见光反射比值可溯源。二级标样用于校准二级仪器。

9.3.3 二级标样与被测试样为对光基本无漫射、模糊度小于2%,曲率半径大于或等于750mm,厚度小于10mm的安全玻璃材料,其测量区域应清洁、干燥、无破损。

9.3.4 一级仪器总误差的绝对值应在一级标样标定值的l%以内。

9.3.5 为了确定二级仪器的精度,在二级仪器上测得的试样值Ca与标样值Cb 之比Ca/Cb相对于由一级仪器测得的该比值之差的绝对值应小于5%。

9.4 试验程序

9.4.1 一级仪器的校准

a) 光度计的校准

接通电路,待光源、探测器稳定后,把吸光阱放在反射试样的测量孔处,调整可见光反射比值为0,把一级标样放在试样的测量孔处,从仪器上读出可见光反射比值。

b) 光谱光度计的校准

按仪器规定校准。

9.4.2 一级仪器的测量

注明二级标样的膜面和弯曲方向,并把它放在试样的测量孔处,测量可见光反射比。

9.4.3 二级仪器的校准

接通电路,待光源、探测器稳定后,把吸光阱放在反射试样的测量孔处,调整可见光反射比值为0。按3.5.4.2条标明的试样反射位置定位二级标样,把吸光阱放在二级标样后面,尽可能调整二级仪器的值(Cb)到由一级仪器测得的可见光反射比值(ρ0)。

9.4.4 二级仪器的测量

在二级仪器上测量应按照9.4.3条调整试样和吸光阱,测量试样的可见光反射比值(Ca)。

,ght=25>

102.04

575 101.43 4.7004 780 0.00 0.00 0.00 0.00 580 99.56 4.6137 99.56 9.2773

5nm间隔的总和(三刺激值)Y2157.92100.00 ——

(色品坐标) r 0.4074—

10nm间隔的总和(三刺激值)Y——1078.97100.00

(色品坐标) r 0.4075—

上一篇:汽车安全玻璃试验方法--力学性能试验

汽车整车试验方法标准72068

汽车整车试验方法标准 第一部分试验方法通则仪表校正 GB/T 12534-90 汽车道路试验方法通则 JIS D 1010-82 汽车道路试验方法通则 GB/T 12548-90 汽车速度表,里程表检验校正方法 JIS D 1011-82汽车速度表刻度检验方法 SAE J 1059-84 车速里程表试验规程 SAE J 966-66测量轿车轮胎每英里转数试验方法 SAE J 1025-73 测量载货汽车轮胎每英里转数试验规程 第二部分整车基本参数测量 GB/T 12673-90 汽车主要尺寸测量方法和测量汽车座椅适应性的装置ISO 4131-79 轿车尺寸标注方法 JIS D 0302-82 汽车外廓尺寸测量方法 SAE J 1100-84 汽车尺寸标注 NF R 18-005 轿车尺寸标注方法 DIN 70020/1 汽车和挂车一般尺寸 JB 4100-85 轿车客厢内部尺寸测量方法 JIS D 0301-82 汽车内部尺寸测定方法 JB 3983-85 轿车行李箱测量参考体积的方法 ISO 3832-76 轿车行李箱测量参考体积的方法 JIS D 0303-82 轿车行李箱标准容积的测量方法 NF R 18-003 轿车行李箱测量参考体积的方法

DIN ISO 3832 轿车行李箱测量参考体积的方法 GB/T 12674-90 汽车质量(重量)参数测定方法 GB/T 12538-90 汽车重心高度测定方法 GB/T 12540-90 汽车最小转弯直径测定方法 JIS D 1025-86 汽车最小转弯半径试验方法 JASO C 702-71 最小转弯半径试验方法 JASO Z 107-74 连结车最小转弯半径试验方法 SAE J 695-84 汽车转向能力及转向偏移量测定 SAE J 826-87 用于确定 第三部分动力性 GB/T 12544-90 汽车最高车速试验方法 JIS D 1016-82 汽车最高车速试验方法 DIN 70020/3 最高车速,加速度及其它术语定义和试验方法GB/T 12547-90 汽车最低稳定车速试验方法 GB/T 12543-90 汽车加速性能试验方法 JIS D 1014-82 汽车加速试验方法 SAE J 1491-85 汽车加速度测量 GB/T 12536-90 汽车滑行试验方法 JIS D 1015-76 汽车滑行试验方法 GB/T 12539-90 汽车爬陡坡试验方法 JIS D 1017-82 汽车爬陡坡试验方法 JIS D 1018-82 汽车爬长坡试验方法 GB/T 12537-90 汽车牵引性能试验方法 JIS D 1019-82 汽车牵引试验方法

