电路中各点电位的计算(精品文档)
实验3电位、电压的测定及电路电位图的绘制

实验3 电位、电压的测定及电路电位图的绘制一、实验目的1.用实验证明电路中电位的相对性、电压的绝对性 2.掌握电路电位图的绘制方法二、原理说明电路中为了分析的方便,常在电路中选某一点为参考点,把任一点到参考点的电压称为该点的电位。
参考点的电位一般选为零,所以,参考点也称为零电位点。
电位用ϕ表示,单位与电压相同,也是V(伏)。
在一个确定的电路中,各点电位的高低视所选的电位参考点的不同而不同,但任意两点间的电位差(即电压)则是绝对的,它不因参考点电位的改变而改变。
据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。
如图6-3-1,设C 点为电位参考点,0=C ϕ,AC A U =ϕ,BC B U =ϕ,DC D U =ϕ。
电路中任意两点间的电压等于该两点间的电位之差,即:B A AC U ϕϕ−=, D A AD U ϕϕ−= 等。
若以电路中的电位值作纵坐标,电路中各点位置作横坐标,将测量到的各点电位在该坐标平面中标出,井把标出点按顺序用直线相连接,就可得到电路的电位变化图。
每一段直线段即表示该两点间电位的变化情况。
在电路中参考电位点可任意选定,对于不同的参考点,所绘出的电位图形是不同的,但其各点电位变化的规律却是一样的。
在作电位图或实验测量时必须正确区分电位和电压的高低,按照惯例,是以电流方向上的电压降为正,所以,在用电压表测量时,若仪表指针正向偏转,则说明电表正极的电位高于负极的电位。
三、实验设备 可调直流稳压电源 2台直流数字毫安表 1块万用表 1块 直流数字电压表 1块 电压、电位测定实验电路板 1块 四、实验内容1.实验线路如图6-3-2所示。
分别将两路直流稳压电源接入电路,以图6-3-2中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 的电位值ϕ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,将测得数据列于实验表6-3-1中。
《电工学》电路的基本概念与基本定律

(2) 说明功率的平衡关系。
I
解:(1) 对于电源
+++
U= E1 U1= E1 IR01
E1
–
即 E1= U + IR01 = 220 +50.6 = 223V R01
U = E2 + U2 = E2 + IR02
U
–
–E2
R02
即 E2= UIR02 = 220 50.6 = 217V
(2) 功率的平衡关系 E1 = E2 + IR01 + IR02
+ (d)
解: (a) 电流从“+”流出,故为电源;
(b) 电流从“+”流入,故为负载;
(c) 电流从“+”流入,故为负载 ;
(d) 电流从“+”流出,故为电源。
例2:已知:U1 = 9V,I = -1A,R = 3Ω
求:元件1、2分别是电源还是负载,并验证
电路功率是否平衡? I R
解:因为U2 = -RI + U1 = 12V
I1 a I2
对回路1:E1 = I1 R1 +I3 R3
R1
R2
或 I1 R1 +I3 R3 –E1 = 0
E1 1 I3 R3 2 E2 对回路2:E2= I2 R2+I3 R3
b
或 I2 R2+I3 R3 –E2 = 0
基尔霍夫电压定律(KVL) 反映了电路中任一
回路中各段电压间相互制约的关系。
所以电流从元件1的“+” 流入,从元件2的“+”流
1 U1
U2 2
出,
故元件1为负载,元件2为电源。 电源产生功率: P2 =︱U2I︱= 12W
精品文档-电路基础(第三版)(王松林)-第1章

第 1 章 电路的规律
综合与设计两类问题。电路分析的任务是根据已知的电 路结构和元件参数,求解电路的特性; 电路综合与设计是根 据所提出的对电路性能的要求,确定合适的电路结构和元件 参数,实现所需要的电路性能。近年来,有些学者提出电路 的“故障诊断”应作为电路理论的第三类问题。电路的故障 诊断是指预报故障的发生及确定故障的位置、识别故障元件 的参数等技术。
第 1 章 电路的规律
1.1.3 电路理论起源于物理学中电磁学的一个分支,若从欧姆
定律(1827年)和基尔霍夫定律(1845年)的发现算起,至今至 少已有160多年的历史。随着电力和通信工程技术的发展, 电路理论逐渐形成为一门比较系统且应用广泛的工程学科。 自20世纪60年代以来,新的电子器件不断涌现,集成电路、 大规模集成电路、超大规模集成电路的飞跃进展,计算机技 术的迅猛发展和广泛使用等,都给电路理论提出了新课题,
(1.2-3)
第 1 章 电路的规律
能量对时间的变化率称为电功率。于是,电路元 件吸收的电功率p(t)
p(t)def d w(t) u(t)i(t) dt
(1.2-4a)
第 1 章 电路的规律
需要注意的是,式(1.2-4a)是在电压、电流为关联参考 方向下推得的(参看图1.2-4(a)),如果电压、电流为非关联 参考方向,如图1.2-4(b)所示,则电路元件吸收的功率p(t)
第 1 章 电路的规律
图 1.2-1 电流的参考方向
第 1 章 电路的规律
1.2.2 电路中,电场力将单位正电荷从某点移到另一点所
作的功定义为该两点之间的电压,也称电位差,用u或 u(t)
(1.2-2)
第 1 章 电路的规律
电压的参考极性是任意指定的,一般用“+”、“-”极性 表示; 有时也用箭头表示参考极性(如图1.2-2(b)所示),箭头 由“+”极指向“-”极; 也可用双下标表示,如uab表示a点为 “+”极,b点为“-”
第七版电工学精简版课件各章例题综合

