立体几何

合集下载

立体几何(解析版)

立体几何(解析版)

立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。

通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。

本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。

1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。

点是没有大小的,只有位置的几何对象。

线由无数个点组成,是长度没有宽度的几何对象。

面是由无数个点和线组成,有着长度和宽度的几何对象。

了解这些基本概念是理解立体几何的第一步。

2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。

例如,平行是最基本的几何关系之一。

当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。

此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。

通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。

3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。

常见的空间几何图形包括球、立方体、锥体等。

每种空间几何图形都有其独特的性质和分类标准。

例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。

通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。

4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。

例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。

此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。

在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。

5. 立体几何的应用立体几何的应用广泛而重要。

在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。

在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

如果两个平行平面同时和第三个平面相交,则交线平行。

8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

立体几何基本概念

立体几何基本概念

1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。

立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。

立体测绘(Stereometry)是处理不同形体的体积的测量问题。

如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。

立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。

各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。

学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。

三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。

1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。

数学解决立体几何问题的四种常用方法

数学解决立体几何问题的四种常用方法

数学解决立体几何问题的四种常用方法数学作为一门科学,其应用范围及其广泛。

在解决现实生活中的各种问题中,立体几何问题是其中之一。

在本文中,将介绍数学解决立体几何问题的四种常用方法,分别是平面几何方法、向量法、投影法和立体坐标法。

一、平面几何方法平面几何方法是解决立体几何问题最常用的方法之一。

该方法的基本思想是将立体几何问题转化为平面几何问题来求解。

具体来说,可以通过绘制立体几何图形的几个视图,将其分解为多个平面几何图形,然后利用平面几何中的定理和性质进行求解。

例如,对于一个立方体求其体积,可以将其展开成一个平面图形,然后计算出展开图形的面积。

再根据立方体的性质,将展开图形的面积乘以立方体高度所得的积即为立方体的体积。

二、向量法向量法是一种几何分析方法,可以有效地解决立体几何问题。

该方法利用向量的运算和性质,将立体几何问题转化为向量计算问题来求解。

在利用向量法解决立体几何问题时,首先需要确定坐标系,并定义几何体的位置和方向。

然后,通过向量运算来计算几何体的性质。

例如,对于一个平行六面体的体积,可以通过计算其底面向量与高度向量的叉积来求解。

三、投影法投影法是解决立体几何问题的另一种常用方法。

该方法利用几何体在不同平面上的投影关系,将立体几何问题转化为投影几何问题来求解。

具体来说,可以通过绘制几何体在不同平面上的投影图形,并利用投影几何的定理和性质进行求解。

例如,对于一个棱柱在某个平面上的截面积,可以通过计算棱柱的投影图形在该平面上的面积来求解。