汽车碰撞安全法规大全

汽车碰撞安全法规大全(中文版) 中国篇 乘用车正面碰撞的乘员保护(GB 11551-2003) 汽车侧面碰撞的乘员保护(GB 20071-2006) 乘用车后碰撞燃油系统安全要求(GB 20072-2006) 防止汽车转向机构对驾驶员伤害的规定(GB 11557-1998) 汽车座椅、座椅固定装置及头枕强度要求和试验方法(GB 15083-2006)汽车安全带固定点(GB 14167-2006) 汽车前、后端保护装置(GB 17354-1998) C-NCAP 前部正面刚性壁障碰撞试验方法 C-NCAP 前部偏置碰撞试验方法 C-NCAP 侧面碰撞试验方法 C-NCAP 评分方法 欧洲篇 防止汽车碰撞时转向机构对驾驶员伤害认证的统一规定(ECE R12) 关于汽车安全带安装固定点认证的统一规定(ECE R14) 关于车辆座椅、座椅固定装置及头枕认证的统一规定(ECE R17) 关于车辆内部安装件认证的统一规定(ECE R21) 关于后面碰撞汽车结构特性认证的统一规定(ECE R32) 关于正面碰撞汽车结构特性认证的统一规定(ECE R33) 关于车辆火险预防措施认证的统一规定(ECE R34) 关于汽车前后端保护装置(保险杠等)认证的统一规定(ECE R42) 关于车辆正面碰撞乘员保护认证的统一规定(ECE R94)

关于车辆侧面碰撞乘员保护认证的统一规定(ECE R95)EuroNCAP 前部碰撞试验方法 EuroNCAP 侧面碰撞试验方法 EuroNCAP 侧面撞柱评估标准 EuroNCAP 车辆对乘员颈部保护的动态评估试验方法EuroNCAP 行人保护试验方法 EuroNCAP 儿童保护评估方法 EuroNCAP 评估方法与生物力学极限 GTR 行人保护法规 EC 行人保护法规 北美篇 内饰件碰撞特性要求及试验方法(FMVSS 201) 头枕的碰撞保护(FMVSS 202a) 转向机构对驾驶员的碰撞保护(FMVSS 203) 对方向盘后移量的要求(FMVSS 204) 座椅系统(FMVSS 207) 乘员碰撞保护(FMVSS 208) 乘员离位(OOP)保护(FMVSS 208) 儿童约束系统要求(FMVSS 208) 安全带安装固定点认证的统一规定(FMVSS 210) 儿童约束系统(FMVSS 213) 侧面碰撞保护(FMVSS 214)

汽车滑行试验

实验三汽车滑行试验 一、实验内容 测量初速度为50km/h的滑行距离和滑行时间、滑行阻力及滑行阻力系数。 二、实验目的要求 了解五轮仪结构,工作原理及使用方法;掌握滑行实验方法,实验数据处理方法,并分析实验车装配调整技术状况。 三、仪器设备 综合气象观测仪、五轮仪或相应的车速、行程记录装置(精度不低于 %)、实验车等。 五轮仪的结构和工作原理参见附件1。. 四、准备工作 1.五轮仪安装在实验车适当的位置; 2.按五轮仪说明书规定接通电源,检查仪器的功能是否正常; 3.检查实验车轮胎气压是否符合规定要求; 4.实验车装额定载荷,设置实验路段标杆。 五、实验步骤 1.车速为50km/h的滑行距离 实验车应经过充分预热行驶,使发动机出水温度、油温及各总成油温达到正常稳定,并记录温度值。汽车以稍高于50km/h的车速驶入设置的测量试路段前,驾驶员将变速器排档放入空档,松开离合器踏板,汽车开始滑行,当速度为50km/h时(汽车应进入测试段)用五轮仪进行记录,直至汽车完全停止。 在滑行过程中,驾驶员不得转动方向盘。滑行实验至少往返各进行一次,往返区段应尽量重合。将滑行初速度、滑行距离和滑行时间记入实验报告中的表1。 2.测定滑行阻力 控制滑行初速度,使通过100m测试路段的滑行时间在20±2(s)内,测量

实验车通过前50m 和100m 的滑行时间t 1和t 2 。往返测量各两次,若数据重复性差,应补充进行实验。 六、注意事项 1.实验车的总质量,按实验车的整备质量加参加试验的在车人员质量(每人按65kg )计。 2.实验过程中,轮胎充气压力应符合该车技术条件规定,误差不得超过±10kPa 。 3.实验时天气应无雨无雾,气温0~40℃,风速不大于3m/s 。 4.实验应在清洁、干燥、平坦的,用沥青或混凝土铺装的直线道路上进行,道路长2~3km ,宽度不小于8m ,纵向坡度在1‰以内。 5.进行初速度为50km/h 的滑行实验时,汽车在进入测试区段前,车速应稍大于50km/h 。 七、结果整理与分析 1.将实测的初速度、滑行距离、滑行时间按下列公式算出标准初速度V 0=50km/h 的滑行距离: S = 式中:S ——初速度为50km/h 时的滑行距离,单位为m ; a ——计算系数 '2'0'2 V bS a S -= (1/S 2 ) '0V ——实测的滑行初速度,单位为m/s ; c ——常数,单位为m 2/s 2 (c=; S ′——实测的滑行距离,单位为m ; b ——常数,单位为m/s 2 (b=;当整车质量<4000kg 且滑行距离<600m 时,b= 2.滑行阻力计算

