遗传学实验-英文
遗传学实验

观察值(O) 理论值(E)
6A
5A
4A
3A
2A
1A
0A
OE
(O E)2 χ2 df P
6 Schoolwork
1、玉米籽粒的观察数据,每人各自分析。主要进 行一对性状和两对性状的2测验,根据自由度和 估算的2值,查阅2值表,求其概率值P。
2、通过分析,对各相对性状的遗证概率的真实性。
从数学观点看,基因的分离和重组是一些微观的随机 事件,本质上是概率问题。因此,我们可以利用一些宏观 的随机事件来直观地模拟基因的分离和重组,从而加深对 孟德尔遗传规律和数量性状遗传规律的理解。
3 Experimental materials
玉米(Zea mays):
Experiment 1
Mendel’s law and law of probability
1 Experimental aim
通过一对和两对相对性状(character)的遗传杂 交(cross)实验,分析杂种后代的性状表现,验证 Mendel’s law。并通过probability原理的验证,建 立概率和统计(statistical)的思想,加深理解孟德尔 遗传规律和quantitative genetics规律,体会概率原
“多79(黄色,非糯) 多67-1(白色,糯)”的 F1自交的果穗。 面值一元和五角的硬币各一枚(学生自备)。
4 Experimental process
4.1 Validation of the law of segregation and independent assortment 从“多79 多67-1”的F1植株的自交果穗 上,观察果穗上每个籽粒的性状。 果穗的籽粒表现包括:有色非糯,有色糯 性,白色非糯,白色糯性四种表现型。 每位同学统计一个果穗,进行2测验。
遗传学相关词汇中英对照

遗传学相关词汇中英对照一:细胞遗传学 cytogenetics细胞的遗传学 cell genetics体细胞遗传学 somatic cell genetics发育遗传学 developmental genetics又称“发生遗传学”。
微生物遗传学 microbial genetics细菌遗传学 bacterial genetics生化遗传学 biochemical genetics分子遗传学 molecular genetics生物工程 biotechnology分子细胞遗传学 molecular cytogenetics植物遗传学 plant genetics动物遗传学 animal genetics生统遗传学 biometrical genetics统计遗传学 statistical genetics数量遗传学 quantitative genetics群体遗传学 population genetics进化遗传学 evolutionary genetics人类遗传学 human genetics医学遗传学 medical genetics临床遗传学 clinical genetics法医遗传学 medico-legal genetics, forensic genetics病理遗传学 pathogenetics药物遗传学 pharmacogenetics生理遗传学 physiological genetics免疫遗传学 immunogenetics, immunological genetics行为遗传学 behavioral genetics核遗传学 karyogenetics辐射遗传学 radiation genetics毒理遗传学 toxicological genetics生态遗传学 ecological genetics, ecogenetics群落遗传学 syngenetics优生学 eugenics优型学 euphenics优境学 euthenics染色体学 chromosomology, chromosomics染色体工程 chromosome engineering核学 karyology, caryology核形态学 karyomorphology核型分类学 karyotaxonomy基因学说 gene theory多基因学说 polygenic theory孟德尔遗传定律 Mendel's law of inheritance, Mendel's laws分离定律 law of segregation独立分配定律 law of independent assortment又称“自由组合定律”。
遗传学的英语

遗传学的英语Genetics, a branch of biology dealing with the study of genes, heredity, and the variation of organisms, is a fascinating and rapidly advancing field. At its core, genetics explores the fundamental laws of inheritance that govern the transmission of genetic information from one generation to the next. This information, encoded within the DNA of each cell, determines the characteristics and traits of an organism, including its physical appearance, behavior, and even its susceptibility to certain diseases. The field of genetics has made remarkable progress in recent years, thanks to advancements in technology and the availability of vast amounts of genetic data. One of the most significant milestones in genetics was the discovery of the double helix structure of DNA by James Watson and Francis Crick in 1953. This revelation opened the door to a new understanding of how genetic information is stored, replicated, and transmitted.Since then, genetics has made leaps and bounds in various areas, including human genetics, agricultural genetics, and ecological genetics. Human genetics, forinstance, has provided insights into the genetic basis of many diseases and conditions, leading to the development of new diagnostic tools and therapeutic approaches. Agricultural genetics has enabled the creation of crop varieties that are more resistant to diseases and pests, and that produce higher yields. Ecological genetics, on the other hand, studies the genetic variation within and among species in natural populations, providing valuable insights into the evolution and adaptation of organisms to their environment.The impact of genetics on society is profound. It has revolutionized our understanding of human health and disease, leading to the development of personalized medicine and precision health care. Genetic testing and screening have become increasingly common, allowing individuals to learn about their genetic risks for certain diseases and to make informed decisions about their health. However, the rapid pace of genetic research and technology also raises ethical and social concerns. Issues such as genetic privacy, the potential misuse of genetic information, and the ethical implications of geneticengineering and gene editing require careful consideration and debate.In conclusion, genetics is a crucial field that holdsthe key to understanding the fundamental processes of life. As we continue to unravel the mysteries of the genome and apply genetic knowledge to improve human health and address global challenges, it is essential that we also address the ethical and social implications of these advancements. By doing so, we can ensure that the benefits of genetics are realized in a way that is beneficial and responsible for all.**遗传学:遗传的科学**遗传学是生物学的一个分支,研究基因、遗传和生物体变异的科学,这是一个引人入胜且迅速发展的领域。
什么是遗传英文作文

