人教A版高中数学教材必修模块一第二章第一节“指数函数及其性质”的第一课时课件(20200806120008)

合集下载

2.1.2 指数函数及其性质 精品课件(人教A版必修1)(1).ppt

2.1.2 指数函数及其性质 精品课件(人教A版必修1)(1).ppt

解:由 y=(a-3)·(a-2)x 是指数函数,得
a-3=1 a-2>0 a-2≠1
,∴a=4.
类型二 指数函数的图象问题 [例 2] 已知函数 y=(13)|x+1|. (1)作出图象; (2)由图象指出其单调区间; (3)由图象指出当 x 取什么值时有最值.
[分析] 先化去绝对值符号,将函数写成分 段函数的形式,再作图象,也可作出 y=(13)|x| 的图象后平移,得 y=(13)|x+1|的图象,进而得单 调区间与最值.
• 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。11:038.5.202011:038.5.202011:0311:03:108.5.202011:038.5.2020
课时作业(15)
• 1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist) 天才只意味着终身不懈的努力。20.8.58.5.202011:0311:03:10Aug-2011:03
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二〇年八月五日2020年8月5 日星期三
2.1 指数函数
2.1.2 指数函数及其性质
第1课时 指数函数的概念、图象及性质

高中数学(人教A版)必修一 2.1.2 指数函数及其性质 第1课时 课件 (1)

高中数学(人教A版)必修一 2.1.2 指数函数及其性质 第1课时 课件 (1)

指数函数的图象问题
(1)如图所示是下列指数函数的图象, ①y=ax;②y=bx; ③y=cx;④y=dx. 则a,b,c,d与1的大小关系是( A.a<b<1<c<d C.1<a<b<c<d ) B.b<a<1<d<c D.a<b<1<d<c
(2) 当 a>0 且 a≠1 时 , 函 数 f(x) = ax - 3 - 2 必 过 定 点
1 1 1 (2)如果a<0,比如y=(-2) ,这时对于x= , , , 2 4 8
x
1 ,…在实数范围内函数值不存在. 16 (3)如果a=1,那么y=1x=1是常量,对此就没有研究的必 要.
指数函数的图象与性质
a>1 0<a<1
图象
定义域 值域 性 质 过定点 函数值的 变化 单调性
____ R
是R上的__________ 减函数
理解指数函数图象和性质应注意的问题 (1)对于指数函数y=ax的图象和性质,当底数a大小不确定 时,必须分“a>1”和“0<a<1”两种情况讨论. (2)当a>1时,a的值越大,图象越靠近y轴,递增的速度越
快.
当 0<a<1时, a的值越小,图象越靠近 y 轴,递减的速度越 快.
(0,+∞) ____________ 1 (0,1) ,即x=___ 0 时,y=___ 过点_______ y>1 ; 当x>0时,_______ 0<y<1 当x<0时,__________ 增函数 是R上的___________
当x>0时,_________ ; 0<y<1

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

人教A版数学必修一2.1.2指数函数及其性质第1课时.ppt

人教A版数学必修一2.1.2指数函数及其性质第1课时.ppt
(2)将函数 y=2|x|中的绝对值去掉,得 y=22x-,x,x≥x<00,,分 别画出各段函数的图像.
2.1.2 │ 考点类析
例 3 (1)如图 2-1-3 所示的是指数函数①y=ax,②y=bx, ③y=cx,④y=dx 的图像,则 a,b,c,
d 与 1 的大小关系是( A.a<b<1<c<d C.1<a<b<c<d
2.1.2 │ 备课素材
2.1.2 │ 考点类析
考点类析
考点一 指数函数定义的应用 基础夯实型 例 1 (1)下列函数中,是指数函数的是_①_______. ①y=0.6x;②y=5x+1;③y=-6x;④y=xα(α 为常数). (2)若函数 y=(a2-3a+3)·ax 是指数函数,则实数 a=
②因为 y=0.3x 在 R 上为减函数,又因为-0.4>-0.6,所以 0.3- 0.4<0.3-0.6.
③因为 2.10.3>2.10=1,0.93.1<0.90=1,所以 2.10.3>0.93.1. 41
④取中间量190)12,因为 5921=8912<890=1,所以4512<19012.因为 y=190x 在 R 102
图 2-1-4
[答案] C
[解析]
y=2-|x|=22-x,x,x<x≥0,0,且函数 y=2-|x|是偶
函数,所以函数的图像大致是选项 C.
2.1.2 │ 考点类析
【变式】 设 f(x)=3x,g(x)=13x. (1)在同一直角坐标系中分别作出 f(x),g(x)的图像;
(2)计算 f(1)与 g(-1),f(π)与 g(-π),f(m)与 g(-m)的值,