E
–
对网孔bcdb: I4 R4 + I3 R3 –E = 0
例题 如图:RB=20K , R1=10K ,EB=6V US=6V,UBE=-0.3V 试求电流IB ,I2及I1。
I1
IB RB + I2 + UBE -
解
应用基尔霍夫电压定律 列出 EB-RBI2-UBE=0 得 I2=0.315mA EB-RBI2-R1I1+US=0 得 I1=0.57mA
例2:一只220V, 60W的白炽灯, 接在220V的电源上, 试求通过电灯的电流和电灯在220V电压下工作时的电 阻。如果每晚工作3h(小时),问一个月消耗多少电能? 解: 通过电灯的电流为 P 60 I A 0.273 A U 220 在220V电压下工作时的电阻 U 220 R 806 I 0.273 一个月用电 W = Pt = 60W(3 30) h = 0.06kW 90h= 5.4kW. h
U 220 IL 4 .4 A RL 50
+ U
U L U 220 V
–
e d c b a
IL + U R L L –
例 1: 对图示电路求总电阻R12
1 1
2
R12
2 1
C 2 1
1
2 D
1
0.8
R12
0.4 2 2
0.4 1
0.8
1
1
R12
2.4
I1 例 2:
a
I2
IG
d
G
RG
R4 b
I3 I
I4
支路电流法是电路分析中最基本的 因支路数 b=6, 方法之一,但当支路数较多时,所需 所以要列6个方程。 方程的个数较多,求解不方便。
电工学(少学时)课后答案全

第一章习题1-1 指出图1-1所示电路中A 、B 、C 三点的电位。
图1-1 题 1-1 的电路解:图(a )中,电流 mA I 51226.=+=, 各点电位 V C = 0 V B = 2×1.5 = 3V V A = (2+2)×1.5 = 6V图(b )中,电流mA I 1246=+=, 各点电位 V B = 0V A = 4×1 = 4VV C =- 2×1 = -2V图(c )中,因S 断开,电流I = 0, 各点电位 V A = 6V V B = 6VV C = 0图(d )中,电流mA I 24212=+=, 各点电位 V A = 2×(4+2) =12VV B = 2×2 = 4V V C = 0图(e )的电路按一般电路画法如图,电流mA I 12466=++=,各点电位 V A = E 1 = 6VV B = (-1×4)+6 = 2V V C = -6V1-2 图1-2所示电路元件P 产生功率为10W ,则电流I 应为多少? 解:由图1-2可知电压U 和电流I 参考方向不一致,P = -10W =UI 因为U =10V , 所以电流I =-1A图 1-2 题 1-2 的电路1-3 额定值为1W 、10Ω的电阻器,使用时通过电流的限额是多少? 解:根据功率P = I 2 R A R P I 3160101.===1-4 在图1-3所示三个电路中,已知电珠EL 的额定值都是6V 、50mA ,试问哪个电珠能正常发光?图 1-3 题 1-4 的电路解:图(a )电路,恒压源输出的12V 电压加在电珠EL 两端,其值超过电珠额定值,不能正常发光。
图(b )电路电珠的电阻Ω=Ω==120120506K R .,其值与120Ω电阻相同,因此电珠EL 的电压为6V ,可以正常工作。
图(c )电路,电珠与120Ω电阻并联后,电阻为60Ω,再与120Ω电阻串联,电珠两端的电压为V 4126012060=+⨯小于额定值,电珠不能正常发光。
直流电路测量实验报告doc