汽车安全玻璃试验方法-GBT5173.2

汽车安全玻璃试验方法--光学性能试验 来源:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所发布日期: 实施日期: 标准代码:GB/T 5137点击量:35 评论数:0 页面功能【字体:大中小】【打印】 前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学 性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: 9.4572 775 0.01 0.0005 ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003 相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透 射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”;

本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件 除特殊规定外,试验应在下述条件下进行: a) 环境温度:20℃±5℃; b) 压力:8.60×104Pa~1.06×105Pa; c) 相对湿度:40%~80%。 3 试验应用条件 对某些类型的安全玻璃而言,如果试验结果可以根据其某些已知的性能所预测,则无须进行本标准规定的所有试验。 4 可见光透射比试验比 4.1 试验目的 测定安全玻璃是否具有一定的可见光透射比。 4.2 试样 应使用制品或试验片,试验片可以从制品上相应试验区域切取。 4.3 仪器

汽车爬陡坡试验方法

汽车爬陡坡试验方法 1、 目的 规定了汽车爬陡坡的试验方法,以便考核车辆的爬坡力。 2、 适用范围 本标准适用于各类汽车 3、 引用标准 汽车道路试验方法通则。 4、 试验条件 4.1 试验条件应符合《汽车道路试验方法通则》 4.2 试验仪器 a. 秒表; b. 纲卷尺(50m); c. 标杆; d. 发动机转速表; e. 坡度仪。 4.3 道路 试验坡道坡度应接近试验车的最大爬坡度. 坡道长不小于25m ,坡前应有8~10m 的平直路段,坡度大于或等于30%的路面用水泥铺装,小于30%的坡道可用沥青铺装,在坡道中部设置10m 的测速路段。允许以表面平整、坚实、坡度均匀的自然坡道代替。大于40%的纵坡必须设置安全保险装置。 5、试验前的准备 按汽车道路试验方法通则 6、试验方法 6.1 非越野车爬坡试验方法 6.1.1 试验车使用最低档,如有副变速器也置于最低档,将试验车停于接近坡道的平直路段上。 6.1.2 起步后,将油门全开进行爬坡. 6.1.3 测量并记录汽车通过测速路段的时间及发动机转速. 6.1.4 爬坡过程中监视各仪表(如水温、机油压力)的工作情况,爬至坡顶后,停车检查各部位有无异常现象发生,并做详细记录。如第一次爬不上,可进行第二次,但不超过两次。 6.1.5 爬不上坡时,测量停车点(后轮接地中心)到坡底的距离,并记录爬不上的原因。 6.1.6 如没有厂方规定坡度的坡道,可增减装载质量或采用变速器较高一档(如I 档)进行试验,再按式(1)折算为厂定最大总质量下,变速器使用最低档时的爬坡度; 最大爬坡度a m =sin -1( 实实 实a i i Ga Ga sin 1 ) 式中:a 实——试验时的实际坡速,度;

汽车滑行阻力系数的测定方法

汽车滑行阻力系数的测定方法 王兆甲 李国栋 刘金铎 (中国汽车工程研究院股份有限公司天津分公司 天津 300461) [摘要] 利用VBOX 进行滑行试验,可以得到极为准确试验数据,将试验数据进行二次回归计算,得出汽车滑行阻力系数。可以得到比较准确的车辆道路阻力模型。 关键词:汽车 滑行 阻力系数 A Method to Determine Vehicle Coasting Resistance Coefficients Wang Zhaojia, Li Guodong, Liu Jinduo China Automotive Engineering Research Institute Co. Ltd. Tianjin Branch [Abstract] Using VBOX for coasting tests, we can acquire extremely accurate test data. A method using quadratic regression calculations to derive coast-down coefficients is put forward. So that accurate data for Chassis Dynamometer Simulation is determined. Key words: Vehicle Coasting Resistance coefficients 1 前言 1.1 试验目的及背景理论 在排放实验中,需要在底盘测功机上模拟道路行驶阻力。底盘测功机的阻力可以由标准GB18351.3-2005中规定的数学模型来描述,模型为: 2F a bv cv =++ (式1.1) 其中,a 代表与速度无关的常数项阻力(如道路摩擦力等),b 代表与速度一次项有关的阻力(如传动系阻力),c 代表与速度二次项有关的阻力(如风阻等)[1]。 底盘测功机模拟道路行驶阻力,需要在测功机上设定a,b,c 系数。这三个系数需要预先确定。 试验依据的规程原型是SAE J1164——Chassis Dynamometer Simulation of Road Load Using Coastdown Techniques (Issued 1995-04)和GB18352-2005——轻型汽车排气污染物限制及测量方法。这种方法给出了使用滑行技术在底盘测功机上模拟道路负荷的方法。本说明在规程原型基础上进行补充完善,给出使用VBOX 道路性能测试仪进行滑行测试的试验技术和可操作的使用滑行数据测算测功机动力参数a,b,c 的方法。 滑行(Coastdown )是在特定环境下,特定场地中,让车辆在断开动力链输出的情况下由高车速向低车速自由减速,并记录减速过程中必要数据(各减速阶段时间,起止速度等)的道路试验。 滑行技术(Coastdown Techniques )是依据标准中的物理模型和适当的数学方法,使用滑行测得的数据,计算出模型中的动力参数a,b,c 的试验技术。具体地,滑行技术可表述如下。 依据相关标准和文献[1],汽车滑行中所受阻力可表示为 20dv F m a bv cv dt ==++ (式1.2)