课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

人教版高中数学必修1(A版) 2.1.2指数函数及其性质 PPT课件

人教版高中数学必修1(A版) 2.1.2指数函数及其性质 PPT课件

本题评述:(1)指数函数图象的应用; (2)数形结合思想的体现。
例2:说明函数 y 2 x1 与 y 2 x 的图象的关系,并画出它们 的示意图。 分析:做此题之前,请大家一起回顾初中接触的二次函数平移 问题。 评述:此题目在于让大家了解图象的平移交换,并能逐步掌握 平移规律。
课堂小结
指 数 函 数 及 其 性 质
创设情境,形成概念
故事:
有人要走完一段路,第一次走这段路 的一半,每次走余下路程的一半,请问最 后能达到终点吗?
终点
创设情境,形成概念
《庄子.天下篇》中 写道:“一尺之锤,日取一半,万世不竭”。 请写出取x次后,木锤的剩留量y与x的函数关系式。
引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个…… 1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式 是: x
y 10
x
y 2x
x
y 3
1 x y 1 2 y
x
y 10x y 2 x
3
y 3x
(0,1)
相同点
1)图象都在x轴的上方; 2)图象都经过(0,1)点。
相异点
当底数大于1时,图象是上升的;底 数小于1时,图象是下降的。
指数函数的性质
x
ax
例1下列函数中,哪些是指数函数:
y 3x2y42xy 3 1
x
y2
2 x
x
y2
x
y 2
例2 在同一坐标系中作出下列函数的图象, 并观察其异同:
1)y= 2
x
1 2)y= 2
x
画出 y = 2
x
y=2
x
x,
1 y=( 2

人教版高中数学必修一2.1.2指数函数及其性质(第一课时)ppt课件

人教版高中数学必修一2.1.2指数函数及其性质(第一课时)ppt课件

6
x
… -2.5 -2
-1
y 3x … 0.06 0.1
0.3
y 1 x …
15.6
9
3
3
1x gx = 3
- 10
-5
-0.5 0
16
0.6
1
114.7
1
0.5
1
2
1.7
3
9
2.5

15.6 …
0.6
0.3 0.1
0.06 …
12
10
8
fx = 3x
6
4
2
5
10
1x qx = 3 6 hx = 3x
y

4x3 ,
y


1
2x
,
y

bx,
y

2x
1.
2
例2、 函数y (a2 3a 3)a x是指数函数 , 求a的值
解:依题意,可知
a 2 3a 3 1 a 0 ,解得 a 1
a 1或a 2 a 0 a 1
a 2
fx = 0.5x
5
hx = 0.6x
4
3
2
1
-4
-2
2
例4、 说明下列函数的图象与指数函数y=2x的图象的关系,并画出他们的 图象: ⑴ y=2x+1 ⑵ y=2x-2
将y=2x的图象向左平移一个单位,就得到y=2x+1的图象 将y=2x的图象向右平移两个单位,就得到y=2x-2的图象
y
函 1.定义域: ,
数 性
2.值域:
0,
质 3.过点 0,,1即 x= 时,y0=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档