1.求曲线轨迹方程专题
求曲线的轨迹方程的方法

成都市新都香城中学数学组
李发林
2014年2月25日星期二
几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性 质而得出)的动点所满足的几何条件列 出等式,再用坐标代替这等式,化简 得曲线的方程,这种方法叫直接法.
例1:已知一曲线是与两个定 点O(0,0)、A(3,0)距离的比为 1/2 的点的轨迹,求此曲线 的方程。教材P.86例5
3、过点P(2,4)作两条互 相垂直的直线l1,l2, l1交x轴 于A点,l2交y轴于点B,求 线段AB的中点M的轨迹方 程。
4、已知方程
x y 2(m 3) x 2(1 4m ) y 16m 9 0
2 2 2 4
表示一个圆。求圆心的轨迹方程。
结论:到两个定点A、B的距离之比等于常 数的点的轨迹:当=1时,轨迹是线段AB的 垂直平分线;当 1时,轨迹是圆。
练习:设两点A、B的距离 为8,求到A、B两点距离 的平方和是50的动点的轨 迹方程。
2.相关点法
若动点P(x,y)随已知曲线上的点 Q(x0,y0)的变动而变动,且x0、y0可 用x、y表示,则将Q点坐标表达式代 入已知曲线方程,即得点P的轨迹方 程.这种方法称为相关点法(或代换 法).
Y
p
o
A
X
变式2:如图,已知点P是圆x2+ y2=16上的一个动点,点A是x轴上的 定点,坐标为(12,0).若D点是AOP 的平分线与PA的交点,当点P在圆上 运动时,求点D的轨迹方程。Y Nhomakorabeap
o
A
X
练习:三角形ABC的两个顶点A, B的坐标分别是A(0,0),B (6,0)顶点C在曲线y=x2+3上 运动,求三角形ABC的重心G的 轨迹方程。
求曲线的轨迹方程

第九章
平面解析几何
解析:由题设知|x1|> 2,A1(- 2,0),A2( 2,0),则有 y1 直线 A1P 的方程为 y= (x+ 2),① x1+ 2 - y1 直线 A2Q 的方程为 y= (x- 2),② x1- 2 2 2 x=x1, x1=x, 联立①②,解得 所以 ③ 2 y 2 y 1 y= y1 = , x , x1
栏目 导引
第九章
平面解析几何
直接法求曲线方程的一般步骤 (1)建立合理的直角坐标系; (2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标 表示为代数方程; (3)化简整理这个方程,检验并说明所求的方程就是曲线的方 程.
栏目 导引
第九章
平面解析几何
直接法求曲线方程时最关键的就是把几何条件或等量关系 “翻译”为代数方程,要注意“翻译”的等价性. [提醒] 对方程化简时, 只要前后方程解集相同, 证明一步可
栏目 导引
第九章
平面解析几何
栏目 导引
第九章
平面解析几何
利用相关点法(代入法)求轨迹方程 [典例引领] x2 y2 (2018· 杭州模拟)已知点 Q 在椭圆 C: + =1 上, 点 16 10 → 1 → → P 满足OQ= (OF1+OP)(其中 O 为坐标原点,F1 为椭圆 C 的 2 左焦点),则点 P 的轨迹为( A.圆 C.双曲线 ) B.抛物线 D.椭圆
栏目 导引
第九章
平面解析几何
直接法求轨迹方程(高频考点) 直接法求点的轨迹方程是求轨迹方程的一种重要方法, 也是高考考查的重要内容.主要命题角度有: (1)已知动点满足的关系式求轨迹方程(或判断轨迹); (2)无明确等量关系求轨迹方程.
栏目 导引
第4节 求轨迹方程的专题训练

2 kt
t
(t为参数),直线l2的参数方程为
x y
2 m k
m
(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
写出C的普通方程.
【解析】 直线l1的普通方程为y k(x 2), 直线l2的普通方程为x 2 ky, 消去k得, x2 y2 4 即C的普通方程为x2 y2 4.