GB T 5137.2-2002汽车安全玻璃试验方法第2部分:光学性能试验

GB/T 5137.2-2002 (2002-12-20发布,2003-05-01实施) 前言 GB/T 5137《汽车安全玻璃试验方法》分为四个部分: ——第1部分:力学性能试验; ——第2部分:光学性能试验; ——第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验; ——第4部分:太阳能透射比测定方法。 本部分为GB/T 5137的第2部分。 GB/T 5137的本部分修改采用ISO 3537:1999《道路车辆安全玻璃材料力学性能试验方法》(英文版)。 本部分与该国际标准的主要差异如下: ——删除了国际标准中的“定义”部分; ——将“破碎后的可视性试验”中冲击点的位置及示意图,改为与GB 9656-2003相一致。 本部分代替GB/T 5137.2—1996《汽车安全玻璃力学性能试验方法》。 本部分与GB/T 5137.2—1996相比主要变化如下: ——将“4.透射比试验”改为“4.可见光透射比试验”; ——4.1可见光透射比试验目的改为:“测定安全玻璃是否具有一定的可见光透射比”; ——5.1副像偏离试验的试验目的改为:“测定主像与副像间的角偏离”; ——将“7.破碎后的能见度试验目的改为“7.破碎后的可视性试验”; ——7.4.3中冲击点的位置及示意图保持与GB 9656-2002相一致; ——将“9.反射比试验”改为“9.可见光反射比试验”; 本部分附录A为资料性附录。 本部分由原国家建筑材料工业局提出。 本部分由全国汽车标准化技术委员会安全玻璃分技术委员会归口。 本部分主要起草单位:中国建筑材料科学研究院玻璃科学与特种玻璃纤维研究所。 本部分主要起草人:王乐、韩松、陈峥科。 本部分所代替标准的历次版本发布情况为: GB 5137.2—1985、GB/T 5137.2—1996。 汽车安全玻璃试验方法 第2部分:光学性能试验 1 范围 GB/T 5137的本部分规定了汽车用安全玻璃的光学性能试验方法。 本部分适用于汽车安全玻璃(以下简称“安全玻璃”)。这种安全玻璃包括各种类型的玻璃加工成的或玻璃与其他材料组合成的玻璃制品。 2 试验条件

汽车零部件检测标准汇总表

汽车零部件检测标准汇总表 汽车发动机 1压燃式发动机排气污染 物 ESC 稳态循环试验 ELR 负荷烟度试验 ETC 瞬态循环试验 OBD 耐久性 GB17691-2001车用压燃式发动机排气污染物排放 限值及测试方法 **GB17691-2005车用压燃式、气体燃料点燃式发 动机与汽车排气污染物排放限值及测试方法 ECE R49压燃式发动机排气污染物 2 压燃式发动机排气可见 污染物GB3847-2005车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法 ECE R24可见污染物 3柴油机全负荷烟度DB11/046-1994汽车柴油机全负荷烟度测量方法 4车用点燃式发动机及装 用点燃式发动机汽车排 气污染物 GB14762-2002车用点燃式发动机及装用点燃式发 动机汽车排气污染物排放限值及测量方法 5发动机净功率GB/T17692-1999汽车用发动机净功率测试方法ECE R85发动机净功率 80/1269/EEC发动机净功率 6发动机性能GB/T18297-2001汽车发动机性能试验方法

7发动机可靠性GB/T19055-2003 汽车发动机可靠性试验方法 8 发动机产品质量检验评 定QC/T901-1998汽车发动机产品质量检验评定试验方法 9冷却系 Q/QJX 004-2003汽车发动机冷却系冷却能力试验 方法 10排气消声器性能QC/T630-1999汽车排气消声器性能试验方法QC/T631-1999汽车排气消声器技术条件 GB/T 4759-1995内燃机排气消声器测量方法 离合器1技术要求 QC/T 25-2004汽车干磨擦式离合器总成技术条件 QCT 27-2004汽车干磨擦式离合器台架试验方法 变速箱1技术要求QC/T29063-1992 汽车机械式变速器总成技术条件 QC/T 568-1999汽车机械式变速器台架试验方法 前轴1疲劳寿命 QC/T 513-1999汽车前轴台架疲劳寿命试验方法 QC/T 483-1999汽车前轴疲劳寿命限值 制动器1效能 QC/T 239-1997货车、客车制动器性能要求 QC/T 479-1999货车、客车制动器台架试验方法 QC/T 564-1999轿车制动器台架试验方法 2热衰退及恢复 3衬片(块)磨损 4管路失效及加力器失效

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞试 验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序 (NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以 更高的车速进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。 表一 FMVSS 与 ECE 的一些汽车安全性法规