四、立体坐标法立体坐标法是一种通过引入三维坐标系来解决立体几何问题的方法。

该方法通过确定几何体的坐标,将立体几何问题转化为坐标几何问题来求解。

在利用立体坐标法解决立体几何问题时,首先需要建立一个三维坐标系,并确定几何体的坐标。

然后,通过坐标运算来计算几何体的性质。

例如,对于一个球体求其体积,可以根据球体的坐标及其半径,利用坐标运算公式计算出体积。

总结起来,数学解决立体几何问题的常用方法有平面几何方法、向量法、投影法和立体坐标法。

立体几何图形公式大全

立体几何图形公式大全

立体几何图形公式大全最早的几何学当属平面几何。

平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。

平面几何的内容也很自然地过渡到了三维空间的立体几何。

为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。

立方图形名称符号面积S和体积V1、正方体 a-边长 S=6a2 ; V=a32、长方体a-长;b-宽 ;c-高; S=2(ab+ac+bc) ; V=abc3、圆柱 r-底半径;h-高;C—底面周长;S底—底面积;S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h =πr2h4、空心圆柱 R-外圆半径;r-内圆半径;h-高V=πh(R2-r2)5、直圆锥r-底半径;h-高V=πr2h/36、圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/37、棱柱S-底面积;h-高;V=Sh8、棱锥 S-底面积h-高 ;V=Sh/39、棱台S1和S2-上、下底面积h-高 ;V=h[S1+S2+(S1S1)1/2]/310、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高V=h(S1+S2+4S0)/611、球 r-半径 ;d-直径V=4/3πr3=πd2/612、球缺 h-球缺高;r-球半径;a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)13、球台r1和r2-球台上、下底半径;h-高V=πh[3(r12+r22)+h2]/614、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径V=2π2Rr2=π2Dd2/415、桶状体D-桶腹直径;d-桶底直径;h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何1.已知圆锥的顶点为P ,底面圆心为O ,半径为 .(1)设圆锥的母线长为4,求圆锥的体积;(2)设OB OA P 、,40=是底面半径,且90=∠AOB ,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.2.如图,在正三棱柱111C B A ABC -中,21==AA AB ,点P ,Q 分别为BC B A ,11的中点.(1)求异面直线BP 与1AC 1所成角的余弦值;(2)求直线1CC 与平面1AQC 所成角的正弦值.3.如图,在三棱柱111C B A A B C -中,A B C CC 平面⊥1,G F E D ,,,分别为1111,,,BB C A AC AA 的中点,5==BC AB ,21==AA AC .(1)求证:BEF AC 平面⊥;(2)求二面角1C CD B --的余弦值.4.如图,四棱锥ABCD P -中,底面ABCD 为平行四边形,ABCD PD AD AB DAB 底面⊥==∠,2,60 .(1)证明:BD PA ⊥;(2)若AD PD =,求二面角C PB A --的余弦值。

5.如图,四棱锥ABCD P -中,底面ABCD 为矩形,ABCD PA 平面⊥,E 为PD 的中点.(1) 证明:AEC PB 平面//C(2) 设二面角C AE D --为 60,3,1==AD AP ,求三棱锥ACD E -的体积.6.如图,在ABC ∆中,90,60=∠=∠BAC ABC ,AD 是BC 边上的高,沿AD 把ABD ∆折起,使 90=∠BDC .(1)证明:平面BDC ADB 平面⊥;(2)设E 为BC 的中点,求AE 与DB 夹角的余弦值.7.如图,在四棱锥ABCD P -中, 平面,,,PD PA PD PA ABCD PAD =⊥⊥平面 5,2,1,====⊥CD AC AD AB AD AB .(1)求证:PAB PD 平面⊥;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得PCD BM 平面//?若存在, 求APAM 的值;若不存在, 说明理由.8.如图,在直棱柱BC AD D C B A ABCD //1111中,-, ,,90BD AC BAD ⊥=∠3,11===AA AD BC .(I )证明:D B AC 1⊥;(II )求直线111ACD C B 与平面所成角的正弦值。

参考答案1.(1) ;(2) .【解析】【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【详解】(1)∵圆锥的顶点为,底面圆心为,半径为,圆锥的母线长为,∴圆锥的体积.(2)∵,,是底面半径,且,为线段的中点,∴以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,,,,,,,,,,,,,,,设异面直线与所成的角为,则.∴.∴异面直线与所成的角的为.【点睛】求空间两条异面直线所成角的大小是立体几何中最为常见的基本题型之一。