什么是遗传英文作文英文,What is genetic inheritance?Genetic inheritance refers to the passing down of genetic traits or characteristics from parents to their offspring. These traits can be physical, such as eye color or height, or they can be related to health, such as the likelihood of developing certain diseases.The process of genetic inheritance occurs through the transmission of DNA, which contains the genetic information that determines an individual's traits. Each parent contributes half of their DNA to their offspring, resulting in a unique combination of genetic information in each child.There are two main types of genetic inheritance: dominant and recessive. Dominant traits are those that only require one copy of the gene to be expressed, while recessive traits require two copies of the gene. Forexample, if one parent has brown eyes (a dominant trait) and the other has blue eyes (a recessive trait), their offspring will likely have brown eyes because the brown eye gene is dominant.In addition to dominant and recessive traits, there are also sex-linked traits that are determined by genes located on the sex chromosomes. For example, color blindness is a sex-linked trait that is more common in males because the gene for color blindness is located on the X chromosome.Overall, genetic inheritance plays a significant rolein determining an individual's traits and can have implications for their health and well-being.中文,什么是遗传?遗传是指父母将遗传特征或特性传递给他们的后代。
遗传学实验

思考与练习
1. 统计 X 小体的频率,画2~3 个典型细胞,示X 小体的形 态和所处部位
2. 固定 空气干燥 滴加固定液(95%乙醇:乙醚=1:1或直接用乙醇)固定20~30min,
3. 染色制片 滴加1~2滴改良品红于室温下染色10~20min(勿使干燥),加上 盖片,垫片滤纸用手指轻轻加压即可 4. 镜鉴 低倍镜下计数100个核膜完整,细胞不完整,无核固缩的细胞;并在 高倍或油镜下观察 若使用女性发根细胞,需选用带有毛囊的头发(约2cm长),再加一滴染液加上 盖玻片,乙醇灯上微热,静置5min,后盖一滤纸压片
实验材料
口腔黏膜(男女) 发根细胞(女)
实验器具和药品
器具:普通显微镜、荧光显微镜、恒温水浴锅、载玻片、 盖玻片、镊子、牙签、滤纸、纱布等
药品:95%乙醇、乙醚、改良碱性品红、盐酸喹吖、 Macllvaine缓冲液、石蜡
实验步骤
1. 取材 受检查者用水漱口数次,尽可能除去细菌和食物残渣;用洁净的牙 签从口腔两侧颊部刮去黏膜,第一次刮取物弃去,将第二次、第三次刮取物涂在 干净的载玻片上
遗传学实验 人类X小体的检测
实验原理
1948年,Barr以猫的神经元为材料,研究长时间刺激后神经元是否产生 细胞学变化。在研究中Bertram观察到核仁附近有一种染色很深的小体, 这种小体一些细胞有而一些细胞无。这一现象引起了Barr的注意。他仔 细查看了实验记录及标本,发现这种小体大多出现在雌猫神经元中,雄 猫神经元中则极少出现,即这种小体与性别有关。 Barr 称这种小体为 “核仁随体”,并推测小体是由两条性染色体的异染色质衍化来的。后 来他以更多的哺乳纲的代表性动物的不同组织做了观察,结果发现这些 动物不同组织的体细胞中,同样显示雌雄二型现象(dimorphism)。观 察X染色质小体数就成了检测X染色体数是否产生变异的便捷方法,利用 这一方法,对各类性畸形、智力缺陷(mental retardation)患者进行 检测。
中国科学技术大学生命科学学院课程简介