2 20140624 郑建祥 《汽车理论》实验指导书 --实验一滑行试验 实验二制动试验

《汽车理论》 实验指导书 郑建祥 淮阴工学院.交通工程系 2014年6月

《汽车理论》实验一滑行试验 实验学时:2实验类型:综合实验要求:必修 一、实验目的 通过本实验的学习,掌握汽车滑行实验数据的采集和处理方法。 二、实验内容 测试汽车滑行距离、滑行时间;计算汽车滑行阻力、滑行减速度;评价汽车装配、调整情况。 三、实验条件 仪器设备:汽车道路试验仪、皮卷尺、标杆、汽车一辆,符合GB/T12534的规定试验场地。 学生可参考下列文献: 1余志生主编.汽车理论.第三版.北京.机械工业出版社,2001 2张文春主编.汽车理论.北京.机械工业出版社,2005 3冯健章主编.汽车发动机原理与汽车理论.北京:机械工业出版社,2002 4安相璧编.汽车实验工程.北京:国防工业出版社,2006 四、实验步骤 l、在长约1000m的试验路段两端立上标杆作为滑行区段,汽车在进入滑行区段前车速应稍大于50km/h。 2、汽车驶入滑行区段前,驾驶员将变速器排档放入空档(松开离合器踏板),汽车开始滑行。当50km/h时(汽车应进入滑行区段),用汽车道路试验仪进行记录,直至汽车完全停住为止。在滑行过程中,驾驶员不得转动方向盘。 3、记录滑行初速度(应为50±O.3km/h)和滑行距离。 4、试验至少往返各滑行一次,往返区段尽量重合。 5、参考文献4记录和处理数据。。: 五、实验思考题 l、汽车滑行距离的长短能说明汽车的什么性能? 2、汽车滑行实验是否应考虑风速? I 六、实验报告 1、实验预习。 在实验前每位同学都需要对本次实验进行认真的预习,并写好预习 报告,在预习报告中要写出实验目的、要求,需要用到的仪器设备、物品资

汽车玻璃检验标准

GB 9656-2003 代替 GB 9656-1996 汽车安全玻璃 1 范围 本标准规定了汽车安全玻璃的分类、技术要求、试验方法、检验规则及包装、标志、运输和贮存等。 本标准适用于汽车安全玻璃,也适用于农用车及其他道路车辆用安全玻璃。 2 规范性引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用与本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 1216 外径千分尺(GB/T 1216-1985,neq ISO3611-78) GB/T5137.1 汽车安全玻璃试验方法第1部分:力学性能试验(GB/T 5137.1-2002,ISO3537:1999,MOD) GB/T 5137.2 汽车安全玻璃试验方法第2部分:光学性能试验(GB/T 5137.2-2002,ISO3538:1997,MOD) GB/T 5137.3 汽车安全玻璃试验方法第3部分:耐辐照、高温、潮湿、燃烧和耐模拟气候试验(GB/T 5137.3-2003,ISO 3917:1999,MOD)GB/T 8410 汽车内饰材料的燃烧特性 GB11614 浮法玻璃 GB/T 17339 汽车安全玻璃耐化学侵蚀性和耐温度变化试验方法 GB/T 18114 玻璃应力测试方法 GB18045-2000 铁道车辆用安全玻璃 JC/T512 汽车安全玻璃包装 3 分类 3.1 按加工工艺分类 a)夹层玻璃; b)区域钢化玻璃; c)钢化玻璃; d)中空安全玻璃; e)塑玻复合材料。 3.2 按应用部位分类 3.2.1 风窗玻璃(前风窗玻璃)

汽车电子EMC实验标准

汽车电子EMC实验标准-按试验分类 静电放电抗扰度试验 ISO 10605:2001机动车抗静电放电骚扰试验方法GMW3100:2001通用标准电气/电子零部件和子系统电磁兼容验证部分ES-XW7T-1A278-AC:2003元件和子系统电磁兼容性全球要求和测试过程 GMW3097:2006通用标准电气/电子零部件和子系统电磁兼容要求部分 DC-10614:2002零部件电磁兼容性要求 DC-10614:2005零部件电磁兼容性要求 JASO D001-1994(第5.8条款)汽车零部件环境试验方法通用准则 28400 NDS09:1996电子零部件的耐静电放电试验 28400 NDS10:2000电子零部件的耐静电放电(操作部外加法) B21 7110:2001(第7条款)电子和电气设备有关环境的电气性能的通用技术标准 MES PW 67600:2001电子器件 7-Z0445:1995静电放电抗扰度试验 9.90110:2003 (第2.7条款)汽车电子和电气设备 MGR ES:62.61.627:2002汽车电磁兼容 TL 824 66-2005静电放电抗扰度 VW 801 01:2006机动车电子电气设施通用试验条件标准 射频电磁场抗扰度试验 ISO 11452-5:2002 机动车零部件由窄带辐射电磁能引起的骚扰的试验方法第五部分:带状线 GMW3097:2006 通用标准电气/电子零部件和子系统电磁兼容要求部分 GMW3100:2001 通用汽车标准电子/电气零部件和子系统电磁兼容通用标准验证部分 DC-10614:2005 零部件电磁兼容性要求 B21 7090:1993(第4条款)电气和电子装置环境的一般规定 28400NDS05:2002 电子零部件的耐电波障碍性试验 B21 7110:2001(第7条款) 电子和电气设备有关环境的电气性能的通用技术标准 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法 MES PW 67600:2001 电子器件 MGR ES:62.61.627:2002 汽车电磁兼容 7-Z0448:2001 电子系统带状线电磁兼容试验 VW 801 01:2006 机动车电子电气设施通用试验条件标准 TL 821 66-2004 汽车电子零部件电磁兼容辐射干扰 E/ECE/324 R10:2000+A1:1999 +A2:2004 机动车电磁兼容认证规定 射频场骚扰感应的传导抗扰度试验 ISO 11452-4:2005 机动车零部件由窄带辐射电磁能引起的骚扰的试验方法第四部分:大电流注入(BCI) GMW3097:2006 通用标准电气/电子零部件和子系统电磁兼容要求部分