这类问题的求解一般有两条途径:其一是平移其中的一条直线或两条直线,将其转化为共面直线所成角,然后再构造三角形,通过解三角形来获得答案;其二是建立空间直角坐标系,借助空间向量的数量积公式,求出两向量的夹角的大小来获解.2.(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.3.(1)见解析(2);(3)见解析.【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线F G方向向量数量积不为零,可得结论.详解:解:(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,,,,,,设平面BCD的法向量为,,,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,,,又∵平面CDC1的法向量为,,,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,,,∵G(0,2,1),F(0,0,2),∴,,,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.4.(1)见解析(2)【解析】试题解析:(1)∵∠DAB=600,AB=2AD ,由余弦定理得,从而BD 2+AD 2=AB 2故BD ⊥AD ,即BD ⊥平面PAD ,故PA ⊥BD(2)以D 为坐标原点,AD 的长为单位长,射线DA 为X 轴的正半轴建立空间坐标系 则A (1,0,0),B (0,0),C (-1,0),P (0,0,1)设平面PAB 的法向量(),,n x y z =,则{ 0n AB n AB ⋅=⋅=,解得(3,1,n = 平面PBC 的法向量()111,,m x y z =,则 0{ 0m PB n BC ⋅=⋅=,解得(0,1,m =- 27cos ,m n 〈〉=-考点:本题考查线线垂直 二面角点评:解决本题的关键是用向量法证明注意计算准确性 视频 5.8【解析】试题分析:(Ⅰ)连接BD 交AC 于O 点,连接EO ,只要证明EO ∥PB ,即可证明PB ∥平面AEC ;(Ⅱ)延长AE 至M 连结DM ,使得AM ⊥DM ,说明∠CMD=60°,是二面角的平面角,求出CD ,即可三棱锥E-ACD 的体积试题解析:(1)证明:连接BD 交AC 于点O ,连接EO.因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB.因为EO 平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC.(2)因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点, AB ,AD ,AP 的方向为x 轴y 轴z 轴的正方向,|AP |为单位长,建立空间直角坐标系A-xyz ,则D (),E 12⎛⎫ ⎪ ⎪⎝⎭, AE=12⎛⎫ ⎪ ⎪⎝⎭.设B(m ,0,0)(m>0),则C(m ,0), AC =(m ,,0).设n 1=(x ,y ,z)为平面ACE 的法向量,则0{ 0n AC n AE ⋅=⋅=即0102mx y z +=+= 可取n 1=-⎝. 又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即12,解得m =32. 因为E 为PD 的中点,所以三棱锥E-ACD 的高为12.三棱锥E-ACD 的体积V =13×1232×12考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定视频 6.(1)见解析 (2)22【解析】(1)确定图形在折起前后的不变性质,如角的大小不变,线段长度不变,线线关系不变,再由面面垂直的判定定理进行推理证明;(2)在(1)的基础上确定出三线两两垂直,建立空间直角坐标系,利用向量的坐标和向量的数量积运算求解.(1)∵折起前AD 是BC 边上的高,∴当△ABD 折起后, AD ⊥DC ,AD ⊥DB ,又DB DC D ⋂=,∴AD ⊥平面BDC ,∵AD Ö平面ABD ,∴平面ABD ⊥平面BDC .(2)由∠BDC 90=及(1)知DA ,DB ,DC 两两垂直,不妨设|DB|=1,以D 为坐标原点,以DB , DC , DA 所在直线为,,x y z 轴建立如图所示的空间直角坐标系,易得:D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(12,32,0),所以13,,22AE ⎛= ⎝, ()1,0,0DB =,∴1·cos ,22AE DBAE DB AE DB ===⋅ 所以AE 与DB. 视频 7.(1)证明见解析;(2);(3)存在,.【解析】试题分析:(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB 与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值. 试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.视频8.(I)见解析(II)【解析】试题分析:(I)根据直棱柱性质,得⊥平面ABCD,从而AC⊥,结合∩BD B,证出AC⊥平面,从而得到;(II)根据题意得AD∥,可得直线与平面所成的角即为直线AD与平面所成的角.连接,利用线面垂直的性质与判定证出⊥平面,从而可得.由AC⊥,可得⊥平面,从而得到与AD与平面所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△中算出,可得,由此即可得出直线与平面所成的角的正弦值试题解析:(1)因为平面,所以为在平面内的投影;因为,所以;(2)以A为原点,AB所在边为x轴,AD所在边为y轴,AA1所在边为z轴建立空间直角坐标系,则,所以,;因为,,所以,因为,所以,故,所以,设为平面的法向量,则,令,所以为平面的一个法向量;因为,,所以所以直线与平面所成角的正弦值.考点:直线与平面所成的角;直线与平面垂直的性质。

相关文档
最新文档