【例11】 (新课标卷)已知两点P(-2,2),Q(0,2)以及一条直线l:y=x, 设长为 2 的线段AB在直线l上移动,求直线PA和QB交点M的轨 迹方程.
【解析】 PA和QB的交点M (x, y)随A、B的移动而变化, 故可设A(t,t), B(t 1,t 1),则直线PA的方程 : y 2 t 2 (x 2)(t 2),
(4)多参问题中,根据方程的观点,引入n个参数,需建立n+1个 方程,才能消参(特殊情况下,能整体处理时,方程个数可减少).
【例9】 过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A 点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
【解析】设M (x, y),连接MP,则A(2x, 0), B(0, 2 y), l1 l2 ,△PAB为直角三角形.
(2)用参数法求解时,选用什么变量为参数,要看动点随什么量 的变化而变化,一般参数可选用具有某种物理或几何意义的量, 如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横、 纵坐标等.也可以没有具体的意义.常见的参数有:斜率、截距、 定比、角、点的坐标等.
(3)选定参变量还要特别注意它的取值范围对动点坐标取值 范围的影响,要特别注意消参前后保持范围的等价性.
高三C专题(曲线与方程:轨迹方程的求法3星)

专题:曲线与方程:轨迹方程的求法(★★★)教学目标(1)理解曲线与方程的概念(两个关系); (2)知道求曲线方程需要适当选取坐标系的意义; (3)掌握求曲线方程的一般方法和步骤;(4)体会通过坐标系建立曲线方程、再利用代数方法研究曲线几何性质的基本思想。
知识梳理5 min.1. 曲线方程的定义:一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系: ①曲线C 上的点的坐标都是方程0),(=y x F 的解; ②以方程0),(=y x F 的解为坐标的点都是曲线C 上的点。
此时,把方程0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线。
2.利用集合与对应的观点理解曲线方程的概念:设)}(|{M P M P =表示曲线C 上适合某种条件的点M 的集合;}0),(|),{(==y x F y x Q 表示二元方程的解对应的点的坐标的集合。
于是,方程0),(=y x F 叫做曲线C 的方程等价于 ⎭⎬⎫⊆⊆P Q Q P ,即 Q P =。
3.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件,写出等式; (4)用坐标y x 、表示这个等式,并化简;(5)证明已化简后的方程的解为坐标的点都是曲线上的点。
上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。
4.求曲线方程的方法;(1)直译法:根据条件中提供的等量关系,直接列出方程;(2)代入法:在变化过程中有两个动点,已知其中一个动点在定曲线上运动,求另一动点的轨迹方程,这里通过建立两个动点坐标之间的关系,代人到已知曲线之中,得出所要求的轨迹方程; (3)参数法:单参数法;交轨法;坐标法;定形法。
典例精讲例1.(★★★)若点p 到直线1-=x 的距离比它到点)2,0(的距离小1,则点p 的轨迹为 ( )A .圆B .椭圆C .双曲线D .抛物线【答案】:由题意知,点P 到点(2,0)的距离与P 到直线x =-2的距离相等,由抛物线定义得点P 的轨迹是以(2,0)为焦点,以直线x =-2为准线的抛物线.答案:D例2.(★★★)已知两点)0,2(),0,2(N M -,点p 为坐标平面内的动点,满足| MN u u u u r |·|MP u u u r |+MN u u u u r ·MP u u u r=0,则动点),(y x p 的轨迹方程为 ( )A .x y 82= B .x y 82-= C .x y 42= D .x y 42-=【答案】:|MN u u u u r |=4,|MP u u u r |=(x +2)2+y 2,MN u u u u r ·MP u u u r=4(x -2),∴4(x +2)2+y 2+4(x -2)=0,∴y 2=-8x . 答案:B例3.(★★★)从双曲线122=-y x 上一点Q 引直线2=+y x 的垂线,垂足为N ,则线段QN 的中点P 的轨迹方程为____________.【答案】:设P (x ,y ),Q (x 1,y 1),则N (2x -x 1,2y -y 1),∵N 在直线x +y =2上, ∴2x -x 1+2y -y 1=2① 又∵PQ 垂直于直线x +y =2,∴y -y 1x -x 1=1, 即x -y +y 1-x 1=0.②由①②得⎩⎪⎨⎪⎧x 1=32x +12y -1,y 1=12x +32y -1.又∵Q 在双曲线x 2-y 2=1上,∴21x -21y =1.∴(32x +12y -1)2-(12x +32y -1)2=1. 整理,得2x 2-2y 2-2x +2y -1=0即为中点P 的轨迹方程.