汽车滑行阻力系数的测定方法资料

汽车滑行阻力系数的测定方法 王兆甲李国栋刘金铎 (中国汽车工程研究院股份有限公司天津分公司天津300461) [摘要] 利用VBOX进行滑行试验,可以得到极为准确试验数据,将试验数据进行二次回归计算,得出汽车滑行阻力系数。可以得到比较准确的车辆道路阻力模型。 关键词:汽车滑行阻力系数 A Method to Determine Vehicle Coasting Resistance Coefficients Wang Zhaojia, Li Guodong, Liu Jinduo China Automotive Engineering Research Institute Co. Ltd. Tianjin Branch [Abstract]Using VBOX for coasting tests, we can acquire extremely accurate test data. A method using quadratic regression calculations to derive coast-down coefficients is put forward. So that accurate data for Chassis Dynamometer Simulation is determined. Key words: Vehicle Coasting Resistance coefficients 1 前言 1.1 试验目的及背景理论 在排放实验中,需要在底盘测功机上模拟道路行驶阻力。底盘测功机的阻力可以由标准GB18351.3-2005中规定的数学模型来描述,模型为: 2 =++(式1.1) F a bv cv 其中,a代表与速度无关的常数项阻力(如道路摩擦力等),b代表与速度一次项有关的阻力(如传动系阻力),c代表与速度二次项有关的阻力(如风阻等)[1]。 底盘测功机模拟道路行驶阻力,需要在测功机上设定a,b,c系数。这三个系数需要预先确定。 试验依据的规程原型是SAE J1164——Chassis Dynamometer Simulation of Road Load Using Coastdown Techniques(Issued 1995-04)和GB18352-2005——轻型汽车排气污染物限制及测量方法。这种方法给出了使用滑行技术在底盘测功机上模拟道路负荷的方法。本说明在规程原型基础上进行补充完善,给出使用VBOX道路性能测试仪进行滑行测试的试验技术和可操作的使用滑行数据测算测功机动力参数a,b,c的方法。 滑行(Coastdown)是在特定环境下,特定场地中,让车辆在断开动力链输出的情况下由高车速向低车速自由减速,并记录减速过程中必要数据(各减速阶段时间,起止速度等)的道路试验。 滑行技术(Coastdown Techniques)是依据标准中的物理模型和适当的数学方法,使用滑行测得的数据,计算出模型中的动力参数a,b,c的试验技术。具体地,滑行技术可表述如下。 依据相关标准和文献[1],汽车滑行中所受阻力可表示为

汽车安全玻璃试验方法 第3部分:耐辐照、高温、潮湿、燃烧和耐

I C S43.040.60 T34 中华人民共和国国家标准 G B/T5137.3 2020 代替G B/T5137.3 2002 汽车安全玻璃试验方法 第3部分:耐辐照二高温二潮湿二 燃烧和耐模拟气候试验 T e s tm e t h o d s o f s a f e t y g l a z i n g m a t e r i a l s u s e do n r o a d v e h i c l e s P a r t3:R a d i a t i o n,h i g h t e m p e r a t u r e,h u m i d i t y,f i r e a n d s i m u l a t e d w e a t h e r i n g r e s i s t a n c e t e s t s (I S O3917:2016,R o a dv e h i c l e s S a f e t yg l a z i n g m a t e r i a l s T e s tm e t h o d s f o r r e s i s t a n c e t o r a d i a t i o n,h i g h t e m p e r a t u r e, h u m i d i t y,f i r e a n d s i m u l a t e dw e a t h e r i n g,MO D) 2020-03-31发布2021-02-01实施 国家市场监督管理总局 国家标准化管理委员会发布