直流电路测量实验报告篇一:直流电路测量进阶实验报告`实验报告课程名称:电路与电子技术实验指导老师:成绩:实验名称:直流电路测量进阶实验实验类型:电子电路实验同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、实验数据记录和处置五、讨论、心得一、实验目的和要求1.掌握电工综合实验台的大体操作和数字万用表的利用;2.了解测量仪表量程,分辨率,准确度对测量结果的影响和测量结果的正确表示;3.学习和掌握对非线性元件特性曲线的测定;4.掌握含源一端口网络等效参数和其外特性的测量方式;5.验证戴维南定理和诺顿定理;6.了解实验时非理想状态对实验结果的影响;二、实验内容和原理实验内容1.测定晶体二极管的伏安特性曲线;2.测量戴维南(诺顿)等效支路的电路参数;3.别离测量原网络和等效支路端部的伏安特性;4.学会用Origin处置实验数据;实验原理(简略)1..伏安法;2.戴维南(诺顿)定理;3.开路电压的测量:①直接测量法;②示零测量法;③两次测量法;4.短路电流的测量;5.含源电路等效电阻的测量方式:①直接测量法;②开路电压,短路电流法;③半电压法;④伏安法;三、主要仪器设备电工综合实验台;数字万用表;DG07多功能网络实验组件;导线等四、实验数据记录和处置1.利用软件OrCAD仿真二级管的伏安特性;①理想二极管的伏安特性曲线;50mA-0mA-50mA-100mA-40VI(D1)-36V-32V-28V-24V-20VV(D1:1)-16V-12V-8V-4V0V4V②不同温度下二极管的伏安特性曲线(从左到右依次为-10℃,0℃,10,20℃),实验当天温度接近20℃,可以将由实验数据得出的曲线与下图中最右边曲线对比分析;装订线30mA20mA10mA0(转载自:xiaocaOfaNWen 小草范文网:直流电路测量实验报告)A0VI(D1)V(D1:1)0.1V0.2V0.3V0.4V0.5V0.6V0.7V0.8V0.9V1.0V③交流电路中二极管两头的电压波形(可与实验顶用示波器观察的波形对比);5V0V-5V-10V0sV1(D1)Time0.2ms0.4ms0.6ms0.8ms1.0ms1.2ms1.4ms1.6ms1.8ms2.0ms2.二极管实验数据处置实验测得Us=5V时二级管两头的电压与流过二极管的电流如下表所示:电流(mA)装订线电压(V)比较分析:很显然,实验所得的二极管伏安曲线与用Orcad仿真的理想二极管伏安曲线相差较大,但与20℃下的二极管的伏安曲线较为相近。
电路中各点电位的计算

男孩开始吹奏芦笛,一边在为他的牲口寻找可口鲜嫩的草料。牧歌悠悠,十分悦耳;不料从远处传来一片回声。可是男孩不知道这是怎么回事,他朝四处张望,却不见一个人影,便情不自禁地自言自语道:“那儿谁在吹芦笛?”.
例2:已知:E145V,E212V,内阻忽略,R15,R24,R
(1)电位与所选择的绕行路径无关。
(2)选取不同的零电位点,各32,求:B、C、D三点的电位。
五、结论:电位将发生变化,但电路中任意两点间的电压将保持不变。
六、课堂小结:
计算电路中某点电位的方法。
板
书
设
计
电位
1、电位的概念
2、电位的计算方法
当堂训练
已知:E115V,E210V,内阻忽略,R16,R24,R32,求:A、B、C三点的电位。
教
后
反
思
同学们在进行电位计算时,没有严格按照老师讲的解题步骤进行解题,应先假定参考点,再选取回路绕行方向,且标出各元件两端电压的正负极性方可进行计算,故在遇到复杂的题目时容易出错。
课题
电路中各点电位的计算
课型
新授
课时
2
时
间
教
师
陈良娣
学
习
目
标
1.掌握电路中各点电位的计算。
2.掌握电路中任意的计算。
学习难点
电路中各点电位的计算。
教学方法
自学提问法自主预习法小组合作讨论法讲授法
教学用具
多媒体投影
导
语
设
电工学课件

_
_
b
U E IR R
(3) 数值计算
U 3V
IR
3- 2 1A 1 1 2 1A 1
(实际方向与参考方向一致)
U 1V
IR
(实际方向与参考方向相反)
提示
(1) “实际方向”是物理中规定的,而“参考方向”则 是人们在进行电路分析计算时, 任意假设的。 (2) 在以后的解题过程中,注意一定要先假定物理量 的参考方向,然后再列方程 计算。 缺少“参考方向”的物理量是无意义的. (3) 为了避免列方程时出错,习惯上把 I 与 U 的方向 按相同方向假设。(关联参考方向)
考核方式
1、平时成绩:30%
作业、出勤、课堂表现:10% 实验:20%ห้องสมุดไป่ตู้
2、期终考试:70%
第一章
电路的基本 概念、定律与分析方法
第一章 电路的基本概念、定律与分析方法
1.1 电路的基本概念
1.2 电路的基本元件 1.3 电路的基本状态和电气设备的额定值 1.4 电路中电位的概念及计算 1.5 基尔霍夫定律 1.6 电路的分析方法
在电路中任选一节点,设其电位为零(用 标记), 此点称为参考点。其它各节点对参考点的电压,便是
该节点的电位。记为:“VX”(注意:电位为单下标)。 a a
1 b 5A
1
b b 点电位: Vb = -5V 5A
a 点电位: Va = 5V
注意:电位和电压的区别
某点电位值是相对的,参考点选得不同, 电路中其它各点的电位也将随之改变;
1 t 1 0 1 t u (t ) i ( )d i ( )d i ( )d C C C 0 1 t u (0) i ( )d C 0