例4.(★★★)已知圆C 的方程为422=+y x .(1)直线l 过点)2,1(P ,且与圆C 交于B A 、两点,若32=AB ,求直线l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ u u u r =OM u u uu r +ON u u u r ,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.【答案】:(1)①当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为23满足题意;②当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1),即kx -y -k +2=0. 设圆心到此直线的距离为d , 则23=24-d 2,得d =1. ∴1=|-k +2|k 2+1,k =34,故所求直线方程为3x -4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1. (2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ),则N 点坐标是(0,y 0).∵OQ u u u r =OM u u uu r +ON u u u r ,∴(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y2.又∵x 20+y 20=4,∴x 2+y 24=4(y ≠0).∴Q 点的轨迹方程是x 24+y 216=1(y ≠0).轨迹是一个焦点在y 轴上的椭圆,除去短轴端点.课堂检测1.(★★★)如图,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD , 设CD 与OM 交于点P ,则点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .圆【答案】:由题意知,CD 是线段MF 的垂直平分线.∴|MP |=|PF |,∴|PF |+|PO |=|PM |+|PO |=|MO |(定值), 又显然|MO |>|FO |,∴点P 轨迹是以F 、O 两点为焦点的椭圆. 答案:A2.(★★★)已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1 D .2y =8x 2+1 【答案】:设AP 的中点M (x ,y ),P (x 0,y 0),则有x 0=2x ,y 0=2y +1,代入220x -y 0=0,得2y =8x 2-1. 答案:C3.(★★★)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC u u u r =λ1OA u u u r +λ2OB u u u r(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是 ( )A .直线B .椭圆C .圆D .双曲线【答案】:设C (x ,y ),则OC u u u r =(x ,y ),OA u u u r=(3,1),OB u u u r=(-1,3),∵OC u u u r =λ1OA u u u r +λ2OB u u u r ,∴⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线. 答案:A4.(★★★)已知点P (x ,y )对应的复数z 满足|z |=1,则点Q (x +y ,xy )的轨迹是( )A .圆B .抛物线的一部分C .椭圆D .双曲线的一部分 【答案】:由题意知x 2+y 2=1,∴(x +y )2-2xy =1.令x +y =m ,xy =n ,则有m 2-2n =1,∴m 2=2n +1. 又∵2|xy |≤x 2+y 2=1,∴-12≤n ≤12.∴点Q 的轨迹是抛物线的一部分. 答案:B5.(★★★)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.【答案】:(1)设椭圆长半轴长及半焦距分别为a 、c ,由已知得⎩⎪⎨⎪⎧a -c =1,a +c =7,解得a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),其中x ∈[-4,4].由已知|OP |2|OM |2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2,整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4]. ①λ=34时,化简得9y 2=112.所以点M 的轨迹方程为y =±473(-4 ≤x ≤4),轨迹是两条平行于x 轴的线段.②λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分; 当λ≥1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆.回顾总结4 min.。
轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。
曲线方程与轨迹问题专题复习讲义-2024届高考数学一轮复习专题讲义 (学生版)

目录曲线与轨迹问题 (2)【课前诊断】 (2)【知识点一:求曲线方程】 (4)【典型例题】 (4)考点一:定义法 (4)考点二:直接法 (5)考点三:相关点法 (6)考点四:参数法 (7)【小试牛刀】 (8)【巩固练习——基础篇】 (9)【巩固练习——提高篇】 (9)曲线与轨迹问题【课前诊断】成绩(满分10): 完成情况: 优/中/差1. 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定2. 圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( )A .相离B .相切C .相交D .以上都有可能3. 直线10xky与圆221x y 的位置关系是( )A .相交B .相离C .相交或相切D .相切4. 设m >0,则直线)10l xy m与圆22:O x y m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切5. 直线l 与圆22240(3)x y x y a a 相交于A ,B 两点,若弦AB 的中点为(2,3)C ,则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=06. 与圆22:420C x y x 相切,且在,x y 轴上的截距相等的直线共有( )A .1条B .2条C .3条D .4条7. 过原点O 作圆2268200x y x y 的两条切线,设切点分别为P ,Q ,则线段PQ的长为________.8.已知两圆分别为圆C 1:x 2+y 2=81和圆C 2:x 2+y 2-6x -8y +9=0,这两圆的位置关系是( )A .相离B .相交C .内切D .外切9.两圆222x y r ,222(3)(1)x y r 外切,则正实数r 的值是( )D .510.圆22616480x y x y 与圆2248440x y x y 的公切线条数为( )A .4条B .3条C .2条D .1条11.圆22460x y x y 和圆2260x y x 交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0【知识点一:求曲线方程】一、求曲线方程的常用方法:(1)定义法;(2)直接法;(3)相关点法;(4)参数法;【典型例题】考点一: 定义法例1. 已知ABC Rt ∆中,C ∠为直角,且),0,1(),0,1(B A -求满足条件的C 的轨迹方程。
求轨迹方程

求轨迹方程编稿;周尚达审稿:张扬责编:严春梅目标认知学习目标:1.了解什么叫轨迹,并能根据所给的条件,选择恰当的直角坐标系求出曲线的轨迹方程。
2.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想。
重点:掌握直接法、定义法(待定系数法)、相关点法、参数法等几种求曲线轨迹方程的常用方法。
难点:用相关点法、参数法求曲线轨迹方程。
学习策略:求轨迹方程是解析几何的基本内容,注意理解直接法、定义法(待定系数法)、相关点法、参数法等几种求曲线轨迹方程的常用方法通常各在什么情况下使用。
求出的轨迹方程,应注意避免增根或者丢根。
知识要点梳理求轨迹方程的主要方法(1)直接法:直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程。
(2)待定系数法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用待定系数法(定义法)直接探求。
(3)相关点法:根据相关点所满足的方程,通过转换而求动点的轨迹方程。
适合情况:一动点在基础曲线上运动,依某种条件带动另一动点的运动,我们要求另一动点的轨迹方程。
基本步骤:①建立两动点之间的关系,通常用所求动点的坐标表示已知动点的坐标;②将基础曲线上运动的点的坐标代入基础曲线的方程,整理后,即得所求曲线的方程。
☆(4)参数法:若动点的坐标中的分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,再通过消去参数t得到x与y的关系式,这就是参数法。
规律方法指导1.求轨迹方程的一般思路:①若曲线的类型已确定,一般用待定系数法;②若曲线的类型未确定,但曲线上动点的运动在题目中有明确的表述,一般采用直接法;③若动点的变化依赖于另一相关点的变化,一般采用相关点法(代入转移法);④若动点坐标之间的关系不易找出,一般可采用参数法。
但应注意所列方程个数比参数个数要多一个,才可以消去参数。
2.求轨迹方程应注意的问题:①求轨迹方程后一定要注意轨迹的纯粹性和完备性;以保证方程的解与曲线上的点具有一一对应的关系, 尤其是题中涉及三角形、斜率、参数方程中参数的限制, 往往使方程产生增根。
求曲线轨迹方程的方法

四、参数法求曲线方程
若过点 P(1,1)且互相垂直的两条直线 l1,l2 分别与 x 轴,y 轴交于 A,B 两点,则 AB 中点 M 的轨迹方程为________.