G B/T5137.3 2020 前言 G B/T5137‘汽车安全玻璃试验方法“分为5个部分: 第1部分:力学性能试验; 第2部分:光学性能试验; 第3部分:耐辐照二高温二潮湿二燃烧和耐模拟气候试验; 第4部分:太阳能特性试验; 第5部分:耐化学侵蚀性和耐温度变化性试验三 本部分为G B/T5137的第3部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替G B/T5137.3 2002‘汽车安全玻璃试验方法第3部分:耐辐照二高温二潮湿二燃烧和耐模拟气候试验“三本部分与G B/T5137.3 2002相比,除编辑性修改外主要技术变化如下: 增加了术语和定义(见第3章); 删除了试验应用条件(见2002年版的第4章); 删除了耐辐照试验中可以使用等效光源的规定(见5.2.1,2002年版的5.2.1); 增加了试验试样切裁的要求(见5.3二6.3二7.3二8.3二9.3); 删除了各试验项目的结果表达,将结果表达中有关试验过程的内容添加到试验程序或增加到 试样要求中(见5.4二6.4二7.4二8.4二9.4,2002年版的5.5二6.3二7.3二8.3二9.6); 增加了试验前试样放置时间的要求(见5.4.1二6.4.1二7.4.1二9.4.2.1); 增加了耐热试验二耐湿试验和耐燃烧试验的装置要求(见6.2二7.2二8.2); 增加了耐热试验对发生超温效应时的处理方法(见6.4.3); 增加了刚性塑料的试验方法(见7.4二9.4.2); 增加了耐燃烧试验的样品尺寸要求(见8.3); 增加了耐燃烧试验的结果计算及表达方式(见8.4); 修改了耐模拟气候试验的试样大小(见9.3,2002年版的9.3); 删除了耐模拟气候试验的抗磨性要求(见2002年版的9.5.2二9.6)三 本部分使用重新起草法修改采用I S O3917:2016‘道路车辆安全玻璃材料耐辐照二高温二潮湿二燃烧和耐模拟气候试验“三 本部分与I S O3917:2016相比在结构上有较多调整,附录A列出了本部分与I S O3917:2016的章条编号对照一览表三 本部分与I S O3917:2016相比存在技术性差异,这些差异涉及的条款已通过在其外侧页边空白位置的垂直单线(|)进行了标示,附录B中给出了相关技术性差异及其原因的一览表三本部分还做了下列编辑性修改: 修改了标准名称三 本部分由中华人民共和国工业和信息化部提出三 本部分由全国汽车标准化技术委员会(S A C/T C114)归口三 本部分起草单位:中国建材检验认证集团股份有限公司二福耀玻璃工业集团股份有限公司二旭硝子汽车玻璃(中国)有限公司二江苏铁锚玻璃股份有限公司二东莞奔迅汽车玻璃有限公司二迈图(上海)贸易有限公司二科思创聚合物(中国)有限公司二神通科技集团股份有限公司二信义汽车部件(天津)有限公司二信义汽车部件(芜湖)有限公司二国家安全玻璃及石英玻璃质量监督检验中心三 Ⅰ

汽车碰撞安全法规大全(中文版)

汽车碰撞安全法规大全(中文版)

汽车碰撞安全法规大全(中文版) 中国篇 乘用车正面碰撞的乘员保护(GB 11551-2003) 汽车侧面碰撞的乘员保护(GB 20071-2006) 乘用车后碰撞燃油系统安全要求(GB 20072-2006) 防止汽车转向机构对驾驶员伤害的规定(GB 11557-1998) 汽车座椅、座椅固定装置及头枕强度要求和试验方法(GB 15083-2006) 汽车安全带固定点(GB 14167-2006) 汽车前、后端保护装置(GB 17354-1998) C-NCAP 前部正面刚性壁障碰撞试验方法 C-NCAP 前部偏置碰撞试验方法 C-NCAP 侧面碰撞试验方法 C-NCAP 评分方法 欧洲篇 防止汽车碰撞时转向机构对驾驶员伤害认证的统一规定(ECE R12)关于汽车安全带安装固定点认证的统一规定(ECE R14) 关于车辆座椅、座椅固定装置及头枕认证的统一规定(ECE R17)关于车辆内部安装件认证的统一规定(ECE R21) 关于后面碰撞汽车结构特性认证的统一规定(ECE R32) 关于正面碰撞汽车结构特性认证的统一规定(ECE R33) 关于车辆火险预防措施认证的统一规定(ECE R34) 关于汽车前后端保护装置(保险杠等)认证的统一规定(ECE R42)

关于车辆正面碰撞乘员保护认证的统一规定(ECE R94)关于车辆侧面碰撞乘员保护认证的统一规定(ECE R95)EuroNCAP 前部碰撞试验方法 EuroNCAP 侧面碰撞试验方法 EuroNCAP 侧面撞柱评估标准 EuroNCAP 车辆对乘员颈部保护的动态评估试验方法EuroNCAP 行人保护试验方法 EuroNCAP 儿童保护评估方法 EuroNCAP 评估方法与生物力学极限 GTR 行人保护法规 EC 行人保护法规 北美篇 内饰件碰撞特性要求及试验方法(FMVSS 201) 头枕的碰撞保护(FMVSS 202a) 转向机构对驾驶员的碰撞保护(FMVSS 203) 对方向盘后移量的要求(FMVSS 204) 座椅系统(FMVSS 207) 乘员碰撞保护(FMVSS 208) 乘员离位(OOP)保护(FMVSS 208) 儿童约束系统要求(FMVSS 208) 安全带安装固定点认证的统一规定(FMVSS 210) 儿童约束系统(FMVSS 213)