六、课程简介课 号:BI03020课程名称(中文):生命科学导论课程名称(英文):Introduction of Life Sciences学 时:60学 分:3开课学期:秋预修课程:高中生物适用对象和学科方向:低年级本科生、生物主要内容:该课程系统介绍了动物生物学的一些基本概念,内容以发育为主干,代谢、适应为中心,对动物的形态、解剖、生理、生态和分类等基本生物学原理作了简明的论述。
全书从微观动物界到宏观动物界,涉及分子、细胞、个体和群体四大水平。
课 号:BI03022课程名称(中文):生物多样性及实验 I课程名称(英文):The Biology Diversity and Experimental I学 时:40学 分:1.5开课学期:春预修课程:高中生物适用对象和学科方向:低年级本科生,生物主要内容:本课程分为必修实验(32学时)和选修实验(8学时)。
必修实验以各门代表动物为实验对象,对其进行观测解剖,记录其形态结构和生命活动。
结合动物生物学的基本概念和基本理论,从进化的角度,探讨其形态结构和生理功能的关系、生物体与环境的关系。
同时注重实验基本方法和技能的训练(包括显微镜的使用、生物制片、组织观察、动物外形的测量、动物解剖技术、分类技术等)。
选修实验让学生在给定的范围内任选实验内容,并以组为单位独立设计和完成,最后相互讨论结果。
在培养实验能力的同时,注重综合素质的训练。
课 号:BI03023课程名称(中文):生物多样性及实验 II课程名称(英文):The Biology Diversity and Experimental II学 时:40学 分:1.5开课学期:春预修课程:高中生物适用对象和学科方向:低年级本科生,生物主要内容:本实验课的内容包括种子植物的解剖结构和功能、植物的系统分类和实验设计等三方面的内容。
种子植物的解剖结构和功能,涉及到植物生物学实验技能和技巧(各种制片方法和观察方法、生物绘图、植物的离析和压片等等),植物细胞、组织、器官等多层次的结构、发育、生理功能及与环境的关系。
遗传学概念及理论英文版

• Examples of recessive sex-linked disorders: 1. colorblindness – inability to distinguish between certain
colors
You should see 58 (upper left), 18 (upper right), E (lower left) and 17 (lower right).
9 black and straight
3 black and curly
bH
3 brown and straight
1 brown and curly
bh
• Example: In rabbits black coat (B) is dominant over brown (b) and straight hair (H) is dominant to curly (h). Cross a rabbit that is homozygous dominant for both traits with a rabbit that is homozygous dominant for black coat and heterozygous for straight hair. Then give the phenotypic ratio for the first generation of offspring.
dominant
recessive
Phenotypic ratio dominant : recessive
Cross 2 hybrid mice and give the genotypic ratio and
phenotypic ratio.
遗传学中英文词汇

中英文词汇--------------------------------------------------------------------------------近端着丝粒染色体(Acrocentric chromosome)——着丝粒靠近染色体端部的染色体。
加和原则(Additivity principle)——如果两个事件相互排斥,那么获得其中一个或另一个的概率为它们的各自概率之和。
等位基因(Allele)——在一既定基因座上一个基因的替换形式。
等位基因特异性寡核苷酸(Allele-specific oligonucleotide,ASO)——设计合成的寡核苷酸,可在适当条件下与特异序列杂交而不与其相关的序列杂交。
用针对每个等位基因序列设计的ASO甚至可容易地检出单个核苷酸的变异。
在几种设计相似、用来区分密切相关等位基因的方法中,ASO还可用作PCR引物。
等位基因异质性(Allelic heterogeneity)——在同一遗传基因座上,由不同的突变等位基因引起的相同或相似的表型。
α1-抗胰蛋白酶(α1-Antitrypsin)——是抑制弹性蛋白酶活性的一种丝氨酸蛋白酶抑制剂,该抑制剂的缺乏(如α1-抗胰蛋白酶不足)将导致严重的慢性肺和肝脏疾病。
Alu重复序列(Alu repetitive sequence)——位于基因间或内含子DNA中的中等重复序列,含有限制性内切酶AluⅠ的识别位点,这些序列长约300bp,并在人类基因组中重复出现约500,000次。
羊膜穿刺术(Amniocentesis)——一种产前诊断的方法,通常在妊娠4至6月抽取羊膜囊内婴儿四周的羊水进行。
扩增(Amplification)——一段DNA序列多个拷贝的产生。
非整倍体(Aneuploid)——指单倍体非整倍数的任何染色体数目。
通常非整倍体是指单条染色体的额外拷贝(三体性),或缺少单条染色体(单体性)。
由减数分裂或有丝分裂过程中染色体不分离所致。