四、参数法求曲线方程
【审题】 斜率存在时,点斜式设l1的方程→得l2的方程→ 联立方程→求交点坐标→消去参数→得结果→斜率不存在时将
三、相关点法求曲线轨迹方程
基本思路:
①设点:设被动点的坐标 M (x, y),主动点的坐标 P(x0, y0;) ②求关系式:用被动点的坐标M (x, y) 表示主动点的坐标 P(x0, y0 ),即
得关系式
xy00
g(x, h(x,
y) y)
③代换:将上述关系式带入主动点满足的方程,化简整理可得所求动 点的轨迹方程。
三、相关点法求曲线轨迹方程
x 例 在圆 x2 y2 4上任取一点P,过点P作 轴的垂线段PD,
D为垂足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设M (x, y), P(x0 , y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以x02 y02 4 。
把 x0 x, y0 2x带入上式得:x2 4 y2 4.
二:定义法求轨迹方程
思路:如果动点的轨迹满足某种已知曲线定义,则可由曲 线的定义直接写出方程,利用定义法求轨迹方程要善于抓 住曲线定义的特征。 要点:四种曲线定义及成立条件
方法:建系设点 定型(思考几何关系,进而寻求数量关系) 定方程 定范围
二:定义法求轨迹方程
圆的定义: |PC|=r (r>0) 椭圆的定义:
一:直接法(直译法)求轨迹方程
例 已知一条直线 l 和它上方的一个点F,点F到l 的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨 迹 方 程 问 题常见的有六种求轨迹方程的方法:①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程;③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程;⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程;1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围.例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+ ,向量(,1)b x y =-,a b ⊥ ,动点(,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状;解:因为a b ⊥ ,(,1)a mx y =+ ,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=.当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程PMN例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得2PM PN =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心分别为12(2,0),(2,0)O O -.设(,P x y ,则,同理222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++-∵2PM PN =,∴2222(2)12[(2)1]x y x y ++-=-+-,即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程:例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程;(2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ∆的重心G 的轨迹方程。
解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y.2222A ,14440,+=4,(+)2, 1,21 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=⎧=⋅+=+⎨=+⎩1122212122(2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)(0,1)A ,设11(,)D x y ,22(,)E x y ,(,)M x y ,则由2114x y =,2224x y =,两式相减得l k =21212142y y x x x x x -+==-,又1l AM y k k x -==,12x y x-∴=,即2112y x =+. (3)设G (x,y ), 由(2)得2+=4,+=(+)242k k k +=+121212x x y y x x ,240+33,0+42333k x x k y y +⎧⎧==⎪⎪⎪⎪∴⎨⎨+⎪⎪==+⎪⎪⎩⎩1212x x y y ,消去k 得:23243y x =+为所求方程。
4.“代入法”求轨迹方程:设点M 是已知曲线F (x ,y )=0上的动点,点P 因点M 的运动而运动(即点P 是点M 的相关点),求点P 的轨迹方程. ①设点M 的坐标为M (0x ,0y ),则F (0x ,0y )=0; ②设点P 的坐标为P (x ,y );③因为“点P 随点M 的运动而运动”,可以求得:0x =f (x ,y ),0y =g (x ,y ); ④把0x =f (x ,y ),0y =g (x ,y )代入F (0x ,0y )=0,即得所求点P 的轨迹方程.例4.已知点100(,)P x y 为双曲线222218x y b b-=(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .求线段1P 2P 的中点P 的轨迹E 的方程.解: (1) 由已知得208303F b A b y (,),(,),则直线2F A 的方程为:03(3)yy x b b=--,令0x =得09y y =,即20(0,9)P y ,设P x y (,),则0000 2952x x y y y y ⎧=⎪⎪⎨+⎪==⎪⎩,即0025x x y y =⎧⎪⎨=⎪⎩ ,代入22002218x y b b -=得:222241825x y b b -=, 2F 1F OyxA2P 1P P即P 的轨迹E 的方程为22221225x y b b -= 5.“交轨法”求轨迹方程:设动曲线F(x,y )=0和动曲线G(x ,y)=0相交于点P ,求点P 的轨迹方程.从理论上,其求解程序为: ①设动点P 的坐标为:),(P P y x ;②解方程组⎩⎨⎧==0),(0),(y x G y x F ,求交点即得到.其中一般会含有参数,有一个消除参数的难点.例5.