(完整)汽车零部件检测标准大全.(DOC),推荐文档.docx

汽车零部件检测标准大全 汽车发动机 压燃式发动机排气 污染物 ?ESC 稳态循环GB17691-2001车用压燃式发动机排气污染物试验排放限值及测试方法 ?ELR 负荷烟度0324**GB17691-2005 车用压燃式、气体燃料点燃1试验0512式发动机与汽车排气污染物排放限值及测试 ?ETC 瞬态循环方法 试验ECE R49压燃式发动机排气污染物 ?OBD ?耐久性 压燃式发动机排气0324GB3847-2005车用压燃式发动机和压燃式发2可见污染物0512动机汽车排气烟度排放限值及测量方法 ECE R24可见污染物 3 柴油机全负荷烟度 0324DB11/046-1994 汽车柴油机全负荷烟度测量 0512方法 车用点燃式发动机GB14762-2002车用点燃式发动机及装用点燃4及装用点燃式发动 0324 0512式发动机汽车排气污染物排放限值及测量方机汽车排气污染物法 GB/T17692-1999 汽车用发动机净功率测试方5发动机净功率0324 法 ECE R85发动机净功率 80/1269/EEC 发动机净功率 6发动机性能0324GB/T18297-2001 汽车发动机性能试验方法7发动机可靠性0324 GB/T19055-2003 汽车发动机可靠性试验方 法 8 发动机产品质量检 0324 QC/T901-1998 汽车发动机产品质量检验评定验评定试验方法 9冷却系0324 Q/QJX 004-2003 汽车发动机冷却系冷却能力 试验方法 QC/T630-1999 汽车排气消声器性能试验方法10排气消声器性能0324 QC/T631-1999 汽车排气消声器技术条件 GB/T 4759-1995 内燃机排气消声器测量方法 离合器1技术要求0324QC/T 25-2004 汽车干磨擦式离合器总成技术条件 QCT27-2004 汽车干磨擦式离合器台架试验方法

全球汽车安全碰撞实验详细介绍及安全常识

全球汽车安全碰撞实验 详细介绍及安全常识 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

(一)碰撞指标查询系统 1. 欧洲评鉴协会Euro-NCAP (1)NCAP碰撞简介 衡量性能好不好,不能由自己说了算,要经过试验验证。其中“碰撞性能试验”就是主要项目之一,也是人们最关注的试验项目,因为车祸大部分都是碰撞,这个测试结果基本反映了对乘员和行人的程度。 美国、欧洲和日本都制定了相关的乘员碰撞保护法规。例如美国国家公路交通管理局(NHTSA)颁布的FMVSS208《乘员碰撞保护》法规、欧盟重新修订的《正面碰撞乘员保护》法规、日本运输省颁布的TRAIS11-4-30《正面碰撞的基准》法规等,定期对本国生产及进口进行正面碰撞或侧面碰撞进行性试验,以检查内驾驶员及乘员在碰撞时的受伤害程度。但是,这些法规仅是这些国家或区域国家政府管理部门对产品性的最低要求,而生产企业追求的却是行业上公认的NCAP(New Car Assessment Program),中文称为评估计划。它是一个行业性组织,定期将 企业送来或者上出现的进行碰撞试验,它规定的实车碰撞速度往往比政府制定的法规的碰撞速度要高,从而在更严重的碰撞环境下评价车内乘员的伤害程度,根据头部、胸部、腿部等主要部位的伤害程度将试验车的性进行分级。尽管NCAP 不是政府强制性实验,但由于它代表性广泛,标准科学,试验严格,组织公正,直接面向消费者公布试验结果,通过碰撞测试向消费者表示什么是的或是最的。

因此各大企业都非常重视NCAP,把它作为开发的重要评估依据,在NCAP试验取得良好成绩的,也将试验结果作为产品推广的宣传内容。 NCAP最早出现在美国,随后欧洲和日本等国都制订了相关的NCAP。其中欧洲的NCAP(European New Car Assessment Program)最具影响力和代表性。它由欧洲各国联合会、政府机关、消费者权益组识、俱乐部等组织组成,由国际联合会(FIA)牵头。欧洲NCAP不依附于任何生产企业,所需经费由欧盟提供,不定期对已上市的和进行碰撞试验,每年都组织几次。 欧洲NCAP的碰撞测试有两个基本项目,即正面和侧面碰撞。正面碰撞速度为64公里/小时,侧面碰撞速度为50公里/小时。在车辆碰撞时邀请生产企业直接参与以示公正性,还允许其产品有两次碰撞机会,当获知初次碰撞结果不理想时,会对产品进行改进或安装装置,再进行第二次碰撞,以获得最好的成绩为准。 NCAP的碰撞测试成绩通过星级(★)表示,共有五个星级,星级越高表示该车的碰撞性能越好,达到33分为满分。 (2)欧洲NCAP碰撞测试项目详解 ①NCAP正面碰撞测试标准详解

相关文档
最新文档