已知椭圆22a x +22by =1(a >b >0)的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切. (1)求a 与b 的值;(2)设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点P .求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型.解:(1)e =33⇒22a b =32.又圆心(0,0)到直线y =x +2的距离d =半径b =22112+,∴2b =2,2a =3 .(2)1F (-1,0)、2F (1,0),由题意可设P (1,t )(t ≠0).那么线段1PF 的中点为N (0,2t).2L 的方程为:y =t ,设M(M M y x ,)是所求轨迹上的任意点.直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2.所以:直线MN 的方程为:y -2t =-t2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42,消去参数t 得:M M x y 42-=,即:x y 42-=,其轨迹为抛物线(除原点). 又解:由于MN =(-x ,2t -y ),1PF =(-x ,2t-y ).∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=(x ≠0),其轨迹为抛物线(除原点). 注:本题的第一问是由几何量确定轨迹方程;第二问是“交轨法”求轨迹方程. 例6.已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (1)求椭圆2C 的标准方程;(2)设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的垂直平分线,M 是L 上异于椭圆中心的点.若||MO =λ||OA (O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程. 解:(1)由题意得22245253ab ab a b ⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1. (2)若AB 所在的斜率存在且不为零,设AB 所在直线方程为y =kx(k ≠0),A(A A y x ,).由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++,⇒2222220(1)||45A A k OA x y k +=+=+. 设M(x ,y),由|MO|=λ|OA|(λ≠0)⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y kλ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k-⇒k =x y -,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,(λ≠0). 例7.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,OP OM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.解:(1)设椭圆长半轴长及分别为a ,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a=4,c =3.⇒椭圆C 的方程为221167x y +=.(2)设(,)M x y ,其中[]4,4x ∈-。
由已知222OP OMλ=及点P 在椭圆C 上可得2222911216()x x y λ+=+,整理得2222(169)16112x y λλ-+=,其中[]4,4x ∈-。
(i )34λ=时。
化简得29112y =,所以点M 的轨迹方程为47(44)3y x =±-≤≤,轨迹是两条平行于x 轴的线段。
(ii )34λ≠时,方程变形为2222111211216916x y λλ+=-,其中[]4,4x ∈-,当304λ<<时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足44x -≤≤的部分。
当314λ<<时,点M 轨迹为中心在原点、长轴在x 轴上的椭圆满足44x -≤≤的部分. 例8.已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程. 解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则 1(2)FM x y =+ ,,111(2)F A x y =+ ,,1221(2)(20)F B x y FO =+= ,,,, 由1111FM F A F B FO =++ ⇒121226x x x y y y +=++⎧⎨=+⎩⇒12124x x x y y y +=-⎧⎨+=⎩ ⇒AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121224822y y y yx x x x --==----, 即1212()8yy y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即12()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 练习:1.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程是_______.2.已知点F 为抛物线22y x =的焦点,P 在抛物线上运动,则线段PF 的中点轨迹方程是 .3.已知椭圆的焦点是1F 、2F ,P 是椭圆上的一个动点.如果延长P F 1到Q ,使得||||2PF PQ =,那么动点Q 的轨迹是 ( ),如果M 是线段1F P 的中点,则动点M 的轨迹是( ).(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线4.设A ,B 分别是直线255y x =和255y x =-上的两个动点,并且||20AB = ,动点P 满足OP OA OB =+.记动点P 的轨迹为C ,求轨迹C 的方程.5.已知椭圆1C 的中心在坐标原点,一个焦点为F(0,3),过点F 且垂直长轴的弦长为1, (1) 求椭圆1C 的方程;(2) 过椭圆1C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON=+,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.。